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1 Introduction

The well-known vanishing theorem of Bochner says that if the Ricci tensor of a compact Rie-
mannian manifold is nonnegative, then every harmonic 1-form is parallel; moreover, if the Ricci
tensor is nonnegative and positive at least at one point, then there are no nonzero harmonic
1-forms and the first Betti number b; = 0.

It is also well known that on a compact Kéahler manifold the (1,0)-part of a harmonic 1-
form is holomorphic, i.e. it is d-closed; conversely, every holomorphic (1,0)-form is d-closed or
equivalently, the corresponding real 1-form is harmonic [29]. Certainly, the Bochner theorem is
true for compact Kéahler manifolds and could be expressed also in terms of holomorphic forms.

However, the (1,0)-part of a harmonic 1-form may not be holomorphic on a compact Hermi-
tian manifold. Nevertheless, there exists a Bochner type theorem for holomorphic (1,0)-forms
on a compact Hermitian manifold. This theorem is formulated in terms of the Chern connec-
tion and its mean curvature. In fact, on a compact Hermitian manifold with nonnegative mean
curvature every holomorphic (1,0)-form is parallel with respect to the Chern connection; if in
addition the mean curvature is positive at least at one point, then there are no nonzero holo-
morphic (1,0)-forms [21, 14, 27, 20] and the Hodge number h':’ = 0. We note that this is a
part of the general result for the nonexistence of holomorphic sections of a holomorphic vector
bundle over a compact Hermitian manifold [21, 14] (see also [27, 20]).

In the present paper we consider questions of existence of harmonic 1-forms, holomorphic

(1,0)-forms and find relations between them on compact balanced Hermitian manifolds.

Balanced Hermitian manifolds are Hermitian manifolds with a co-closed fundamental form
or equivalently with a zero Lee form. They have been studied intensively in [22, 1, 2, 3]; in [14]
they are called semi-Kahler of special type. This class of manifolds includes the class of Kahler
manifolds but also many important classes of non-Kéahler manifolds, such as: complex solv-
manifolds, twistor spaces of oriented Riemannian 4-manifolds, 1-dimensional families of Kahler
manifolds (see [22]), some compact Hermitian manifolds with a flat Chern connection (see [16]),
twistor spaces of oriented distinguished Weyl structure on compact self-dual 4-manifolds [15],
twistor spaces of quaternionic Kahler manifolds [25, 4], manifolds obtained as modification of
compact Kahler manifolds [1] and of compact balanced manifolds [2] (see also [3]).

On a balanced Hermitian manifold (M, g, J) there are two Ricci tensors p and p* associated
with the Levi-Civita connection V of the metric ¢ and two Ricci tensors k and k* associated
with the canonical Chern connection D generated by the metric g and the complex structure
J. We note that the (1,1)-form corresponding to the tensor k represents the first Chern class
of M and the (1, 1)-form corresponding to the tensor k* is the mean curvature. All these Ricci
tensors coincide on a Kahler manifold.

Let (M,g,J) be a Hermitian manifold. If X is an arbitrary C* vector field on M, we

denote by wx its corresponding 1-form with respect to the metric g and use the decomposition



wx = w/l\}o +wg(’1 with respect to the complex structure .J. We find obstructions to the existence

of harmonic and holomorphic 1-forms in terms of the Ricci tensors of the Levi-Civita and Chern

connection. The aim of the paper is to prove the following

Theorem 1.1 Let (M,g,J) be a compact balanced Hermitian manifold.
i) If the *-Ricci tensor p* is nonnegative on M, then:

a) every holomorphic (1,0)-form wk’o is 0-harmonic (wx 1is harmonic);

b) every 0-harmonic (1,0)-form w}(’o satisfies the conditions

p*(X?X) =0, V”(")X =0,

where V'"wx is the (2,0)-part of Vwx.

i) If the tensor p* is nonnegative on M and positive at least at one point in M, then there
are neither holomorphic (1,0)-forms, nor 0-harmonic (1,0)-forms other than zero. Consequently,
the Hodge numbers h'0(M) = b (M) = 0 and the first Betti number by (M) = 0.

ii1) If the tensor cp + (1 — ¢)p* is nonnegative on M for some constant ¢ > 0, then any

harmonic 1-form wx is V-parallel and satisfies the conditions
p(X, X) = p*(X, X) = 0.

iv) If the tensor cp + (1 — ¢)p* is nonnegative on M and positive at least at one point in M,

then there are no harmonic 1-forms other than zero and by = 0.

Note that these conditions agree with the classical Bochner conditions on Kahler manifolds.

In Example 1 we apply Theorem 1.1 to the complex twistor space (Z, J) of a compact hyper
Kéhler manifold which holonomy group is exactly Sp(n) to show the vanishing of the cohomology
group H'(Z,Oz) (see Theorem 5.1 in the last section).

On a compact balanced Hermitian manifold we find necessary and sufficient conditions for
a O-harmonic (1,0)-form to be 0-harmonic (holomorphic) in terms of the Ricci tensors of the
Levi-Civita and Chern connections and show that it is also necessary and sufficient condition
for a d-harmonic (1,0)-form to be d-harmonic. Constructing the tensor H = 2p* — k — k* we

prove

Theorem 1.2 On a compact balanced Hermitian manifold the following conditions are equiva-
lent:

(i) The (1,0)-part of a harmonic 1-form wx is holomorphic;

(ii) A real 1-form wx with a holomorphic (1,0)-part is harmonic;

(iii) [y, H(X, X)dv = 0.

We note that the tensor H vanishes identically on a Kéahler manifold and measures the
deviation of a balanced Hermitian manifold from a Kéahler one (see section 3 below).

Finally, in Example 2 we show that the third condition of Theorem 1.2 is essential.



2 Preliminaries

Let (M,g,J) be a 2n-dimensional Hermitian manifold with metric ¢ and complex structure .J.
The algebra of all C'™° vector fields on M will be denoted by XYM. The Kahler form 2 of the
Hermitian structure (g, J) is defined by Q(X,Y) = ¢(JX,Y); X, Y € XM. The associated
Lee form 0 is given by 6 = —§Q2 o J.

We denote by V and R = [V, V] — V|, the Levi-Civita connection of the metric g and the
Riemannian curvature tensor, respectively. The corresponding curvature tensor of type (0,4) is
given by the equality R(X,Y,Z, V) =g¢(R(X,Y)Z,V), X,Y,Z,V € XM.

Further p and p* will stand for the Ricci tensor and *-Ricci tensor, respectively. We have

2n
p*(X,Y)=> Rle;, X, JY, Je;), X,Y €XM.
j=1
Henceforth {ey, ..., eq,} will denote an orthonormal frame.

We denote by D,T and K the canonical Chern (Hermitian) connection of the Hermitian
structure, its torsion tensor and its curvature tensor (Hermitian curvature tensor), respectively.
We recall that the Chern connection D is the unique linear connection preserving the metric g
and the complex structure J, so that the torsion tensor T' of D has the property T(JX,Y) =
T(X,JY), X,Y € XM. This implies (e.g. [5]):

(2.1) TJX,Y)=JT(X,Y), X, YeXM.
The corresponding torsion tensor of type (0,3) is defined by the equality
TX,Y,Z)=9(T(X,Y),Z), X,Y,ZeXM.

The curvature tensor K of D has the following properties:
(2.2) K(JX,JY)Z =K(X,Y)Z, K(X,)Y)JZ=JK(X,Y)Z, X,Y,ZeXM.
The Ricci identity for the Chern connection is expressed in the following form:
(2.3) DxDyZ — DyDxZ = K(X,Y)Z — Dr(x,y)Z, XY, Z e XM.
The two connections V and D are related by the following identity
(2.4) 9(VxY,Z)=g(DxY,Z) + %dQ(JX, Y,Z), X,Y,ZecXM.
This equality implies that
(2.5) T(X,Y,Z) = —%dQ(JX, Y. Z) - %dQ(X, JY,Z), X,Y,Z € XM,

There are three Ricci-type tensors k, k* and s associated with the curvature tensor K defined
by
k(X :——Zg (X, JY)ej, Jej); k(X :——Zg (ej, Jej) X, JY);



2n
s(X,Y)=> g(K(ej,X)Y,e;), X,Y € XM.
j=1

The corresponding scalar curvatures are defined by 7 = trp, 7* = trp*,u = trk = trk*,
v = 1rs.

The (1, 1)-form & corresponding to the tensor k represents the first Chern class of M (further
we shall call it the Chern form) and the (1,1)-form x* corresponding to the tensor k* is the mean
curvature of the holomorphic tangent bundle T"°M with the hermitian metric induced by g.

For an arbitrary vector field X in XM we denote by wx its dual 1-form defined by wx (Y) =
g9(X,Y), Y € XM. From (2.4) it follows that

2n

(2.6) (5&))( = — Z(Deiwx)ei — H(X)

=1
3 Balanced Hermitian manifolds

We recall the definition of a balanced Hermitian manifold and some equivalent conditions given

in [14, 22] for completeness:

Definition: A Hermitian manifold (M,g,J) is said to be balanced if it satisfies one of the
following equivalent conditions:

i) 0 =0 (6=0);

i) dQ"! = 0;

i) Apf = Agf = %Adf for every smooth function f on M, where Ay, A5 and Ay denote

the Laplacians with respect to the operators 0,0 and d, respectively.

We shall use local holomorphic coordinates {z®},« = 1,...,n and the corresponding frame

field _
0 0 0
{820" 020 820‘}’

for some calculations. The first Bianchi identity for the Hermitian curvature K with respect to

a=1,..,n a=1,...,n

local holomorphic coordinates gives

(3.7) Ka/;'y/_\ — K’yﬁa/_\ = _DBTOé’Y/_\'

By the condition 6Q = 0 from (3.7) it follows that [7]

(3.8) s(X,Y)=s(V,X) =k(X,Y), X,YeXM.

It is immediate from (2.6) that on a balanced Hermitian manifold we have:

2n

(3.9) dw = — Z(Deiw)ei.

i=1
Now let a be a tensor of type (0,2) and denote by a’ the tensor of type (0,2) defined by
ad(X,Y) = a(Y,X), X,Y € XM. The symmetric part and the skew-symmetric part of the



tensor @ are given by
1 t 1 t
Sym(a)zi(a+a), Skew(a) zi(a—a),

respectively. The induced by the metric ¢ scalar product in the vector space of (0,2)-tensors will

be denoted by the same letter. For two tensors a,b of type (0,2) we have

2n 2n
gla,b) = > alei, e;)b(es, €); g(a’,b) = g(a,b") = Y alei,e;)b(ej, e;).
i,j=1 =1

For a fixed vector field X we obtain the following (0,2)-tensors ixT and jx7 from the torsion
tensor 1":

(3.10) ixT(Y,7) =T(X,Y,2); jxT(Y,Z2)=T(,Z,X), Y,Z€eXM.

The equalities (2.1) and (3.10) imply that the tensor ix7T is J-invariant while the tensor jx7 is

J-antiinvariant, i.e.
The next statement, proved in [13], gives relations between the tensors p and p*.

Proposition 3.1 [13] Let (M, g,J) be a balanced Hermitian manifold. Then the Ricci tensors

of the Riemannian and Hermitian curvature satisfy the following identities

(3.11) pH(X,Y) = p*(JX,JY) = p*(V,X), X,Y € XM;

(3.12) p(X,Y) = p(JX,JY) = —g(ixT, (iyT)"), X,Y € XM.
N 1. .

(3.13) RXY) = p"(X,Y) = 29(xT, v T),

1 1
(B3.14)  KXY)+E(XY) = S(p(X,Y) +p(JX, JY)) = p"(X,Y) = 5g(ixT, ivT),
(3.15) (X, X) +E(X,X) — p(X, X) = p*(X, X) = || Sym(ixT)|I”,
where X,Y € XM, and ||.||? is the usual tensor norm.

We have

Corollary 3.2 Let (M,g,J) be a balanced Hermitian manifold. Then
i) T =71

ii) (M, g,J) is Kahler iff T = u.
Proof: Taking traces in (3.13) and (3.14) we find
1 1
u—T75= ZHTHQ’ w—7—7"= §||T||2
Hence 7 = 7* and u — 7 = 1||T||>. The last two equalities imply i) and ii). QED
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Let 1 be a 1-form. Further we denote by d'n, D'n and V'n the (1,1)-part (with respect to the
complex structure J) of the exterior derivative dn, the covariant derivative Dn with respect to
the Chern connection and the covariant derivative V) with respect to the Levi-Civita connection
of 1, respectively. For the ((2,0) + (0,2))-parts of dn, Dn and V7 we use the denotations d''n, D"n

and V"7, respectively. For example,

dn(X,Y)==(dn(X,Y)+dn(JX,JY)); d'nX,Y) (dn(X,Y) —dn(JX,JY)).

1 1
2 S 2
The next integral formulas are essential for the proof of our main results.

Proposition 3.3 Let (M,g,J) be a compact balanced Hermitian manifold. Then for any vector
field X € XM we have

_ %(&uJX)Z}dv;

1
(3.16) /M 2||Skew(D"wx)||* dv = /M{||D”wX||2 + E(X,X) — 5((SwX)Z
(3.17) / 2| Skew(D"wy)|? dv =
M
1 1
[ D P+ KX X) = B (X X) = S(0x)? = 5 (0nx)*} .
Proof. Let wx = wadz® + wadz®. We consider the following real 1-form

0 = Dango‘dz’B + DawBX@dzB

and compute its co-differential §¢. Here and further the summation convention is assumed.
Using (3.9) and taking into account the Ricci identity (2.3) for the Chern connection, (2.1),
(2.2) and (3.8), we obtain

—6p = g(D"wx, (D"wx)") + k(X,X) — %X{wa — %JXéWJX.
Integrating this equality over M we find
(3.18) /M{g(D"wX, (D"wx)") + k(X, X) — %(5@0;{)2 — %(MJX)?}dv =0.
On the other hand we have
2 Skew(D"wx)||? = —g(D"wx, (D'wx)") + [ D"wx |

Then the last equality and (3.18) imply (3.16).

By similar calculations for the real 1-form

(DawsX? — DawzXP)dz® + (DawzXP” + DawsXP)d2"

we find
(3.19) / {IID"wx > = |D'wx |* + k* (X, X)} dv = 0.
M
Now (3.16) and (3.19) imply (3.17). QED



Proposition 3.4 Let (M,g,J) be a compact balanced Hermitian manifold. Then for any vector
field X € XM we have
(3.20) / 2||Skew(D'wy)|? dv =

M

[ AIDoxl? = S(0x)? + 36esx)? +gUixT, (D'ox))} doy

(3.21) /M g(ixT, D'w) dv = /M{k(X, X) — K (X, X) + g(jxT, D"wy)} do.
Proof. Let wy = wadz® + wadz®. We consider the real 1-form

DawsX®dz + Dows Xdz"
and compute its co-differential. Integrating over M the obtained equality we find that
322 [ {g(Dox, (Dox)!) = 5(0wx)? + 5(0rx)* + gixT, (Dox))}do =0,
On the other hand

2||Skew(D'wx)||” = | D'wx|* — g(D'wx, (D'wx)").

By virtue of the last equality and (3.22) we obtain (3.20).

To prove (3.21) we consider the real 1-form
Topy XPXTd2® + Tp5, XX d2"

and compute its co-differential. Taking into account (3.7) after an integration over M we get

(3.21). QED

4 Proof of the theorems

Let X be a real vector field in XYM and wy = wadz® +wadz® = wg’o) —I—wf\(f)’l) be its dual 1-form.

The (1,0)-form w}éo = wedz® is 0-harmonic iff
(4.23) dwap = Dawp — Dgwa + Tapwe =0, dwx = dwyx = 0.
The real 1-form wyx is harmonic iff
(4.24) dwap = Dawp — Dgwa + Tapws =0,  dw,z = Dawz — Dgwa =0,

(4.25) Swx = 0.

The second equality of (4.24) implies that dwyx = 0.

The (1,0)-form w/l\}o = wqdz® is holomorphic iff
(4.26) Dswg = 0.

It is immediate from this equality that dwx = dwyx = 0.



4.1 Proof of Theorem 1.1

i) Let w/l\}o = wqdz® be a holomorphic (1,0)-form. Taking into account the condition (4.26) from

(3.19) it follows that

(4.27) / {|ID"wx]|® + k*(X, X)} dv = 0.
M
Since
1
(4.28) V”LUX = D"wX + inT’
then
) 1, .
(4.29) IV"wx|” = [ D"wx|* + g(D"wx, jxT) + ZHJXTHQ-

Under the condition (4.26) the equality (3.21) implies

(4.30) /M{g(jXT, D"wx) + k(X, X) — k*(X, X)} dv = 0.
By virtue of (4.29), (4.27), (4.30) and (3.13) it follows that

(4.31) /M{||V”wxll2 + p* (X, X)}dv = 0.

This formula proves a).
In order to prove b) we shall show that (4.31) is also true for any 0-harmonic (1,0)-form.

Indeed, let wk’o = wadz® be 0-harmonic. Then (4.23) implies
(4.32) Skew(D"wy) = —%jXT.
Using this equality and (3.13) we find

ISkew(D"wx)? = lixTI? = (X, X) - (X, X).
The last equality, (4.23) and (3.16) imply
(4.33) / D" wx || dv = / (k(X, X) — 2*(X, X)) do.

M M
Since the tensor jx 7T is skew-symmetric, then (4.32) leads to

oD jxT) = g(Skew(D"wx),jxT) = ~lix TP,

We obtain from (4.29) that
IV"wx | = [|ID"wx || ~ iHjXTH2 = [[D"wxl” = k(X, X) + p*(X, X).

Integrating the last equality and taking into account (4.33), we obtain (4.31) which proves b).
The statement ii) follows ;from (4.31) by applying the Dolbeault theory to the d-operator
and the well known inequality (see e.g.[17], Section 3.5)

(4.34) by (M) < RO (M) + R (M)



To prove iii) and iv) let wy = wadz® +wadz® be a harmonic 1-form. From (4.24) and (3.13) we
have
1
g(ixT, D"wx) = =5 llixT|* = 2p"(X, X) — 2k(X, X).

Combining this equality with (3.21) we get

(4.35) /M 9(jxT, D'w) dv = /M{Qp* (X, X) = k(X, X) — k*(X, X)} dv
The last equality, (4.25) and (3.20) imply

(4.36) /M{HD’wa2 420" (X, X) — k(X, X) — k*(X, X)} dv = 0.

On the other hand we have
V'wxy = D'wx + Sym(ixT)

and
IV'wx|? = |D'wx|” + 2g(D'wx, Sym(ixT)) + || Sym(ixT)||*.

Integrating the last equality and taking into account (4.35), (4.36) and (3.15) we find
(4.37) [ I ex 2 4 (X, X) = (X, X)} do = 0,

Let ¢ be a positive constant. Combining (4.37) with (4.31) we obtain
(4.38) J eV ox P+ 19" wx |+ 6p(X, X) + (1 = )" (X, X) } do = 0.

This formula implies immediately iii). The statement iv) also follows from (4.38) by using the
Hodge theory. QED

4.2 Proof of Theorem 1.2
We define the tensor H of type (0,2) by the equality

H(X,Y) =2p"(X,Y) — k(X,Y) - k*(X,Y); X,Y € XM.
Let wyxy = wadz® + wgdz® be a harmonic 1-form. By virtue of (4.35) we have
(4.39) /M (ID"wx| + H(X, X)) dv =0,

Now the equivalence i) < iii) follows immediately from (4.39).
To prove the equivalence ii) « iii) let wy” be a holomorphic (1,0)-form. Since d"wy =

2Skew(D"wyx) + jx T, then
(4.40) ld"wx || = 4[| Skew(D"wx)||* +49(jx T, D"wx) + [lix T
Taking into account (3.16) and (3.19) we find

(4.41) /M{2||Sk:ew(D"wX)||2 RH(X, X) — (X, X)) do = 0.
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By virtue of the equalities (3.21), (4.40), (4.41) and (3.15) we obtain
1
| G M"x | + HX, X)}do =0,
M 2

The last equality implies the equivalence ii) < iii) which completes the proof of Theorem 1.2.
QED
In the next theorem we find obstructions to the existence of holomorphic (1,0)-forms in terms

of the Ricci tensors of Chern connection. We have

Theorem 4.1 Let (M,g,J) be a compact balanced Hermitian manifold.
i) If the tensor k + k* is nonnegative on M, then any holomorphic (1,0)-form wﬁéo satisfies
the conditions

E(X,X)+E(X,X) =0, Sym(D"wx) = 0.

i) If the tensor k + k* is nonnegative on M and positive at least at one point in M, then

there are no holomorphic 1-forms other than zero and h'* = 0.

Proof. Let w/l\}o be a holomorphic (1,0)-form. The identity
ISym(D"wx)||? + [|Skew(D"wx)||* = | D"wx|?
and the equality (3.16) give
| 2ISym(D"wx)f = [D"wox [ + K(X, X)} dv = 0.
Combining the last formula with (4.27) we obtain
(4.42) / (2| Sym(D"wx)|12 + k(X, X) + k*(X, X)} dv = 0.
M

Now the statements i) and ii) follow from formula (4.42). QED
We obtain as a corollary from the proof of Theorem 4.1 and formulas in Proposition 3.1 the

following

Proposition 4.2 Let (M,g,J) be a compact balanced Hermitian manifold.
i) If the tensor p + p* is nonnegative on M, then any holomorphic (1,0)-form w%’o satisfies
the conditions

p(X, X) + p*(X,X) = k(X,X) + k*(X,X) =ixT =0

and the vector field X is Killing.
ii) If p+ p* is nonnegative on M and positive at least at one point in M, then there are no

holomorphic 1-forms other than zero and the Hodge number h'"0 = 0.

Proof. We recall that a real vector field X is said to be Killing if Lxg = 0, where Lx denotes
the Lie derivative with respect to X. In terms of the Chern connection the Killing condition is

expressed by the equalities
(4.43) Sym(D"wx) =0,

11



(4.44) Sym(D'wx) = —Sym(ixT).

Let wﬁéo be a holomorphic (1,0)-form. By virtue of (3.15) we can apply Theorem 4.1, which
implies Sym(D"wx) = 0 and k(X,X) + k*(X,X) = 0. Taking into account (3.15) we find
p(X,X) +p"(X,X) =0,ixT = 0. From (4.43) and (4.44) it follows that X is Killing.

The second statement follows immediately from (3.15) and Theorem 1.2. QED

5 Examples

Example 1. Let (M*,g) be a compact 4n-dimensional hyper-Kihler manifold, i.e. there
are three anticommuting complex structures which are parallel with respect to the Levi-Civita
connection of g; for n = 1 (M*, g) means a self-dual Ricci flat manifold. It is well known that
every hyper-Kéahler manifold can be considered as a Ricci-flat quaternionic Kahler manifold.
The twistor space of M*" is a 2-sphere bundle Z over M*" whose fibre at any point p € M*?
consists of all complex structures on the tangent space TpM4n at p which are compatible with
the given hyper-Kahler structure. There are two natural distributions on Z, namely, the vertical
2-dimensional distribution V' consisiting of all vector fields tangent to the fibre and a horizontal
4n-dimensional distribution H induced by the Levi-Civita connection. The (4n+ 2)-dimensional
twistor space Z admits a complex structure J [6, 26]. There exists a natural 1-parameter family
of hermitian metrics h.,c > 0 on (Z,.J) such that the projection 7 : Z — M*" is a Riemannian
submersion with totally geodesic fibres [12]. The twistor space (Z,.J, h.),c > 0 is a compact
balanced Hermitian manifold [23, 4]. The curvature of (Z, h.) for n = 1 has been calculated by
many authors [9, 10, 11, 12, 19, 28]. The x-Ricci tensor p} of (Z, h., J) for n > 2 is given in [4]
by formulas (3.12). The latter formulas are also valid when M* is an oriented self-dual Ricci-flat

Riemannian manifold. Substituting s = 0 into (3.12) from [4], we obtain
(5.45) pe(X",XY) >0, pr(Y'Y") =pi(Y", X") =0, X"€V, Y'"€H.

The formula (5.45) shows that the tensor p} is non-negative on Z. An application of Theorem 1.1

leads to

Theorem 5.1 Let (Z,J) be the twistor space of a compact hyper-Kahler manifold M endowed

with the natural complex structure J. Then we have
(5.46) KON (Z) = dimHY(Z,0z) = b (Z).
In particular, if the hyper Kihler manifold M is irreducible then H'(Z,Oz) = 0

Proof. Let w}(’o be a 0-harmonic (1,0)-form on (Z,.J,h.). The condition p}(X,X) = 0 of
Theorem 1.1 together with (5.45) implies that the vector field X has to be horizontal i.e. X =
X", Using the general formula ¢(VyJ)Z,U) = ¢(T(Z,U),Y), which is a simple consequence
of (2.4) and (2.5), we derive from (2.9) in [4] that jy»T = 0, X" € H. Then the condition
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V"wx = 0 of Theorem 1.1 together with the formula (4.28) implies D"wx = 0 which means
that X is a (real) holomorphic vector field on (Z,.J). Hence, it generates a non-zero Killing
vector field on (M, g) (see e.g. [18, 26, 24]). The dimension of the space of Killing vector fields
on (M, g) is equal to by (M) since (M, g) is Ricci flat. Applying Dolbeault theory, we obtain

(5.47) hOL(Z) < by (M).

It is well known that h%%(Z) = 0 and b; (M) = b;(Z) [26]. The assertion follows from (4.34),

(5.47) and the last two equalities. If (M, g) is irreducible then it is simply connected [8]. Hence,

b1(M) = 0 and (5.46) implies H'(Z,Oz) = 0 Q.E.D.
The next example shows that the third condition in Theorem 1.3 is essential.

Example 2. Consider the complex Heisenberg group

23
) 21,22,23 € C o,

1
G = 0
0 1

S =N
—

with multiplication. The complex Iwasawa manifold is the compact quotient space M = G /T’
formed from the right cosets of the discrete group I' given by the matrices whose entries 21, 22, 23

are Gaussian integers. The 1-forms
(5.48) dzl, dZQ, ng - ZleQ

are left invariant by G and certain by I'. These 1-forms pass to the quotient M. We denote
by a1, a9, a3 the corresponding 1-forms on M, respectively. Consider the Hermitian manifold
(M,g,J), where J is the natural complex structure on M arising from the complex coordinates
21, 22,23 on G and the metric g is determined by g = 2?21 «@; ® aj. The Chern connection D is
determined by the conditions that the 1-forms a1, ag, g are parallel. The torsion tensor of D
is given by
T(of,of) = —[off,af], ij=1,23,

#

i

#):

where «" is the vector field corresponding to «; via g. The nonzero term is only T(a#, «

—a# and its complex conjugate. Thus, the space (M,g,.J) is a compact balanced Hermitian
(non Kéhler) manifold with a flat Chern connection.

It is easy to compute that
H(ozfé,oz}#) = H(a#,a#) =0, H(af,a?&) = -2.

The conclusions of Theorem 1.3 agree with the fact that the holomorphic (1,0)-forms a; and as
are closed while the holomorphic (1,0)-form a3 is not closed (indeed, from (5.48) it follows that

dag = —aq A 042).

13



Acknowledgments

G.G. was supported by Contract MM 809/1998 with the Ministry of Science and Educa-

tion of Bulgaria. S.I. was supported by Contract MM 809/1998 with the Ministry of Science
and Education of Bulgaria and by Contract 238/1998 with the University of Sofia ”St. KL
Ochridski”.

The authors would like to thank Tony Pantev for his valuable comments and suggestions. The

second author thanks The Abdus Salam International Centre for Theoretical Physics, Trieste,

Italy where the final part of this work was done.

References

1]

2]

3]

L.Alessandrini and G.Bassanelli, Positive 00-closed currents and non-Kahler geometry, J.
Geom. Analysis, 2 (1992), 291-316.

L.Alessandrini and G.Bassanelli, Smooth proper modification of compact Kdahler manifolds,
Proc. Intern. Workshop on Complex Analysis, Wupertal 1990, Complex Analysis, Aspects
of Math., 17, (1991), 1-7.

L.Alessandrini and G.Bassanelli, Metric properties of manifolds bimeromorphic to compact
Kahler manifolds, J. Diff. Geometry 37 (1993), 95-121.

B.Alexandrov, G.Grantcharov, S.Ivanov, Curvature properties of twistor spaces of quater-

nionic Kdahler manifolds, J. Geometry 62 (1998), 1-12.

H.Akbar-Zadeh, Transformations holomorphiquement projectives des variétés hermitiennes

et kahlériennes, J. Math. pures et appl. 67 (1988), 237-261.

M.F. Atiyah, N.J. Hitchin, and I.M. Singer, Self-duality in four-dimensional Riemannian
geometry, Proc. Roy. Soc. London, Ser. A, 362(1978), 425-461.

A .Balas , Compact Hermitian manifolds of constant holomorphic sectional curvature., Math.

7. 189 (1985), 193-210.

A.Beauville, Variétés Kahleriennes dont la lére classe de Chern est nulle, J. Diff. Geom.
18(1983), 755 — 782.

J. Davidov and O. Muskarov, On the Riemannian curvature of a twistor space, Acta Math.
Hung., 58(1991), 319-332.

J. Davidov, O. Muskarov and G. Grantcharov, Curvature properties of twistor spaces,

Preprint.

T. Friedrich and R. Grunevald, On Einstein metrics on the twistor of a four-dimensional

Riemannian manifold, Math. Nachr., 106 (1985), 55-60.

14



[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

T. Friedrich and R. Kurke, Compact four-dimensional self-dual Einstein manifolds with

positive scalar curvature, Math. Nachr., 123(1982), 271-299.

G.Ganchev and S.Ivanov, Holomorphic and Killing vector fields on compact balanced Her-

mitian manifolds, Int. J. Math., to appear.

P.Gauduchon, Fibrés hermitiennes a endomorphisme de Ricci non-négatif., Bull. Soc. Math.

France 105 (1977), 113-140.

P.Gauduchon, Structures de Weyl et théoremes d’anulation sur une variété conforme auto-
duale, Ann. Scuola Norm. Sup. Pisa, Serie IV, vol. XVIII, Fasc. 4 (1991), 563-629.

S.Goldberg, Curvature and homology, New-York: Academic Press 1962.
Ph.Griffits and J.Harris, Principles of algebraic geometry, Wiley-Interscience, 1978.
N.J. Hitchin, Kdhlerian twistor spinors, Proc. London Math. Soc., 43(1981), 133-150.

G. Jensen and M. Rigoli, Twistor and Gauss lifts of surfaces in four manifolds, Recent

developments in Geometry, Contemporary Mathematics, 101(1989), 197-232.

S.Kobayashi, Differential Geometry of complex vector bundles, Iwanami Shoten, Publishers

and Princeton Univ. Press, 1987.

S.Kobayashi and H.-Wu, On holomorphic sections of certain Hermitian vector bundles,

Math. Ann. 189 (1970), 1-4.

M.L.Michelson, On the existence of special metrics in complex geometry, Acta Math. 143
(1983), 261-295.

O. Muskarov, Structure presque hermitienes sur espaces twistoriels et leur types, C. R.
Acad. Sci. Paris, Sér T Math. 305(1987), 307-309.

T. Nitta and M. Takeuchi, Contact structures on twistor spaces, J. Math. Soc. Japan,
39(1987), 139-162.

M.Pontecorvo, Complex structures on quaternionic manifold, Diff. Geom. and its Appl. 4
(1994), 163-177.

S. Salamon, Quaternionic Kdhler manifolds, Invent. Math., 67(1982), 143-171.
H.Wu, Bochner technique in Differential Geometry, Math. Reports, 3, part 2, 1988.

A. Vitter, Self-dual FEinstein metrics, Nonlinear Problems in Geometry, Contemporary
Mathematics, 51(1986), 113-120.

K.Yano, Differential geometry on Complex and Almost Complex spaces, Pergamon Press,

1965.

15



