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1 Introduction

The free 2-step nilpotent Lie algebra of rank r is N (r) = V ��2V , where V is an r dimensional

vector space over C . The only non-zero Lie brackets are for v; w 2 V , in which case [v; w] =

v ^ w 2 �2V . The centre of N (r) is �2V .

The Lie algebra homology H�(N (r)) has been described explicitly for all r by Sigg [7]. In

fact, it turns out that this description can be derived from an earlier description of the Lie

algebra cohomology by Kostant [5]. We shall give Sigg's description here and give the derivation

from Kostant's in the Appendix. Sigg showed that

H�(N (r)) =
M
I�hri

HI(N (r)); (1.1)

where hri denotes the set of integers from 1 to r and the summand HI(N (r)) is isomorphic as a

representation of GL(r) = GL(V ) to the irreducible tensor representation R�(V ) corresponding

to the self-conjugate partition � = (I; I) in Frobenius notation (explained in Section 2). Fur-

thermore, the homology grading of HI

�
N (r)

�
is �(I) =

P
i2I i. Hence, one may write a formula

for the Poincar�e polynomial

P (N (r); t) =
X
n2N

dimHn(N (r))tn =
X
I�hri

dimR(I;I)(V )t
�(I) (1.2)

and, specializing, for the `total homology' T (r) = P (N (r); 1). In principle, these sums may be

evaluated using one of the standard formulae for the dimension of an irreducible representation

of GL(r). For example, the �rst nine values of T (r) are as follows.

r T (r)

1 2

2 6

3 36

4 420

5 9800

6 452760

7 41835024

8 7691667984

9 2828336198688

However, the length of the computation (as well as the size of the answer) grows exponentially,

because it involves a sum of 2r positive terms.

A well-known lower bound for the total homology of any 2-step nilpotent Lie algebra is 2z ,

where z is the dimension of the centre, since the so-called Toral Rank Conjecture is true in this

case. Recently, in [8], the bound has been improved to 2z+s, where s = [(n+ 1)=2] and n is the

codimension of the centre. For the free 2-step nilpotent Lie algebra, we have z = r(r� 1)=2 and

n = r, so that s � r=2 and a lower bound for T (r) is 2r
2=2.

In this paper we �nd the following explicit formula for T (r).

Theorem 1.1. For n � 0

T (2n+ 1) = 2n+1�(n)2 (1.3)

T (2n+ 2) = 2n+1�(n)�(n+ 1) (1.4)
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where

�(n) =
Y

1�i�j�n

2(i+ j)� 1

2i� 1
(1.5)

=
Y

1�k�n

(4k)!k!2

(2k)!3
(1.6)

and, by natural convention, �(0) = 1.

This result is proved in Section 2 by using Giambelli's determinant formula for the repre-

sentation dimensions and observing that several simpli�cations can be made for self-conjugate

partitions leading to an expression for T (r) as a single determinant, which can in turn be simpil-

�ed by elementary row and column operations.

In fact, Giambelli's formula is really a formula for the GL(r) character of a representation

and the initial simpli�cation gives a single determinant formula (Proposition 2.2) for the GL(r)-

character of H�(N (r)). The second simpli�cation only works at the level of SO(r)-characters

but gives Proposition 2.3 as a character version of Theorem 1.1. In particular, we observe in the

process that �(n) is actually the dimension of an irreducible SO(2n+ 1) representation.

While the nature of H�(N (r)) as an SO(r) representation appears a little mysterious, we

are able to explain the multiplicities 2n+1 in (1.3) and (1.4) by showing (Proposition 2.5) how

to decompose the sum (1.1) into 2n+1 isomorphic SO(r)-representations where r = 2n + 1 or

2n+ 2.

One important consequence of Theorem 1.1 is that it enables us to show that 2r
2=2 is the

dominant term in the asymptotic behaviour of T (r). More precisely, in Section 3, we analyse

the asymptotic behaviour of �(n) using (1.6) and deduce the following.

Theorem 1.2. There is a constant �T ' 1:381431394 such that

T (r) � 2r
2=2r1=8�T (1.7)

We apply this asymptotic analysis to further improve the lower bound on the total homology

of any 2-step nilpotent Lie algebra in Section 4.

Now, it is clear from (1.5) that �(n) is always odd. For example, the �rst �ve values of �

are as follows.

n 0 1 2 3 4

�(n) 1 3 35 1617 297297

Hence the power of 2 that divides T (r) is precisely the one given in (1.3) and (1.4). We may

also use (1.6) to �nd the powers of odd primes dividing �(n) and hence �nd the complete prime

factorization of T (r). We do this in Section 5. We also mention two unproven observations

about the dimensions of GL(r)-representations corresponding to self-conjugate partitions, which

we noticed in the course of the MAPLE experiments that lead to the discovery of the results

proved in this paper.
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2 Frobenius' notation and Giambelli's formula

A partition � = (�1 � � � � � �k � 0) is often represented by its Young diagram Y (�), a graphical

arrangement of �i boxes in the i-th row starting in the �rst column. The conjugate partition �0

of � has Young diagram Y (�0) obtained by reecting Y (�) in the diagonal.

Another way to denote a partition � is due to Frobenius. Let d = d� be the number of

diagonal boxes of Y (�). For i = 1; : : : ; d, let �i to be the number of boxes in the i-th row to

the right of and including the diagonal. Let �i to be the number of boxes in the i-th column

below and including the diagonal. Then one writes � = (I;J) where I = f�1; : : : ; �dg and

J = f�1; : : : ; �dg. Observe that �
0 = (J ; I).

Note that �1 > � � � > �d � 1 and �1 > � � � > �d � 1, so the sets I and J do determine the

sequences �i and �i. To compute the Frobenius notation directly from the standard notation

� = (�1; : : : ; �k), set d = #fi : �i � ig, �i = �i� i+1 and �i = �0i� i+1. An example is given

below, showing a partition � and its conjugate �0 in standard notation and Frobenius notation,

together with their Young diagrams.

� = (3; 2; 2; 1)

= (f3; 1g; f4; 2g)

Y (�) =

�0 = (4; 3; 1)

= (f4; 2g; f3; 1g)

Y (�0) =

Note that there are di�erent conventions on the precise form of Frobenius notation and, in

particular, [7] uses a slightly di�erent one.

Recall (e.g. [3] x15.5) that the irreducible representations R�(r) of GL(r) correspond to

partitions � = (�1; : : : ; �m), where m � r = dimV . The `second Giambelli formula' ([3](24.11))

gives the character of R�(V ) as a determinant:

CharGL(r)R�(V ) = detG1(�; r); (2.1)

where the Giambelli matrix G1(�; r) is the n� n matrix with entries

G1(�; r)ij = E
�

r

�0i+j�i

�
(2.2)

Here n is the length of the conjugate partition �0 and E
�
r

k

�
is the character of �kV . The

dimension of R�(V ) is obtained by `dropping the E', that is, substituting the binomial coe�cient�
r

k

�
for the character E

�
r

k

�
.

For a self-conjugate partition � = �0, we have n = m � r. If we extend �0 by 0, that is, let

�0i = 0 for n < i � r, then we may use (2.2) to de�ne an r � r matrix bG1(�; r) with the same

determinant as G1(�; r). The rows of this extended Giambelli matrix bG1(�; r) can be reordered

to obtain a matrix with a particularly simple description in terms of the Frobenius notation for

�.

Proposition 2.1. Let � = (I; I) be a self-conjugate partition in Frobenius notation. Then

detG1(�; r) = (�1)#I0 detG2(I; r)
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where #I0 is the number of even elements of I and G2(I; r) is the r � r matrix with entries

G2(I; r)ij =

(
E
�

r

j+i�1

�
; if i 2 I;

E
�
r

j�i

�
; if i 62 I:

(2.3)

Proof. We show that the rows of G2(I; r) are a reordering of the rows of bG1(�; r), as described

above. The set f�i � i : i = 1 : : : rg is the disjoint union of f�i� i � 0g and f�i � i < 0g. Since

�i = �i� i+1, it follows that the �rst set is fi�1 : i 2 Ig. On the other hand, if �i� i < 0 then

i � �i is the distance, in the full r � r square, from �i to the main diagonal, that is the height

of the i-th column from the main diagonal to Y (�). By looking at the upper triangular part

of Y (�) it is clear that these heights and the numbers �i � i, for i = 1; : : : ; d are all di�erent.

Hence the second set is f�i : i 62 Ig.

Finally, the reordering of the rows is given by the permutation �, that from hri moves the set

I to the front reversing the order, leaving the complement Ic at the back. It follows by induction

on the size #I of I that sg(�) = (�1)#I0 , where I0 is the set of even elements in I.

From this we immediately obtain the following.

Proposition 2.2.

CharGL(r)H�(N (r)) = detG3(r)

where G3(r) is the r � r matrix with entries

G3(r)ij = E
�
r

j�i

�
� (�1)iE

�
r

j+i�1

�
;

Proof. Combine (1.1), (2.1) and Proposition 2.1 and use the linearity of det in rows.

It turns out that the determinant of G3(r) is quite amenable to simpli�cation by elementary

row and column operations and this will yield a proof of our main result Theorem 1.1. However

to make the simpli�cation, we make frequent use of the identity E
�
r

k

�
= E

�
r

r�k

�
. Therefore, the

main step is only valid at the level of characters for SO(r) and not for GL(r). What we may

prove is the following.

Proposition 2.3.

CharSO(2n+1)H�(N (2n+ 1)) = 2n+1 detB(n) detC(n) (2.4)

CharSO(2n+2)H�(N (2n+ 2)) = 2n+1 detD(n) detA(n+ 1) (2.5)

where A(n), B(n), C(n) and D(n) are n� n matrices with coe�cients

A(n)ij = E
�

2n
n+1+j�2i

�
+E

�
2n

n�2+j+2i

�
B(n)ij =

(
E
�

2n+1
n+2�2i

�
j = 1

E
�

2n+1
n+1+j�2i

�
+E

�
2n+1

n�2+j+2i

�
j > 1

C(n)ij = E
�

2n+1
n+1+j�2i

�
�E

�
2n+1
n+j+2i

�
D(n)ij = E

�
2n+2

n+1+j�2i

�
�E

�
2n+2
n+j+2i

�
Furthermore, detB(n) = detC(n) and this is the character of the irreducible SO(2n+1) repre-

sentation Wa with highest weight a = (1; : : : ; 1; 2).
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Proof. Let r = 2n + 1 or r = 2n + 2, depending on which case we are considering. Note that

the number of odd numbers in hri is n+ 1, while the number of even numbers is r � n� 1.

First we apply to G3(r) the column operations

Colj 7! Colj +Colr+1�j j = 1; : : : ; r � n� 1:

After this the �rst n + 1 columns in the even rows are 0, while the same columns in the odd

rows are all divisible by 2. Note that, when r is odd, the middle column is not changed by the

above operations, but this already has the required property. Hence, we next apply

Colj 7!
1
2
Colj j = 1; : : : ; n+ 1:

to take the required factor of 2n+1 out of the determinant. The non-zero entries of the �rst n+1

columns are now equal to E
�
r

j�i

�
+E

�
r

j+i�1

�
. We may then apply

Colj 7! Colj �Colr+1�j j = n+ 2; : : : ; r

which sets to 0 the last r � n� 1 columns of the odd rows, without changing the even rows.

Now, we may permute the rows to collect the odd rows at the top and the even rows at the

bottom. If we further reverse the order of the �rst n + 1 columns, then the combined e�ect of

these permutations does not change the sign of the determinant and we are left with a block

diagonal matrix. When i is odd, G3(r)ij = G3(r)i(r�j+1) so the �rst block contains the last n+1

columns of the odd rows of G3(r), except that the factor of 2 has gone from the middle column,

when r is odd. The second block contains the last r� n� 1 columns of the even rows of G3(r).

One of the two block matrices|the one coming from the odd rows, when r is odd, and from

the even rows, when r is even|has last row equal to (0 � � � 0 1). Removing the last row and

column of this block, we obtain the main statement of the proposition.

To see that detB(n) = detC(n), apply to B(n) successively the operations

Rowi 7! Rowi�Rowi+1 i = 1; : : : ; n� 1

Colj 7! Colj +Colj�2 j = 3; : : : ; n

Finally we observe (with some surprise) that detB(n) is one of the Giambelli-type determinant

formulae ([3] Corollary 24.35) for the character of the irreducible SO(2n + 1) representation

Wa with highest weight a = (1; : : : ; 1; 2) in the basis of fundamental weights, where the 2 is

associated to the short simple root.

Proof of Theorem 1.1. We now drop the E's and write simply the binomial coe�cients to prove

that detA = detB and detC = detD. For this, apply to A or C the column operations

Colj 7! Colj +Colj�1 j = n; : : : ; 2

and use the fact that
�
r

k

�
+
�

r

k�1

�
=
�
r+1
k

�
. Notice that the �rst columns of A and B are already

equal, as are the �rst columns of C and D.

Finally, the Weyl dimension formula ([3] Corollary 24.6 & Exercise 24.30) gives

dimWa =

Y
1�i<j�n

2(j � i)(2(i + j)� 1)
Y

1�j�n

(4j � 1)

Y
1�j�n

(2j � 1)!

This expression may be simpli�ed to (1.5), which is also a simpli�cation of (1.6).
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Remark 2.4. Proposition 2.3 implies that as an SO(2n + 1) representation, the homology

H�(N (2n + 1)) is isomorphic to the direct sum of 2n+1 copies of the tensor square of Wa.

However, it is less clear how to interpret the even character formula (2.5). Following the �nal

part of the proof of Theorem 1.1 at the level of characters, we may say �rst that detA(n + 1)

is the restriction to SO(2n + 2) of the irreducible SO(2n + 3)-character detB(n + 1). On the

other hand, detD(n) is a virtual character of SO(2n+2), whose restiction to SO(2n+1) is the

irreducible character detB(n). It is unclear how to interpret the product of these two characters.

The manipulations of Giambelli determinants used in the proof of Proposition 2.3 may also

be used to prove some re�nements of this result, which shed some light on the multiplicity 2n+1

occurring in the proposition.

For any set I � N, let I0 denote the set of even numbers in I and I1 denote the set of odd

numbers. We will now write HI

�
N (r)

�
as H[I1;I0]

�
N (r)

�
and, for any K � hri1 and L � hri0,

will de�ne

H[K;�]

�
N (r)

�
=

M
J�hri0

H[K;J]

�
N (r)

�
H[�;L]

�
N (r)

�
=

M
J�hri1

H[J;L]

�
N (r)

�

Proposition 2.5.

CharSO(2n+1)H[K;�]

�
N (2n+ 1)

�
= detB(n) detC(n)

CharSO(2n+2)H[K;�]

�
N (2n+ 2)

�
= detD(n) detA(n+ 1)

CharSO(2n+1)H[�;L]

�
N (2n+ 1)

�
= 2detB(n) detC(n)

CharSO(2n+2)H[�;L]

�
N (2n+ 2)

�
= detD(n) detA(n+ 1)

In other words, the partial sums H[K;�]

�
N (r)

�
are all isomorphic as representations of SO(r),

independent of K. Furthermore, the partial sums H[�;L]

�
N (r)

�
are all isomorphic as represen-

tations of SO(r), independent of L, and this representation is the same as the one above, when

r is even, and twice the one above, when r is odd.

Proof. We work out only the �rst identity above, since all the others follow in an analogous way.

By using (2.1) and the linearity of det in rows, we can write

CharSO(r)H[K;�](N (r)) =
X

J�hri0

(�1)#J detG2([K;J ]; r)

= detG4([K; �]; r);

where

G4([K; �]; r)ij =

8><
>:
E
�
r

j�i

�
�E

�
r

j+i�1

�
; if i 2 hri0;

E
�

r

j+i�1

�
; if i 2 K;

E
�
r

j�i

�
; if i 2 hri1 �K:

Apply to G4([K; �]; r) the column operations

Colj 7! Colj +Colr+1�j j = 1; : : : ; r � n� 1:

7



The �rst n + 1 columns are now 0 in the even rows. The �rst n columns in the odd rows are

equal to E
�

r

j+i�1

�
+ E

�
r

r�j+i

�
, if i 2 K and equal to E

�
r

j�i

�
+ E

�
r

r�j�i+1

�
, if i 2 hri1 �K. By

the symmetry E
�
r

k

�
= E

�
r

r�k

�
these two values coincide. The n+ 1 column in the odd rows is

equal to E
�

r

n+1�i

�
, whether i 2 K or not.

After collecting the odd rows on top and the even ones at the bottom we may reverse

the order of the �rst n + 1 columns. As in the proof of Proposition 2.3, this does not a�ect

the determinant and we are left with a block upper triangular matrix rather than a block

diagonal one The diagonal blocks are the same as before and so, as before, the determinant is

detB(n) detC(n).

We illustrate this result by giving all the representation dimensions for r = 6 arranged in a

table with rows indexed by I1 and columns by I0. As predicted by Proposition 2.5, all rows and

columns have the same sum, which is this case is �(2)�(3) = 56595.

fg f2g f6g f4g f2; 6g f2; 4g f4; 6g f2; 4; 6g

fg 1 70 252 720 5760 8064 8960 32768

f1g 6 105 1050 2430 6000 6804 21000 19200

f3g 336 1470 11907 6720 17010 4704 11760 2688

f5g 700 12250 1764 7875 10080 22050 980 896

f1; 3g 896 980 22050 10080 7875 1764 12250 700

f1; 5g 2688 11760 4704 17010 6720 11907 1470 336

f3; 5g 19200 21000 6804 6000 2430 1050 105 6

f1; 3; 5g 32768 8960 8064 5760 720 252 70 1

Finally, we note that the power of two dividing T (r) is also reected in the power of (1 + t)

dividing the Poincar�e polynomial.

Proposition 2.6. The power of (1+t) that divides the Poincar�e polynomial P (N (r); t) is n+1,

where r = 2n+ 1 or r = 2n+ 2.

Proof. The Poincar�e polynomial P (N (r); t) = detG3(r; t), where

G3(r; t)ij =
�
r

j�i

�
� (�t)i

�
r

j+i�1

�
;

After performing the �rst manipulation in the proof of Proposition 2.3, the �rst n+ 1 columns

are divisible by (1 + t) and hence the multiplicity of the factor (1 + t) in the determinant is at

least n+ 1. To see that this is precisely the power, set t = 1 and note that �(n) is always odd.

Hence the remaining factor is not divisible by (1 + t).

3 Asymptotics of �(n) and T (n)

The asymptotics of �(n) and T (n) may be studied using the re�ned version of Stirling's formula

for the logarithm of the Gamma function

log �(z) = (z � 1
2) log(z)� z + 1

2 log(2�) �E(z); (3.1)

where E(z) =

Z 1

0

P1(t)

z + t
dt and P1(t) = t� [t]� 1

2 .
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Let

�(k) =
(4k)!k!2

(2k)!3
=

1

2

(4k � 1)!(k � 1)!2

(2k � 1)!3
=

1

2

�(4k)�(k)2

�(2k)3

since (m� 1)! = �(m) for positive integers m. Then from (3.1) we obtain

log�(k) = (2k � 1
2 ) log 2� �(k); (3.2)

where �(k) = E(4k) + 2E(k) � 3E(2k).

Lemma 3.1. �(k) = �
1

16k
+O(k�2).

Proof. Another re�nement of Stirling's formula is

log(n!) = (n+ 1
2) log(n)� n+ 1

2 log(2�) +

MX
j=1

Bj+1

j(j + 1)
n�j +O

�
n�M�1

�
; (3.3)

where Bk are the Bernoulli numbers. Using this, with M = 1, we obtain

log�(k) = (2k � 1
2) log 2 +

3

8

B2

k
+O(k�2):

Comparing this with (3.2) gives the result, since B2 =
1
6 .

Summing (3.2) for k = 1; : : : ; n we get

log �(n) =
�
n2 +

n

2

�
log 2�

nX
k=1

�(k) (3.4)

We may estimate the sum by means of the Euler summation formula

nX
k=1

�(k) =

Z n

1

�(s) ds+

Z n

1

P1(s)�
0(s) ds+

1

2
(�(1) + �(n)): (3.5)

This yields the following.

Theorem 3.2. There exists a constant � such that

�(n) � 2(n
2+n=2)n1=16e�: (3.6)

Moreover, � ' 0:0315950.

Proof. From Lemma 3.1 it follows that the �rst summand of (3.5) is asymptotic to � 1
16 log n

and that the second summand converges to a constant �1 as n ! 1. Setting � = �1 +
1
2�(1)

yields the �rst part. The estimation of � must be done by experiment.

Note that Theorem 1.2 follows immediately from Theorem 1.1 and Theorem 3.2 on setting

�T = 23=8e2�. This asymptotic formula approximates T (r) quite rapidly; for example, for r = 16

the error is ' 0:01%. In fact one can say a little more about the asymptotic behaviour of �(n)

and hence T (r), as follows.
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Proposition 3.3.

(n+ 1=2)1=16 < �(n)
�
2(n

2+n=2)e� < (n+ 1=2 + 1=24n)1=16 (3.7)

Proof. We need to show that

log(n+ 1=2) < 16

 
��

nX
k=1

�(k)

!
< log(n+ 1=2 + 1=24n) (3.8)

This follows from (3.3) and the following known bounds on Euler's constant  ' 0:5772 (see [1],

[6] and also [2]).

log

�
n+

1

2

�
+

1

24(n+ 1)2
<

 
nX

k=1

1

k

!
�  < log

�
n+

1

2
+

1

24n

�
�

1

48(n+ 1)3
(3.9)

Corollary 3.4. The ratio T (r)
�
2r

2=2r1=8 is > �T when r is odd and < �T when r is even.

Proof. A straightforward calculation.

4 Application

Let g be any 2-step nilpotent Lie algebra of �nite dimension. If a is an abelian factor of g, so that

g = g� a, then H�

�
g
�
= H�

�
g
�

��a and

��H�

�
g
��� = ��H�

�
g
���:2jaj. Assume that g has no abelian

factors, let z = centre(g) and let V be any direct complement of z. The minimum number of

generators of g is r = dimV and g is a homomorphic image of N (r). In [4] (Theorem 2.1) it

has been proved that N (r0) degenerates to g� a, where a is abelian, dim a = dimN (r0)� dim g

and r0 � r. Since under degeneration the homology can only grow we have that��H�

�
g
���:2jaj � T (r0): (4.1)

Thus, we can improve the lower bounds given in [8] for the total homology of a 2-step nilpotent

Lie algebra. Because of Theorem 1.2, in the case r is odd, we obtain what is essentially the best

general lower bound.

Proposition 4.1. Let g be any 2-step nilpotent Lie algebra of �nite dimension. Let z be its

centre, z = dim(z) and r = codim(z). Then��H�

�
g
��� � 2[(r+1)=2]+zr1=8k; (4.2)

where k ' 0:9768.

Proof. First assume that g has no abelian factors. Let r0 = r if r is odd and r0 = r + 1 if r is

even. Then from Corollary 3.4 and (4.1) we obtain

��H�

�
g
��� �

(
2r=2+zr1=8�T when r is odd;

2(r�1)=2+z(r + 1)1=8�T when r is even;
(4.3)

It is clear that the same inequalities hold if g has an abelian factor. The result follows setting

k = 2�1=2�T .
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5 Miscellaneous

We conclude with several additional observations that may be of interest.

Firstly, (1.6) may be used to �nd the prime factorisation of �(n) and hence, by (1.3) and

(1.4), of T (r).

Proposition 5.1. The exponent of a prime p in the prime factorization of �(n) is either 0, if

p = 2, or otherwise is

1X
k=1

f
�
n; pk

�
(5.1)

where

f(n;m) =

(�
m+1
4

�
�
��[n]m �

�
m�1
2

��� if m
4
< [n]m < 3m

4
,

0 otherwise
(5.2)

and [n]m denotes the remainder on dividing n by m.

Proof. Clearly f(0; pk) = 0, which gives the correct value �(0) = 1. Now, the exponent of p in

the prime decomposition of n! is

1X
k=1

�
n

pk

�
:

Therefore the exponent of p in (4n)!n!2=(2n)!3 is

1X
k=1

f 0(n; pk)

where

f 0(n;m) =

�
4n

m

�
+ 2

j n
m

k
� 3

�
2n

m

�
This clearly only depends on [n]m and one may then readily check that

f 0(n;m) =

8>>>><
>>>>:

0 0 � [n]m < m
4

+1 m
4 � [n]m < m

2

�1 m
2 � [n]m < 3m

4

0 3m
4 � [n]m < m

The number of +1's is
�
m+1
4

�
, which is the same as the number of �1's, except when m � 2

mod 4. Hence, for p 6= 2, we have
Pn

j=1 f
0(j; pk) = f(n; pk), and the result follows from (1.6) by

induction. For p = 2, it is clear from (1.5) that the exponent is always 0.

Corollary 5.2. The exponent of p in the prime factorization of T (r) is either
�
r+1
2

�
, if p = 2,

or otherwise is

1X
k=1

fT
�
r; pk

�
(5.3)

where

fT (r;m) =

(
2
�
m+1
4

�
�
��[r]2m �m

�� if m
2 < [r]2m < 3m

2 ,

0 otherwise
(5.4)
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Two properties of the representation dimensions for self-conjugate partitions have been ob-

served experimentally for su�ciently many values of r to make them plausible, but they lack

rigorous proofs.

Conjecture 5.3. There is an involution � : hri ! hri such that the summand HI(N (r)) has

odd dimension if and only if �(I) = I.

The involution is given by dividing hri into certain segments of even length, plus the initial

segment f1g when r is odd, and reversing each segment. Thus � interchanges even and odd

numbers, while �xing 1 when r is odd. As a consequence, the conjecture may also be formulated

as saying that, given any I1 � hri1, there is a unique I0 � hri0 such that HI(N (r)) has odd

dimension for I = I0 [ I1. The table at the end of Section 2 is arranged to emphasize this fact.

Conjecture 5.3 is checked for r � 20 and it should follow from careful analysis mod 2 of the

Giambelli determinant formula in Proposition 2.1.

Conjecture 5.4. The largest value of dimHI(N (r)) is 2r(r�1)=2, which occurs when I = hri0

or I = hri1.

Weyl dimension formula gives the dimension. This is the SL(r)-representation whose highest

weight is the half sum of positive roots, and this is known to have dimension 2N , where N is

the number of positive roots. However, it is unclear why this is the largest in this case.

6 Appendix

As mentioned in the Introduction, the Lie algebras N (r) fall into the class of Lie algebras whose

cohomology was described by Kostant [5]. We shall show here how Sigg's description of the

homology of N (r) may be derived from Kostant's description.

Let g be a (complex) semisimple Lie algebra, h a Cartan subalgebra and �+ a set of positive

roots. The subalgebra b = h �
P

�2�+
g� is a Borel subalgebra, where g� is the root space

corresponding to the root �. A parabolic subalgebra p � b has a Levi decomposition p = g1nn,

where g1 is reductive and n is the nilpotent radical of p.

The cohomology group H�(n) is a g1-module. Let �(n) be the roots of n (cf. x5 [5]) and

� = 1
2

P
�2�+

�. We denote by V� the g1-irreducible representation with highest weight �.

Theorem 6.1 (Kostant). Let W be the Weyl group of g and for each � 2W consider the set

�� = f� 2 �+ : ��1(�) < 0g. Let W 1 = f� 2W : �� � �(n)g. Then

H�(n) =
M
�2W 1

V�(�)��:

Moreover the cohomology degree of V�(�)�� is the number of elements #��.

We recall that if W1 is the Weyl group of g1, then the set W 1 is a cross section of W1nW .

Let g = so(2r + 1) (type Br). The set of positive roots of g is

�+ = fei � ej ; ei + ejg1�i<j�r [ feig1�i�r
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and

� =
1

2

�
(2r � 1)e1 + (2r � 3)e2 + � � �+ 3er�1 + er

�
: (6.1)

Consider the parabolic subalgebra p =
P

i>j gei�ej �h�
P

�2�+
g�. One can check that the

Levi decomposition p = g1 n n is given by

g1 = h�
X
i<j

gei�ej �
X
i>j

gei�ej

n =
X
i

gei �
X
i<j

gei+ej = V � �2V;

where V is the fundamental representation of g1 �= gl(r). Thus n �= N (r).

Recall that the dominant weights of gl(r) are given by � = �1e1 + � � � + �rer, with �i 2 Z

and �1 � � � � � �r. Furthermore, the Weyl group of g1 is W1 = Sr, the symmetric group acting

on the set fe1; : : : ; erg. The Weyl group of g is W = Sr nZ
r
2, where Z

r
2 = h�1i � � � � � h�ri, with

�i(ei) = �ei and �i(ej) = ej if j 6= i. In particular, jW 1j = 2r.

We shall �rst determineW 1. The elements of Zr2 are given by �I =
Q

i2I �i for I � f1; : : : ; rg.

Since both W 1 and Zr2 are cross sections of W1nW it follows that, for each �I 2 Zr2, there is a

unique permutation !I 2 Sr such that !I�I 2W 1.

Since �+ ��(n) = fei � ej : i < jg, we see that !I is characterized by the condition

�I!
�1
I
(ei � ej) > 0; for all i < j: (6.2)

This is equivalent to the conditon that !I(a) > !I(b) whenever

(a; b 2 I and a < b) or (a; b 62 I and a > b) or (a 2 I and b 62 I). (6.3)

In other words, !I places all the elements of I after all the elements of the complement Ic,

preserving the order of Ic and reversing the order of I. More precisely

!I(j) =

(
r + 1�m; if j is the m-th element of I,

n; if j is the n-th element of Ic.
(6.4)

Let us now compute the number #��, for any � 2 W 1. Note that #�� is the number of

roots � 2 �(n) = fei + ej : i < jg [ feig such that ��1(�) < 0. Let � = !I�I . Since !I is a

permutation of �(n) and ��1
I

= �I , we have

#�� = #f� 2 �(n) : �I(�) < 0g

= #f(i; j) : i < j and i 2 Ig+#I

=
X
i2I

(r + 1� i):

Next we determine the highest weight �I = �(�) � � for each � = !I�I 2 W 1. Notice that

!I is precisely the permutation needed to make �I(�) back into a dominant weight and further

that �i � �(�)i for all i. Some more thought shows that

�I = �(�1 + � � �+ �k): (6.5)
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where, if I = fi1; : : : ; ikg, then

�1 = (0; : : : ; 0;

i1z}|{
1 ; : : : : : : : : : : : : ; 1; r + 1� i1)

�2 = (0; : : : ; 0;

i2�1z}|{
1 ; : : : : : : : : : ; 1; r + 1� i2; 0)

...

�k = (0; : : : ; 0;

ik�k+1z}|{
1 ; : : : ; 1; r + 1� ik; 0; : : : ; 0)

(6.6)

Kostant's theorem computes cohomology H�(N (r)), but we were originally interested in the

homology H�(N (r)). However, there is a simple formula relating the two, as follows. Let

n = dimN (r) = r(r + 1)=2 =

rX
i=1

(r + 1� i) (6.7)

and let det be the 1-dimensional determinant representation of GL(r), which has highest weight

� = (1; : : : ; 1). Then, as GL(r)-representations,

Hn�i(N (r)) �= Hi(N (r))
 detr:

Thus, we see from above that, for each I � f1; : : : ; rg, the homology H�(N (r)) contains an

irreducibleGL(r)-representation of multiplicity one, of highest weight r�+�I and in homological

degree dI , where

dI =
X
i62I

(r + 1� i)

Now all the weights r�+ �I are non-negative, so can be represented by Young diagrams. For

example, if I = fr � 2; r � 4g, then

r� = r�+ �I =

In other words, we remove from the r � r square symmetric hooks of length r + 1 � i for each

i 2 I. A little thought shows that the Frobenius notation for such a diagram is (J ;J), where

J = f(r + 1 � i) : i 62 Ig. Hence the diagrams that appear are precisely the self-conjugate

diagrams and, since dI =
P

j2J j, we have recovered Sigg's results.
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