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INTRODUCTION

Algebraic K-theory has grown phenomenally in various directions in the last three decades

as a multidisciplinary subject whose methods and contents span many areas of mathematics {

notably { algebra, number theory, topology, geometry (algebraic, di�erential, non-commutative)

and functional analysis. As such, it has grown to become one of the most unifying forces in

mathematical research. The subject has also recorded outstanding success in the investigations

and solutions of many famous problems (see [6]).

It is generally accepted that Algebraic K-theory actually started with Grothendieck's con-

struction of an Abelian group K(A) (now denoted K0(A)) associated to a suitable subcategory

of an Abelian category (e.g. for a scheme X;A = P(X) the category of locally free sheaves of

OX -modules or A =M(X), the category of coherent sheaves of OX -modules). This construction

was done by A. Grothendieck during his reformulation and proof of his generalised Rieman-Roch

theorem see [15] or [31]. However, there were earlier works which were later recognized as proper

constituents of the subject e.g. J.H.C. Whitehead's construction ofWh(�1(X)) (X a topological

space) [119] or even much earlier work of Dedekind and Weber [19] on ideal class groups.

Meanwhile, M.F. Atiyah and F. Hirzebruch [4], [5], studied for any �nite CW-complex X,

the Abelian groupK0(A) where for k = R or C , A = V ectk(X) the category of �nite dimensional

k-vector bundles on X in what became known as topological K-theory. Now, the realisation

by R.G. Swan [94] that when X is a compact space, the category V ectC (X) is equivalent to

the category P(C (X)) of �nitely generated projective modules over the ring C (X) of complex-

valued continuous functions on X, provided the initial connection between topological K-theory

and Algebriac K-theory. Moreover, the fact that when X is a�ne (i.e. X = spec(A), A a

commutative ring), the category P(X) is equivalent to P(A), the category of �nitely generated

projective A-modules, also con�rms the appropriateness of K0(P(A)) (A any ring with identity)

as a good de�nition of K0 of a ring A, usually written K0(A).

The groupsK0(A) for various types of rings A (e.g. Dedekind domains, number �elds, group-

rings, orders, C�-algebras etc.) have been subjected to intense studies over the years especially

because the groupsK0(A) for relevant A's are replete with applications at �rst in several areas of

mathematics and later in some areas of applied mathematics and physics. For example, C.T.C.

Wall [113] showed that if X is a connected space dominated by a �nite CW-complex, then

there is a well de�ned obstruction ! in K0(Z�1(X)) such that X has the homotopy type of a

�nite complex if and only if ! = 0 (see 2.2.12). Moreover, K0 of C
�-algebras is connected with

non-commutative geometry (see [17] or 1.4.3 (iv)); K0 of Dedekind domains with class groups

of number theory (see x2); K0 of orders and group-rings with representation theory (see [18] or

x3) etc. Furthermore, K0(C) is also well de�ned for other types of category C (e.g. symmetric

monoidal categories, see x1.4).
The de�nition of K1, due to H. Bass was inspired by Atiyah-Hirzebruch topologicalK-theory
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K
�n(X) := ~K(Sn(X)) where S(X) is the suspension of X and ~K(Y ) := Ker(K0(Y ) ! K(�)

for any paracompact space Y and � a point of Y (see [3] or [38]). H. Bass de�ned K1 of ring

A(K1(A)), modelled on the description of bundles on SX by clutching. Because for any �nite

group G, Wh(G) (the Whitehead group of G), de�ned as a quotient of K1(ZG) (see x6.10)
houses some topological invariants known as \Whitehead torsion" when G = �1(X), (X a �nite

CW-complex), computations of K1(ZG) and also of SK1(ZG) := Ker(K1(ZG) ! K1(QG)),

became of interest in topology since rank K1(ZG) = rank Wh(G) and SK1(ZG) is the full

torsion subgroup of Wh(G) (see x6.10 or [63]). Also of interest are computations of SK1(ẐpG)

(see e.g. [63] or [42]). Moreover, stability considerations of K1(A) yielded results of �nite

generation of K1(ZG) and �niteness of SK1(ZG) ([7], [8]) as well as a key step to the solution of

the congruence subgroup problem for SLn(A) where A is the ring of integers of a number �eld

F [3].

The de�nition ofKM
2 (A), A any ring is due to J. Milnor [62]. As will be seen in a forthcoming

chapter on Higher K-theory, KM
2 (A) coincides with the Quillen K-groups K2(P(A)) = K2(A)

but for n 6= 2, KM
n (A), de�ned only for commutative rings A, are in general di�erent from

Kn(A) even though there are maps between them, as well as connections with other theories

e.g. Galois and etale cohomology theories, Brauer groups etc. yielding famous conjectures { e.g.

Milnor, Bloch-Kato conjectures etc.

We now briey review the contents of this chapter. x1 introduces the Grothendieck group

associated to a semigroup A and the ring associated to a semi-ring (1.1) leading to discussions

on K0 of rings and K0 of symmetric monoidal categories with copious examples { Topological

K-groups K0(X);KU(X);K0

G(X), Burnside rings, Representation rings, Witt rings, Picard

groups { (Pic(R) (R, a commutative ring with identity), Pic(X), (X a locally ringed space);

K0 of Azamaya algebras etc. We also briey indicate how to realise K0 as \Mackey" functors

yielding induction theory for K0 of group-rings (see [48]) { a topic that will be a subject of

another chapter in more generality (see [24], [25] or [46]).

x2 deals with class groups of Dedekind domains, orders and group rings, and we also briey

discuss Wall's �niteness obstruction as an application. In x3, we discuss K0 of an exact category

with copious examples while x4 exposes some fundamental properties and examples of K0 of

exact categories e.g. Devissage, Resolution and localisation theorems { that will be seen in more

generality in a forthcoming chapter on Higher K-theory. We also discuss K0 of the category

of nilpotent endomorphisms with consequent fundamental theorems for K0, G0 of rings and

schemes.

In x5 we discuss K1(A) with the observation that the de�nition due to Bass coincides with

Quillen's K1(P(A)) or �1(BGL(A)+). We also briey discuss K1 of local rings and skew �elds;

Menicke symbols and some stability results for K1. In x6, which deals with SK1 of orders and

group rings, we, among other things, call attention to the fact that when R is the ring of integers

in a number �eld, � is an R-order,K1(�) is a �nitely generated Abelian group, SK1(�); SK1(�̂p)
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are �nite groups, see [63], with the observation that these results have since been generalised i.e.

for all n � 1, Kn(�) is �nitely generated and SKn(�), SKn(�̂p) are �nite for all prime ideals

p of R (see [49], [50]). Similarly, for a maximal order � in a p-adic semi-simple algebra �, the

result that SK1(�) = 0 i� � is unrami�ed over its centre [41] has been extended for all n � 1

(i.e. SK2n(�) = 0 and SK2n�1(�) = 0 i� � is unrami�ed over its centre) (see [44]). We refer to

copious computations of SK1 of orders and group rings in [63] and discuss Whitehead torsion

in x6.10.
x7 is devoted to discussing some K1 � K0 exact sequences { Mayer-Vietoris, localisation

sequences and the exact sequence associated to an ideal. The localisation sequence leads to the

introduction of the fundamental theorem for K1.

The last section (x8) deals with a rather brief review of the functor K2 due to J. Milnor

[62]. We observe that K2(A) = H2(E(A);Z) for any ring A with identity and that when A is

a �eld, division ring, local or semi-local ring, K2(A) is generated by symbols. We then briey

discuss the connections between K2, Brauer group of �elds and Galois cohomology leading to

Merkurjev-Suslin theorem (8.2.4) which we discuss in the context of Bloch-Kato conjecture

for higher-dimensional K-theory of �elds with a brief review of the current situation with the

conjecture. We end x8 with applications of K2 to pseudo-isotopy of manifolds and Bloch's

formula for Chow groups.

In anticipation of the forthcoming chapter on Higher K-theory we have included references

to some results on Higher K-theory that applies to lower K-groups as well as constitute gener-

alisations of such known results for K0;K1 or K2.

Notes on Notation

If R is a Dedekind domain with quotient �eld F , p any prime ideal of R, we write Rp for

the localisation of R at p, R̂p(F̂p) for the completion of R (resp F ) at p. If � is an R-order in

a semi-simple F -algebra �, we write �p for Rp 
R �, �̂p for R̂p 
R �, and �̂p = F̂p 
F �. For

all n � 0, we write SKn(�) = Ker(Kn(�)! Kn(�)) and SGn(�) = Ker(Gn(�)! Gn(�)).

We shall write GSet for the category of G-sets (G a group), Rings for the category of rings

with identity and homomorphisms preserving identity, CRings for the category of commutative

rings and ring homomorphisms preserving identity.

Many other notations used are de�ned in the text.
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1 SOME BASIC GROTHENDIECK GROUP CONSTRUCTIONS

AND EXAMPLES

1.1 Grothendieck group associated with a semi-group

1.1.1 Let (A;+) be an Abelian semi-group. De�ne a relation `�' on A� A by (a; b) � (c; d) if

there exists u 2 A such that a+d+u = b+c+u. One can easily check that `�' is an equivalence

relation. Let �A denote the set of equivalence classes of `�', and write [a; b] for the class of (a; b)

under `�'. We de�ne addition ( _+) on �A by [a; b] _+[c; d] = [a+c; b+d]. Then ( �A; _+) is an Abelian

group in which the identity element is [a; a] and the inverse of [a; b] is [b; a].

Moreover, there is a well-de�ned additive map f : A! �A : a! [a+a; a] which is, in general,

neither injective nor surjective. However, f is injective i� A is a cacellation semi-group i.e. i�

a+ c = b+ c implies that a = b for all a; b; c 2 A, see [48] or [38].

1.1.2 It can be easily checked that �A possesses the following universal property with respect to

the map f : A ! �A. Given any additive map h : A ! B from A to an Abelian group B, then

there exists a unique map g : �A! B such that h = gf .

De�nition 1.1.3 �A is usually called the Grothendieck group of A or the group completion of

A and denoted by K(A).

Remarks 1.1.4

(i) The construction of K(A) = �A above can be shown to be equivalent to the following:

{ Let (F (A); _+) be the free Abelian group freely generated by the elements of A, and R(A)

the subgroup of F (A) generated by all elements of the form a _+b� (a+ b) a; b 2 A. Then

K(A) ' F (A)=R(A).

(ii) If A;B;C are Abelian semi-groups together with bi-additive map f : A � B ! C, then

f extends to a unique bi-additive map �f : �A � �B ! �C of the associated Grothendieck

groups. If A is a semi-ring i.e. an additive Abelian group together with a bi-additive

multiplication A � A ! A (a; b) ! ab, then the multiplication extends uniquely to a

multiplication �A� �A! �A which makes �A into a ring (commutative if A is commutative)

with identity 1 = [1 + 1; 1] in �A if 1 2 A.

(iii) If B is a semi-module over a semi-ring A i.e. if B is an Abelian semi-group together with

a bi-additive map A�B ! B : (a; b)! a � b satisfying a0(ab) = (a0a)b for a; a0 2 A; b 2 B,

then the associated Grothendieck group �B is an �A-module.

(iv) If A = f1; 2; 3 : : :g; �A = K(A) = Z. Hence the construction in 1.1.1 is just a generalisation

of the standard procedure of constructing integers from the natural numbers.

6



(v) A sub-semi-group A of an Abelian semi-group B is said to be co�nal in B if for any b 2 B,

there exists b0 2 B such that b+ b
0 2 A. It can be easily checked that K(A) is a subgroup

of K(B) if A is co�nal in B.

1.2 K0 of a ring

1.2.1 For any ring � with identity, let P(�) be the category of �nitely generated projective �-

modules. Then the isomorphism classes IP(�) of objects of P(�) form an Abelian semi-group

under direct sum `�'. We write K0(�) for K(IP(�) and call K0(�) the Grothendieck group of

�. For any P 2 P(�), we write (P ) for the isomorphism class of P (i.e. an element of IP(�))
and [P ] for the class of (P ) in K0(�).

If � is commutative, then IP(�) is a semi-ring with tensor product 
� as multiplication

which distributes over `�'. Hence K0(�) is a ring by 1.1.4 (ii).

1.2.2 Remarks

(i) K0 : Rings ! Ab : � ! K0(�) is a functor { since any ring homomorphism f : � ! �0

induces a semi-group homomorphism IP(�) ! IP(�0) : P ! P 
 �0 and hence a group

homomorphism K0(�)! K0(�
0).

(ii) K0 is also a functor: CRings! CRings.

(iii) [P ] = [Q] in K0(�) i� P is stably isomorphic to Q in P(�) i.e. i� P � �n ' Q � �n for

some integer n. In particular [P ] = [�n] for some n i� P is stably free, see [8] or [7].

1.2.3 Examples

(i) If � is a �eld or a division ring or a local ring or a principal ideal domain, then K0(�) ' Z.

Note. The proof in each case is based on the fact that any �nitely generated �-module

is free and � satis�es invariant basis property (i.e. �r ' �s ) r = s). So IP(�) '
f1; 2; 3; : : :g and so, K0(�) ' Z by 1.1.4 (iv), see [8] or [78].

(ii) Any element of K0(�) can be written as [P ]� r[�] for some integer r > 0; P 2 P(�) or as
s[�]� [Q] for some s > 0; Q 2 P(�) (see [8] or [104]). If we write ~K0(�) for the quotient

of K0(�) by the subgroup generated by [�], then every element of ~K0(�) can be written

as [P ] for some P 2 P(�), see [104] or [8].

(iii) If � ' �1 � �2 is a direct product of two rings �1;�2 then K0(�) ' K0(�1) �K0(�2),

(see [104] for a proof).

(iv) Let G be a semi-simple simply connected a�ne algebraic group over an algebraically closed

�eld. Let A be the coordinate ring of G. Then K0(A) ' Z.

Remarks See [54] for a proof of this result which says that all algebraic vector bundles

on G are stably trivial. The result is due to A. Grothendieck.

7



(v) K0(k[x0; x1; : : : xn]) ' Z. This result is due to J.P. Serre, see [82].

1.3 K0 of a ring via idempotents

1.3.1 For any ring � with identity, let Mn(�) be the set of n � n matrices over �, and write

M(�) =
1[
n=1

Mn(�). Also let GLn(�) be the group of invertible n�n matrices over � and write

GL(�) =
1[
n=1

GLn(�). For P 2 P(�) there exists Q 2 P(�) such that P �Q ' �n for some n.

So, we can identify with each P 2 P(�) an idempotent matrix p 2 Mn(�) (i.e. p : �n ! �n)

which is an identity on P and `0' on Q.

Note that if p; q are idempotent matrices inM(�), say p 2Mr(�), q 2Ms(�), corresponding

to P;Q 2 P(�), then P ' Q i� it is possible to enlarge the sizes of p; q (by possibly adding zeros

in the lower right-hand corners) such that p; q have the same size (t� t, say) and are conjugate

under the action of GLt(�), see [78].

Let Idem(�) be set of idempotent matrices in M(�). It follows from the last paragraph that

GL(�) acts by conjugation on Idem(�), and so, we can identify the semi-group IP(�) with

the semi-group of conjugation orbits (Idem(�))^ of the action of GL(�) on Idem(�) where the

semi-group operation is induced by (p; q)!
�
p 0

0 q

�
. K0(�) is the Grothendieck group of this

semi-group (Idem(�))^.

Remarks 1.3.2

(i) ComputingK0-groups via idempotents is particularly useful when � is an involutive Banach

algebra or C�-algebra (see [17] or [21] for example).

(ii) Also the methods of computing K0-groups via idempotents are used to prove the following

results 1.3.2. and 1.3.3. below.

Theorem 1.3.3 [78] If f�igi2I is a direct system of rings (with identity), then

K0(�) = lim
�!

i2I

K0(�i)

For proof see [78].

Theorem 1.3.4 Morita equivalence for K0 of rings

For any ring � and any natural number n > 0, K0(�) ' K0(Mn(�).

Proof: Follows from 1.3.3 since Idem(Mn(�) = Idem(�) and GL(Mn(�)) ' GL(�).

Corollary 1.3.4 If � is a semi-simple ring, then K0(�) ' Z
r for some positive integer r.

Proof: (Sketch). Let V1; : : : ; Vr be simple �-modules. ByWedderburn's theorem, � ' r
�
i=1

Mni(Di)

whereDi = Hom�(Vi; Vi) and dimDi
(Vi) = ni. HenceK0(�) '

r
�
i=1

K0(Mni(Di) '
r
�
i=1

K0(Di) '
Z
r by 1.2.3 (i) and (iii) as well as 1.3.4.
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1.4 K0 of Symmetric Monoidal Categories

De�nition 1.4.1 A symmetric monoidal category is a categrory C equipped with a functor

? : C � C ! C and a distinguished object \0" such that ? is \coherently associative and

commutative" in the sense of Maclane, that is,

(i)A?0 ' A ' 0?A

(ii) A?(B?C) ' (A?B)?C

(iii) A?B ' B?A for all A;B;C 2 C

Moreover, the following diagrams commute.

(A ? (0 ? B)) �= (A? 0) ? B A ? 0 ' 0? A

(i) oo oo (ii) � �

A ? B � B ? A A

A ? (B ? (C ? D)) � (A ? B) ? (C ? D)

(iii) oo oo
A ? ((B ? C) ? D) ((A ? B) ? C) ? D

oo �

(A ? (B ? C)) ? D

Let IC be the set of ismorphism classes of object of C. Clearly, if C is small, then (IC;?) is an
Abelian semi-group, (in fact a monoid) and we write K?0 (C) for K(IC;?) or simply K0(C) when
the context is clear.

In other words, K?
0
(C) = F (C)=R(C) where F (C) is the free Abelian group on the isormor-

phism classes (C) of C-objects, and R(C) the subgroup of F (C) generated by (C 0?C 00)� (C 0)�
(C 00) for all C 0; C 00 in ob(C).

Remarks 1.4.2

(i) K?0 (C) satis�es universal property as in 1.1.

(ii) If C has another composition `0' that is associative and distributive with respect to ?, then
K
?
0 (C) can be given a ring structure through `0' as multiplication and we shall sometimes

denote this ring by K
?
0 (C;?; 0) or K0(C;?; 0) or just K0(C) if the context is clear.

Examples 1.4.3

(i) If � is any ring with identity, then (P(�);�) is a symmetric monoidal category (s.m.c.) and

K
�
0
(�) = K0(�) as in 1.2.1.
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(ii) If � is commutative, then K
�
0
(�) is a ring where (P(�);�) has a further composition `
'.

(iii) Let X be a compact topological space and for F = R or C , let VBF (X) be the (symmetric

monoidal) category of (�nite dimensional) vector bundles on X. Then IVBF (X) is an

Abelian monoid under Whitney sum `�'. It is usual to write KO(X) for K�
0
(VBR(X))

andKU(X) forK�
0
(V BC (X)). Note that ifX;Y are homotopy equivalent, thenKO(X) =

KO(Y ) and KU(X) = KU(Y ). Moreover, if X is contractible, we have KO(X) =

KU(X) = Z (see [3] or [38]).

(iv) Let X be a compact space, C (X) the ring of C -valued functions on X. By a theorem of

R.G. Swan [94], there exists an equivalence of categories �: V BC (X) ! P(C (X)) taking

a vector bundle: E
p!X to �(E), where �(E) = fsections s : X ! Ejps = 1g. This

equivalence induces a group isomorphism KU(X) ' K0(C (X)) (I).

This isomorphism (I) provides the basic initial connection between Algebraic K-theory

(r.h.s. of I) and topological K-theory (l.h.s. of I) since the K-theory of P(�) for an

arbitrary ring � could be studied instead of the K-theory of P(C (X)).

Now, C (X) is a commutative C�-algebra and Gelfand-Naimak theorem [17] says that any

commutative C
�-algebra � has the form � = C (X) for some locally compact space X.

Indeed, for any commutative C�-algebra �, we could take X as the spectrum of � i.e. the

set of all non-zero homomorphisms from � to C with topology of pointwise convergence.

Non-commutative geometry is concerned with the study of non-commutative C�-algebras

associated with \non-commutative" spaces and K-theory (algebraic and topological) of

such C
�-algebras have been extensively studied and connected to some (co)homology the-

ories (e.g. Hochschild and cyclic (co)homology theories) of such algebras through Chern

characters (see e.g. [21], [53], [17], [22]).

(v) Let G be a group acting continuously on a topological space X. The category V BG(X) of

complex G-vector bundles on X is symmetric monoidal under Whitney sum `�' and we

write K0
G(X) for the Grothendieck group K0(V BG(X)). If X is a point, V BG(X) is the

category of representations of G in P(C ) and K
0

G(X) = R(G), the representation ring of

G.

If G acts trivially on X, then K
0

G(X) ' KU(X) 
ZR(G) (see [80] or [81]).

(vi) Let FSet be the category of �nite sets, _[ the disjoint union. Then (FSet, _[) is a symmetric

monoidal category and K
_[
0 (FSet) ' Z (see [48]).

(vii) Let R be a commutative ring with identity. Then Pic(R), the category of �nitely generated

projective R-moludes of rank one (or equivalently the category of algebraic line bundles L

over R) is a symmetric monoidal category and K


0
(Pic(R)) = Pic(R), the Picard group of

R.
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(viii) The category Pic(X) of line bundles on a locally ringed space is a symmetric monoidal

category under `
' and K


0
(Pic(X)) := Pic(X) is called the Picard group of X. Observe

that when X = Spec(R), we recover Pic(R) in (vii). It is well known that Pic(X) '
H

1(X;O�X) see [33] or [67].

(ix) Let R be a commutative ring with identity. An R-algebra � is called an Azumaya algebra

if there exists another R-algebra �0 such that �
R �0 'Mn(R) for some positive integer

n. Let Az(R) be the category of Azumaya algebras. Then (Az(R);
R) is a symmetric

monoidal category. Moreover, the category FP(R) of faithfully projective R-modules is

symmetric monoidal with respect to ? = 
R if the morphisms in FP(R) are restricted to

isomorphisms. There is a monoidal functor FP(R) ! Az(R) : P ! EndR(P ) inducing a

group homomorphism K0(FP(R)) '!K0(Az(R)). The cokernel of ' is called the Brauer

group of R and denoted by Br(R). Hence Br(R) is the Abelian group generated by

isomorphism classes [�] with relations [�
R �0] = [�] + [�0] and [EndR(P )] = 0.

If R is a �eld F , then EndR(P ) ' Mn(F ) for some n and Br(F ) is the Abelian group

generated by isomorphism classes of central simple F -algebras with relations [� 
 �0] =

[j�] + [�0] and [Mn(F )] = 0 (see [78]).

(x) Let G be a �nite group, C any small category. Let CG be the category of G-objects in

C or equivalently, the category of G-representations in C i.e. objects of CG are pairs

(X;U : G ! Aut(X)) where X 2 ob(C) and U is a group homomorphism from G to the

group of C-automorphisms of X. If (C;?) is a symmetric monoidal category, so is (CG; _?)
where for

(X;U : G! Aut(X)); (X 0; U 0 : G! Aut(X 0))

in CG, we de�ne

(X;U) _?(X 0; U 0) := (X?X 0; U?U 0 : G! Aut(X?X 0))

where U?U 0 is de�ned by the composition

G
U�U 0�! Aut(X)�Aut(X 0) �! Aut(X?X 0):

So we obtain the Grothendieck group K
_?
0 (CG).

If C possesses a further associative composition `0' such that C is distributive with respect

to ? and `0', then so is CG, and hence K
_?
0 (CG) is a ring.

For example (a) If C = P(R);? = �, `0' = 
R where R is a commutative ring with

identity, then P(R)G is the category of RG-lattices (see [48] or [18] or [47] and K0(P(R)G)
is a ring usually denoted by G0(R;G). Observe that when R = C ; G0(C ; G) is the usual

representation ring of G denoted in the literature by R(G). Also see 3.1.4 (iv).

(b) If C = FSets, `?' = disjoint union, `0' - cartesian product. ThenK0(CG) is the Burnside
ring of G usually denoted by 
(G). See [48].
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(xi) Let G be a �nite group, S a G-set. We can associate with S a category S as follows: -

ob(S) = fsjs 2 Sg. For s; t 2 S, HomS(s; t) = f(g; s)js 2 G; gs = tg, where composition

is de�ned for t = gs by (h; t) � (g; s) = (hg; s) and the identity morphism s ! s is given

by (e; s) where e is the identity element of G. Now let (C;?) be a symmetric monoidal

category and let [S; C] be the category of covariant functors � : S ! C. The ([S; C]; _?)
is also a symmetric monoidal category where (� _?�)(g;s) = �s?�s ! �gs?�gs. We write

K
G
0 (S; C) for the Grothendieck group of [S; C].

If (C;?) possesses an additional composition `0' that is associative and distributive with

respect to `?', then K
G
0 (S; C) can be given a ring structure (see [48]).

Note that for any symmetric monoidal category (C;?), KG
0 (�; C) : GSet! Ab is a `Mack-

ey' functor (see [48]), and that when C possesses an additional composition `0' discussed

above, then K
G
0 (�; C) : GSet! Ab is a \Green" functor (see [48]). We shall discuss these

matters in further details under Abstract Representation theory { a forthcoming chapter.

(xii) Let A be an involutive Banach algebra and Witt(A) the group generated by isomorphism

classes [Q] of invertibale Hermitian forms Q on P 2 P(A) with relations [Q1 � Q2] =

[Q1] + [Q2] and [Q] + [�Q] = 0. De�ne a map ' : K0(A) ! Witt(A) by [P ] ! class of

(P;Q) with Q positive. If A is a C�-algebra with 1, then there exists on any P 2 P(A) an
invertible form Q satisfyingQ(x; x) � 0 for all x 2 P and in this case ' : K0(A)!Witt(A)

is an isomorphism. However, ' is not an isomorphism in general for arbitary involutive

Banach algebras. See [17].

(xiii) Let F be a �eld and Sym B(F ) the category of symmetric inner product spaces (V; �)�V a

�nite dimensional vector space over F and � : V 
V ! F a symmetric bilinear form. Then

(Sym B(F );?) is a symmetric monoidal category where (V; �)?(V 1
; �

1) is the orthogonal

sum of (V; �) and (V 1
; �

1) de�ned as the vector space V � V
1 together with a bilinear

form �
� : (V � V

1
; V � V

1)! F given by �
�(V � V

1
; V1 � V

1
1 ) = �(V; V1) + �

1(V 1
; V

1
1 ).

If we de�ne composition (V; �)�(V 1
; �

1) as the tensor product V 
V 1 together with a bilinear

form �
�(V 
 V

1
; V1 
 V

1
1 ) = �(V; V1)�(V

1
; V

1
1 ), then K0(Sym B(F );?;�) is a commutative

ring with identity.

The Witt ring W (F ) is de�ned as the quotient of K0(Sym B(F )) by the subgroup fnHg
generated by the hyperbolic plane H =

�
F
2
;

�
0 1

1 0

��
.

For more details about W (F ) see [79].
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2 K0 AND CLASS GROUPS OF DEDEKIND DOMAINS, OR-

DERS AND GROUP-RINGS

2.1 K0 and class groups of Dedekind domains

2.1.1 An integral domain R with quotient �eld F is called a Dedekind domain if it satis�es any

of the following equivalent conditions

(i) Every ideal in R is projective (i.e. R is hereditary).

(ii) Every non-zero ideal a of R is invertible (that is aa�1 = R where a�1 = fx 2 F jxa � Rg.

(iii) R is Noetherian, integrally closed and every non-zero prime ideal is maximal.

(iv) R is Noetherian, and Rm is a discrete valuation ring for all maximal ideals m of R.

(v) Every non-zero ideal is uniquely a product of prime ideals.

Examples 2.1.2 Z; F [x], are Dedkind domains. So is the ring of integers in a number �eld.

De�nition 2.1.3 A fractional ideal of a Dedekind domain (with quotient �eld F ) is an R-

submodule a of F such that sa � R for some s 6= 0 in F . Then a�1 = fx 2 F jxa � Rg is also
a fractional ideal. Say that a is invertible if aa�1 = R. The invertible fractional ideals form a

group which we denote by IR. Also each element u 2 F
� determines a principal fractional ideal

Ru. Let PR be the subgroup of IR consisting of all principal fractional ideals. The (ideal) class

group of R is de�ned as IR=PR and denoted by C`(R).

It is well known that if R is the ring of integers in a number �eld, then C`(R) is �nite see

[18].

De�nition 2.1.4 Let R be a Dedekind domain with quotient �eld F . An R-lattice is a �nitely

generated torsion free R-module. Note that any R-lattice M is embeddable in a �nite dimen-

sional F -vector space V such that F 
R M = V . Moreover, every R-lattice M is R-projective

(since R is hereditery andM can be written as a direct sum of ideals) (see 2.1.5 below { Steinitz's

theorem). For P 2 P(R) de�ne the R-rank of P as the dimension of the vector space F 
R P

and denote this number by rk(P ).

Theorem 2.1.5 [18] Steinitz's theorem.

Let R be a Dedekind domain. Then

(i) If M 2 P(R), then M = a1 � a2 � � � � � an where n is the R-rank of M and each ai is an

ideal of R.

(ii) Two direct sums a1 � a2 � � � � � an and b1 � b2 � � � � � bn of non-zero ideals of R are

R-isomorphic if and only if n = m and the ideal class of a1a2 � � � an = ideal class of

b1b2 � � �bn.
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De�nition 2.1.6 The ideal class associated to M as in 2.1.5, is called the Steinitz class and is

denoted by St(M).

Theorem 2.1.7 Let R be a Dedekind domain. Then

K0(R) ' Z� C`(R)

Sketch of proof: De�ne a map

Q = (rk; st) : K0(R) �! Z� C`(R)

by

(rk; st)[P ] = (rkP; st(P ))

where rkP is the R-rank of P (2.1.4) and st(P ) is the Steinitz class of P . We have rk(P �P 1) =

rk(P ) + rk(P 1) and st(P � P
1) = st(P ) � st(P 1). So ' is a homomorphism that can easily be

checked to be an isomorphism, the inverse being given by � : Z� C`(R) ! K0(R); (n; (a)) !
n[R] + [a].

Remarks 2.1.8

(i) It follows easily from Steinitz's theorem that Pic(R) ' C`(R) for any Dedekind domain R.

(ii) Let R be a commutative ring with identity, Spec(R) the set of prime ideals of R. For

P 2 P(R) de�ne rP : Spec(R) ! Z by rP (p) = rank of Pp over Rp = dimension of

Pp=ppPp. Then rP is continuous where Z is given the discrete topology (see [8] or [100]).

Let H0(R) := group of continuous functions Spec(R)! Z. Then we have a homomorphism

r : K0(R) ! H0(R) : r([P ]) = rP (see [8]). One can show that if R is a one-dimensional

commutative Noetherian ring then (rk;det) : K0(R)! H0(R)�Pic(R) is an isomorphism {

a generalisation of 2.1.7 which we recover by seeing that for Dedekind domains R;H0(R) '
Z. Note that det : K0(R) ! Pic(R) is de�ned by det(P ) = �nP if the R-rank of P is n.

(See [8].)

(iii) Since a Dedekind domain is a regular ring, K0(R) ' G0(R).

2.2 Class groups of orders and group rings

De�nition 2.2.1 Let R be a Dedekind domain with quotient �eld F . An R-order � in a �nite

dimensional semi-simple F -algebra � is a subring of � such that (i) R is contained in the centre

of �, (ii) � is a �nitely generated R-module and (iii) F 
R � = �.

Example For a �nite group G, the group ring RG is an R-order in FG.

De�nition 2.2.2 Let R;F;� be as in 3.2.1. A maximal R-order � in � is an order that is not

contained in any other R-order in �.
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Examples (i) R is a maximal R-order in F .

(ii) Mn(R) is a maximal R-order in Mn(F ).

Remarks 2.2.3 Let R;F;� be as in 3.2.1. Then

(i) Any R-order � is contained in at least one maximal R-order in � (see [18]).

(ii) Every semi-simple F -algebra � contains at least one maximal order. However, if � is

commutative, then � contains a unique maximal order, namely, the integral closure of R in �

(see [18] or [72]).

(iii) If � is an R-order in �, then �p is an Rp-order in � for any prime=maximal ideal p of

R. Moreover, � = \
p
�p (intersection within �).

(iv) In any R-order �, every element is integral over R (see [18] or [74]).

De�nition 2.2.4 Let R;F;�;� be as in 2.2.1. A left �-lattice is a left �-module which is also

an R-lattice (i.e. �nitely generated and projective as an R-module).

A �-ideal in � is a left �-lattice M � � such that FM � �.

Two left �-lattices M;N are said to be in the same genus if Mp ' Np for each prime ideal

p of R. A left �-ideal is said to be locally free if Mp ' �p for all p 2 Spec(R). We write M _N
if M and N are in the same genus.

De�nition 2.2.5 Let R;F;� be as in 2.2.1, � an R-order in �. Let S(�) = fp 2 Spec(R)j�̂p
is not a maximal R̂p-order in �̂g. Then S(�) is a �nite set and S(�) = ; i� � is a maximal

R-order. Note that the genus of a �-lattice M is determined by isomorphism classes of modules

fMpjp 2 S(�)g (see [18] or [72].

Theorem 2.2.6 Let L;M;N be lattices in the same genus. ThenM�N ' L�L0 for some lattice

L
0 in the same genus. Hence, if M;M

0 are locally free �-ideals in �, then M �M
0 = � �M

00

for some locally free ideal M 00.

De�nition 2.2.7 Let R;F;� be as in 2.2.1. The id�ele group of �, denoted J(�) is de�ned by

J(�) := f(�p) 2 �(�̂p)
�j�p 2 �̂�

p
almost everywhere g. For � = (�p) 2 J(�), de�ne

�� := � \
�
\
p
�̂p�p

�
= \
p

n
� \ �̂p�p

o

The group of principal id�eles, denoted u(�) is de�ned by u(�) = f� = (�p)j�p = x 2 �� for all

p 2 Spec(R)g. The group of unit id�eles is de�ned by

U(�) = �
p

(�p)
� � J(�)

Remarks (i) J(�) is independent of the choice of the R-order � in � since if �0 is another

R-order, then �p = �0
p
a.e.
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(ii) �� is isomorphic to a left ideal of � and �� is the same genus as �. Call �� a locally

free (rank 1) �-lattice or a locally free fractional �-ideal in �. Note that any M 2 g(�) can be

written in the form M = �� for some � 2 J(�) (see [18]).

(iii) If � = F and � = R, we also have J(F ); u(F ) and U(R) as de�ned above.

(iv) For �; � 2 J(�);�� � �� �= �� ��� (see [18]).

De�nition 2.2.8 Let F;�; R;� be as in 2.2.1. Two left �-modules M;N are said to be stably

isomorphic if M � �(k) ' N � �(k) for some positive integer k. If F is a number �eld, then

M ��(k) ' N ��(k) i� M �� ' N ��. We write [M ] for the stable isomorphism class of M .

Theorem 2.2.9 [18] The stable isomorphism classes of locally free ideals form an Abelian group

C`(�) called the locally free class group of � where addition is given by [M ] + [M 0] = [M 00]

whenever M �M
0 ' ��M

00. The zero element is (�) and inverses exist since (��)� (���1) '
�� � for any � 2 J(�).

Theorem 2.2.10 Let R;F;�;� be as in 2.2.1. If F is an algebriac number �eld, then C`(�) is

a �nite group.

Proof: (Sketch) If L is a left �-lattice, then there exists only a �nite number of isomorphism

classes of left �-lattices M such that FM ' FL as �-modules. In particular, there exists only

a �nite number of isomorphism classes of left � ideals in � (see [18] or [74]).

Remarks 2.2.11 Let R;F;�;� be as in 3.2.1.

(i) If � = R, then C`(�) is the ideal class group of R.

(ii) If � is a maximal R-order in �, then very left �-ideal in � is locally free. So, C`(�) is

the group of stable isomorphism classes of all left �-ideals in �.

(iii) De�ne a map J(�)! C`(�);�! [��]. Then one can show that this map is surjective

and that the kernel is J0(�)�
�
U(�) where J0(�) is the kernel of the reduced norm acting on

J(�). So J(�)=(J0(�)�
�
U(�)) ' C`(�) (see [18]).

(iv) If G is a �nite group such that no proper divisor of jGj is a unit in R, then C`(RG) '
SK0(RG). Hence C`(ZG)' SK0(ZG) for every �nite group G (see [18] or [98]).

For computations of C`(RG) for various R and G see [18].

2.2.12 An Application { Walls �niteness obstruction theorem

Let R be a ring. A bounded chain complex C = (C�; d) of R-modules is said to be of �nite

type if all the Cj's are �nitely generated. The Euler characteristic of C = (C�; d) is given by:

�(C) =
1P

i=�1
(�1)i[Ci], and we write ��(C) for the image of �(C) in ~K0(R).

The initial motivation for Wall's �niteness obstruction theorem stated below was the desire to

�nd out when a connected space has the homotopy type of a CW-complex. If X is homotopically
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equivalent to a CW-complex, the singular chain complex S�(X) with local coe�cients is said

to be �nitely dominated if it is chain homotopic to a complex of �nite type. Let R = Z�1(X),

the integral group-ring of the fundamental group of X. Wall's �nite obstruction theorem stated

below implies that a �nitely dominated complex has a �niteness obstruction in ~K0(R) and is

chain homotopic to a complex of �nite type of free R-modules if and only if the �niteness

obstruction vanishes. More precisely we have the following

Theorem [113] Let (C�; d) be a chain complex of projective R-modules which is homotopic to

a chain complex of �nite type of projective R-modules. Then (C�; d) is chain homotopic to a

chain complex of �nite type of free R-modules if and only if ��(C) = 0 in ~K0(R).

Note: For further applications in this direction see [114], [104], [84].
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3 K0 OF EXACT AND ABELIAN CATEGORIES { DEFINI-

TIONS AND EXAMPLES

3.1 K0 of exact categories and examples

De�nition 3.1.1 An exact category is an additive category C embeddable as a full subcategory

of an Abelian category A such that C is equipped with a class E of short exact sequences

0!M
0 !M !M

00 ! 0 (I) satisfying (i) E is the class of all sequences (I) in C that are exact

in A.
(ii) E is closed under extensions in A i.e. if (I) is an exact sequence in A and M

0
;M
00 2 C,

then M 2 C.

De�nition 3.1.2 For a small exact category C, de�ne the Grothendieck group K0(C) of C as

the Abelian group generated by isomorphism classes (C) of C-objects subject to the relation

(C 0) + (C 00) = (C) whenever 0! C
0 ! C ! C

00 ! 0 is an exact sequence in C.

Remarks 3.1.3

(i) K0(C) ' F=R where F is the free Abelian group on the isomorphism classes (C) of C-
objects and R the subgroup of F generated by all (C) � (C 0) � (C 00) for each exact

sequence 0! C
0 ! C ! C

00 ! 0 in C. Denote by [C] the class of (C) in K0(C) = F=R.

(ii) The construction satis�es the following property: If � : C ! A is a map from C to

an Abelian group A given that �(C) depends only on the isomorphism class of C and

�(C) = �(C 0) + �(C 00) for any exact sequence 0 ! C
0 ! C ! C

00 ! 0, then there exists

a unique �0 : K0(C)! A such tht �(C) = �
0([C]) for any C-object C.

(iii) Let F : C ! D be an exact functor between two exact categories C;D (i.e. F is additive

and takes short exact sequences in C to such sequences in D). Then F induces a group

homomorphism K0(C)! K0(D).

(iv) Note that an Abelian category A is also an exact category and the de�nition of K0(A) is
the same as in 2.1.2.

Examples 3.1.4

(i) Any additive category is an exact category as well as a symmetric monoidal category under

`�', and K0(C) is a quotient of the group K
�
0
(C) de�ned in 1.4.1.

If every short exact sequence in C splits, then K0(C) = K
�
0
(C). For example, K0(�) =

K0(P(�) = K
�
0
(P(�)) for any ring � with identity.

(ii) Let � be a (left) Noetherian ring. Then the category M(�) of �nitely generated (left)-�-

modules is an exact category and we denote K0(M(�)) by G0(�). The inclusion functor
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P(�) ! M(�) induces a map K0(�) ! G0(�) called the Cartan map. For example

� = RG, R a Dedekind domain, G a �nite group, yields a Cartan mapK0(RG)! G0(RG).

If � is left Artinian, then G0(�) is free Abelian on [S1]; � � � [Sr] where the Si are distinct
classes of simple �-modules while K0(�) is free Abelian on [I1]; � � � ; [I`] and the Ii are

distinct classes of indecomposable projective �-modules (see [18]). So, the map K0(�)!
G0(�) gives a matrix aij where aij = the number of times Sj occurs in a composition series

for Ii. This matrix is known as the Cartan matrix.

If � is left regular (i.e. every �nitely generated left �-module has �nite resolution by

�nitely generated projective left �-modules), then it is well known that the Cartan map

is an isomorphism (see [18]).

For example, if R is a Dedekind domain with quotient �eld F and � is a maximal R-order

in a semi-simple F -algebra, �, then K0(�) ' G0(�) since � is regular. (See [18] or [25]

for further information on Cartan maps.)

(iii) Let R be a commutative ring with identity, � an R-algebra. Let PR(�) be the category
of left �-lattices i.e. �-modules which are �nitely generated and projective as R-modules.

Then PR(�) is an exact category and we write G0(R;�) for K0(PR(�). If � = RG, G

a �nite group, we write PR(G) for PR(RG) and also write G0(R;G) for G0(R;RG). If

M;N 2 PR(�), then, so is M 
R N and hence the multiplication given in G0(R;G) by

[M ][N ] = (M 
R N) makes G0(R;G) a commutative ring with identity.

(iv) If R is a commutative regular ring and � is an R-algebra that is �nitely generated and

projective as an R-module (e.g. � = RG, G a �nite group or R is a Dedekind domain with

quotient �eld F and � is an R-order in a semi-simple F -algebra) then G0(R;�) ' G0(�).

Sketch of proof: De�ne a map ' : G0(R;�) ! G0(�) by '[M ] = [M ]. Then ' is

a well de�ned homomorphism. Now for M 2 M(�), there exists an exact sequence

0 ! L ! Pn�1
'n�1�! Pn�2 ! � � � ! P0 ! M ! 0 where Pi 2 P(�) L 2 M(�).

Now, since � 2 P(R), each Pi 2 P(R) and hence L 2 P(R). So L 2 PR(�). Now de�ne

�[M ] = [P0] � [P1] + � � � + (�1)n�1[Pn�1] + (�1)n[L] 2 G0(R;�). One easily checks that

�f = 1 = f�.

(v) Let X be a scheme (see [33]), P(X) the category of locally free sheaves of OX -modules of

�nite rank (or equivalently the category of �nite dimensional (algebraic) vector bundles

on X. Then P(X) is an exact category and we write K0(X) for K0(P(X)) (see [69]).

If X = Spec(A) for some commutative ring A, then we have an equivalence of categories

P(X) ! P(A) : E ! �(X;E) = fA-module of global sectionsg, with the inverse equiva-

lence P(A)! P(X) given by P ! ~P : U ! OX(U)
A P . Hence K0(X) ' K0(A).

(vi) Let X be a Noetherian scheme (i.e. X can be covered by a�ne open sets Spec(Ai) where
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each Ai is Noetherian), then the category M(X) of coherent sheaves of OX -modules is

exact. We write G0(X) for K0(M(X)). If X = Spec(A) then we have an equivalence of

categories M(X) 'M(A) and G0(X) ' G0(A).

(vii) Let G be a �nite group, S a G-set, S the category associated to S (see 1.4.3 (xi)), C an

exact category, and [S; C] the category of covariant functors � : S ! C. We write �s for

�(s); s 2 S. Then [S; C] is an exact category where a sequence 0 ! �
0 ! � ! �

00 ! 0 in

[S; C] is de�ned to be exact if 0! �
0
s ! �s ! �

00
s ! 0 is exact in C for all s 2 S. Denote by

K
G
0 (S; C) the K0 of [S; C]. Then K

G
0 (�; C) : GSet! Ab is a functor that can be proved

to be a `Mackey' functor (see [24] or [48]).

It can also be shown (see [48] or [47]) that if S = G=G, the [G=G; C] ' CG in the notation

of 1.4.3 (x). Also, constructions analogous to the one above can be done for G a pro�nite

group, (see [46]) or compact Lie groups ([51A]).

Now if R is a commutative Noetherian ring with identity, we have [G=G;P(R)] ' P(R)G '
PR(RG) (see [48] or [47]), and so, KG

0 [G=G;P(R)) ' K0(P(R)G) ' G0(R;G) and that

if R is regular K0(P(R)G) ' G0(R;G) ' G0(RG). This provides an initial connection

between K-theory of representations of G in P(R) and K-theory of the group ring RG.

In particular, when R = C ;P(C ) = M(C ) and K0(P(C )G) ' G0(C ; G) = G0(CG) = the

Abelian group of characters � : G! C (see [18]), as already observed in x1.

(viii) Let X be a compact topological space and F = R or C . Then the category V BF (X) of

vector bundles over X is an exact category. We had earlier observed (see x1) that V BF (X)

is also a symmetric monoidal category. Since every short exact sequence in V BF (X) splits,

we have K0(V BF (X) ' K
�
0
(V BF (X)).
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4 SOME FUNDAMENTAL RESULTS ONK0 OF EXACTAND

ABELIAN CATEGORIES

In this section, we disucss some of the results that will be seen in more generality when Higher

K-groups are treated in a forthcoming chapter.

4.1 Devissage theorem

De�nition 4.1.1 Let C0 � C be exact categories. The inclusion functor C0 ! C is exact and

hence induces a homomorphism K0(C0)! K0(C). A C0-�ltration of an object A in C is a �nite

sequence of the form: 0 = A0 � A1 � : : : � An = A where each Ai=Ai�1 2 C0.

Lemma 4.1.2 If 0 � A0 � A1 � � � � � An = A is a C0-�ltration, then [A] = �[Ai=Ai1] 1 � i � n

in K0(C).

Theorem 4.1.3 (Devissage theorem). Let C0 � C be exact categories such that C0 is Abelian.

If every A 2 C has a C0-�ltration, then K0(C0)! K0(C) is an isomorphism.

Proof: Since C0 is Abelian, any re�nement of a C0-�ltration is also a C0-�ltration. So, by

Zassenhaus lemma, any two �nite �ltrations have equivalent re�nements, that is, re�nements

such that the successive factors of the �rst re�nement are, up to a permutation of the order of

their occurrences, isomorphic to those of the second.

So, if 0 � A0 � A1 � � � � � An = A is any C0-�ltration of A in C, then

J(A) = �[Ai=Ai�1] (1 � i � n)

is well de�ned, since J(A) is unaltered by replacing the given �ltration with a re�nement.

Now let 0 ! A
0 �!A

�!A
00 ! 0 be an exact sequence in C. Obtain a �ltration for A

by 0 = A0 � A1 � � � � � An = A
0 for A

0 and �
�1(A0) � �

�1(A1) � � � � � �
�1(A00) if

A
0 � A

1 � � � � � A
00 is a C0-�ltration of A00. Then 0 = A0 � A1 � � � � � Ak � �

�1(A0) �
�
�1(A1 � � � � � �

�1(An) is a �ltration of A.

So, J(A) = J(A0)+J(A00). Hence J induces a homomorphismK0(C)! K0(C0). We also have

a homomorphism i : K0(C0) ! K0(C) induced by the inclusion functor i : C0 ! C. Moreover,

i � J = 1K0(C)
and J � i = 1K0(C)

. Hence K0(C0) ' K0(C).

Corollary 4.1.4 Let a be a nilpotent two-sided ideal of a Noetherian ring R. Then G0(R=a) '
G0(R).

Proof: If M 2 M(R), then M � aM � � � � � a
k
M = 0 is an M(R=a) �ltration of M. Result

follows from 3.3.

21



Example 4.1.5

(i) Let R be an Artinian ring with maximal idealm such thatmr = 0 for some r. Let k = R=m

(e.g. R = Z=p
r
; k = Fp).

In 4.1.3, put C0 = category of �nite dimensional k-vector spaces and C, the category of

�nitely generated R-modules. Then, we have a

0 =m
r
M �m

r�1
M � � � � �mM �M of M

where M 2 obC. Hence by 4.1.3, K0(C0) ' K0(C).

(ii) Let X be a Noetherian scheme, M(X) the category of coherent sheaves of OX -modules, i :

Z � X the inclusion of a closed subscheme. ThenM(Z) becomes an Abelian subcategory

of M(X) via the direct image i : M(Z) � M(X). Let MZ(X) be the Abelian category

of coherent sheaves of OX -modules supported on Z;a an ideal sheaf in OX such that

OX=a ' OZ . Then every M 2 MZ(X) has a �nite �ltration M � Ma � Ma
2 � � � �

and so, by Devissage K0(MZ(X) ' K0(M(Z) ' G0(Z)). See x4.3.4 for more examples of

applications of Devissage.

4.2 Resolution theorem and examples

Resolution theorem 4.2.1 [8] or [67]. Let A0 � A be an inclusion of exact categories. Suppose

that every object of A has a �nite resolution by objects of A0 and that if 0!M
0 !M !M

00 !
0 is an exact sequence in A, then M 2 A0 implies that M 0;M 00 2 A0. Then K0(A0) ' K0(A).

Examples 4.2.2 (i) Let R be a regular ring. Then, for anyM 2 obM(R), there exists Pi 2 P(R)
i = 0; 1; � � � ; n such that the sequence 0 ! Pn ! Pn�1 ! � � � ! M ! 0 is exact. Put

A0 = P(R);A =M(R) in 4.6. Then we have K0(R) ' G0(R) (see [8]).

(ii) Let H(R) be the category of all R-modules having �nite homological dimension i.e.,

having a �nite resolution by �nitely generated projective R-modules: Hn(R) the subcategory

of modules having resolutions of length � n. Then by resolution theorem 4.2.1, applied to

P(R) �H(R) we have K0(R) ' K0H(R) ' K0Hn(R) for all n � 1 (see [8] or [100]).

(iii) Let C be an exact category and Nil(C) the category whose objects are pairs (M;�)

where M 2 C and � is a nilpotent endomorphism of M i.e. � 2 EndC(M). Let C0 � C be an

exact subcategory of C such that every object of C has a �nite C0-resolution. Then every object

of Nil(C) has a �nite Nil(C0)-resolution and so, by 4.2.1, K0(Nil(C0)) ' K0(Nil(C))).
(iv) In the notation of (iii), we have two functors Z : C ! Nil(C) : Z(M) = (M; 0) (where

`0' denotes zero endomorphism) and F : Nil(C) ! C : F (M;�) = M satisfying FZ = 1C and

hence a split exact sequence 0 ! K0(C) Z! K0(Nil(C)) ! Nil0(C) ! 0 which de�nes Nil0(C)
as cokernel of Z.

If � is a ring, and H(�) is the category de�ned in (ii) above, then we denote Nil0(P(�)) by
Nil0(�). If S is a central multiplicative system in �, HS(�) the category of S-torsion objects
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of H(�) and MS(�) the category of �nitely generated S-torsion �-modules, one can show that

if S = T+ = ftig { a free Abelian monoid on one generator t, then there exists isomorphisms of

categoriesMT+(�[t]) ' Nil(M(�)) andHT+(�[t]) ' Nil(H(�)) and an isomorphism of groups:

K0(HT+(�[t]) ' K0(�)�Nil0(�). Hence K0(NilH(�)) ' K0(�)�Nil0(�). See [8] or [100] or

[67] or [32] for further information.

(v) The fundamental theorem for K0 says that:

K0(�[t; t
�1]) ' K0(�)�K�1(�)�NK0(�)�NK0(�)

where NK0(�) := Ker(K0(�[t]
�+�! K0(�)) where �+ is induced by augmentation t = 1, and

K�1 is the negative K-functor K�1: Rings ! Abelian groups de�ned by H. Bass in [8]. For

generalisation of this fundamental theorem to Higher K-theory, see [67].

4.3 K0 and localisation in Abelian categories

We close this section with a discussion leading to a localisation short exact sequence 4.3.2 and

then give copious examples to illustrate the use of the sequence.

4.3.1 A full subcategory B of an Abelian category A is called a Serre subcategory if whenever 0!
M
0 !M !M

00 ! 0 is an exact sequence in A, then M 2 B if and only if M 0;M 00 2 B. We now

construct a quotient Abelian category A=B whose objects are just objects of A. HomA=B(M;N)

is de�ned as follows: If M 0 � M , N 0 � N are subobjects such that N=N 0 2 ob(B) M 0 2 ob(B),
then there exists a natural isomorphism HomB(M;N) ! HomB(M

0
; N=N

0). As M 0; N 0 range

over such pairs of objects, the group HomB(M
0
; N=N

0) forms a direct system of Abelian groups

and we de�ne A=B(M;N) = lim
�!

(M0;N0)

B(M 0; N=N 0).
A quotient functor T : A ! A=B de�ned by M ! T (M) =M is such that

(i) T : A ! A=B is an additive functor.

(ii) If � 2 HomA(M;N), then T (�) is null if and only if Ker(�) 2 ob(B). Also T (�) is

epimorphism if and only if coker � 2 ob(B). Hence T (�) is an isomorphism if and only if

� is a B-isomorphism.

Remarks 4.3.2 Note that A=B satis�es the following universal property: If T 0 : A ! D is

an exact functor such that T 0(M) ' 0 for all M 2 B, then there exists a unique exact functor

U : A=B ! D such that T 0 = U � T .

Theorem 4.3.3 [8] or [35]. Let B be a Serre subcategory of an Abelian category A. Then there

exists an exact sequence

K0(B)! K0(A)! K0(A=B)! 0
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Examples 4.3.4

(i) Let � be a Noetherian ring, S � � a central multiplicative subset of �,MS(�) the category

of �nitely generated S-torsion �-modules. Then M(�)=MS(�) ' M(�S) see [8] or [35]

or [100] and so the exact sequence in 4.3.3 becomes

K0(MS(�))! G0(�)! G0(�S)! 0 (I)

(ii) If � in (i) is a Dedekind domain R with quotient �eld F , and S = R�0, thenK0(MS(R)) '
�
m

G0(R=m) = �
m
K0(R=m) where m runs through the maximal ideals of R. Now, since

K0(R=m) ' Z and K0(R) ' Z� C`(R) the sequence (I) yields the exactness of

�Z! Z� C`(R)! Z! 0

(iii) Let � be a Noetherian ring, S = fsig for some s 2 S. Then K0(MS(R) ' G0(R=sR) (by

Devissage) yielding the exact sequence

G0(�=s�)! G0(�)! G0

�
�

�
1

s

��
! 0

(iv) Let R be the ring of integers in a p-adic �eld F , � a maximal R-order in a semi-simple

F -algebra �; S = R � 0, then K0(MS(�)) ' G0(�=��) ' K0(�=rad �) (see [18] or [42])

where �R is the unique maximal ideal of R.

(v) If R is the ring of integers in a number �eld F , � and R-order in a semi-simple F -algebra

�, let S = R� 0. Then K0(MS(�) ' �G0(�=p�) (see [18] or [45]) where p runs through

all the prime ideals of R.

(vi) Let X be a Noetherian scheme, U an open subscheme of X, Z = X � U , let A =M(X)

the category of coherent (sheaves of) OX-modules, B the category of OX -modules whose

restriction to U is zero (i.e. the category of coherent modules supported on Z.). Then

A=B is the category of coherent OU -modules and so, (I) becomes G0(Z) ! G0(X) !
G0(U)! 0 (see 4.1.5 (ii) or [67]).

(vii) Let � be a (left) Noetherian ring, �[t] the polynomial ring in the variable t, �[t; t�1]

the Laurent polynomial ring. Then �[t; t�1] = �[t]S where S = ftig. Now, the map

" : �[t] ! � t ! 0 induces an inclusion M(�) � M(�[t]) and the canonical map i :

�[t]! �[t]S = �[t; t�1] t! t=1 yields an exact functorM(�[t])!M(�[t; t�1]). So from

4.3.3, we have the localisation sequence

G0(�)
"��!G0(�[t])! G0(�[t; t

�1])! 0 (II)

Now "� = 0 since for any �, the exact sequence of �[t]-modules 0 ! N [t]
t!N [t] ! N ! 0

yields

"�[N ] = [N [t]]� [N [t]] = 0
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So, G0(�[t]) ' G0(�[t; t
�1]) from (II) above. This proves the �rst part of the fundamental

theorem for G0 of rings 4.3.5 below.

Theorem 4.3.5 Fundamental theorem for G0 of rings

If � is a left Noetherian ring, then the inclusions �
i
,!�[t]

j
,!�[t; t�1] induce isomorphims

G0(�) �= G0(�[t]) �= G0(�[t; t
�1])

Proof: See [8] or [100] for the proof of the second part.

Remarks 4.3.6 (i) The fundamental theorem 4.3.5 above can be generalised to schemes (see

[67]). IfX is a scheme, writeX[s] for X�Spec(Z[s]) andX[s; s�1] for X�Spec(Z[s; s�1]). When

X is Noetherian, the map " : X ! X[s] de�ned by s = 0 induces an inclusionM(X) �M(X[s])

and hence a transfer map "� : G0(X)! G0(X[s]). So we have a localisation exact sequence

G0(X)
"��!G0(X[s]) �! G0(X[s; s�1]) �! 0

We also have a fundamental theorem similar to 4.3.5 as follows

Theorem 4.3.7 Fundamental theorem for G0 of schemes

If X is a Noetherian scheme, then the at maps X[s; s�1]
j
,!X[s]

i
,!X induce isomorphisms

G0(X) �= G0(X[[s]) �= G0(X[s; s�1]).

Remarks 4.3.8

(i) If we put X = Spec(�) in 4.3.7, � is Noetherian ring, we recover 4.3.5.

(ii) For all n � 0, there are fundamental theorems for Gn of rings and schemes (see [67] or [85])

and these will be discussed in a forthcoming chapter on Higher K-theory.

(iii) There is a generalisation of 4.3.5 due to A. Grothendieck as follows: Let R be a commutative

Noetherian ring, � a �nite R-algebra, T a free Abelian group or monoid with a �nite basis.

Then G0(�)! G0(�[T ]) is an isomorphism, see [8].

(iv) If � is a (left) Noetherian regular ring, so are �[t] and �[t; t�1]. Since K0(R) �= G0(R) for

any Noetherian regular ring R, we have from 4.3.5 that K0(�) ' K0(�[t]) ' K0�[t; t
�1].

Furthermore, if T is a free Abelian group or monoid with a �nite basis, then K0(A) !
K0(�[T ]) is an isomorphism (see [8]).
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5 K1 OF RINGS

5.1 De�nitions and basic properties

5.1.1 Let R be a ring with identity, GLn(R) the group of invertible n � n matrices over R.

Note that GLn(R) � GLn+1(R) : A !
�
A; 0

0 1

�
. Put GL(R) = lim

!
GLn(R) =

1[
n=1

GLn(R).

Let En(R) be the subgroup of GLn(R) generated by elementary matrices eij(a) where eij(a) is

the n� n matrix with 1's along the diagonal, a in the (i; j)-position and zeros elsewhere. Put

E(R) = lim
!

En(R).

Note: The eij(a) satisfy the following.

(i) eij(a)eij(b) = eij(a+ b) for all a; b 2 R

(ii) [eij(a); ejk(b)] = eik(ab) for all i 6= k; a; b 2 R

(iii) [eij(a); ek`(b)] = 1 for j 6= i 6= ` 6= k

Lemma 5.1.2 If A 2 GLn(R), then

�
A; 0

0 A
�1

�
2 E2n(R).

Proof: First observe that for any C 2Mn(R),

�
In 0

C In

�
and

�
In C

0 In

�
are inE2n(R), where In

is the identity n� n matrix. Hence

�
A 0

0 A
�1

�
=

�
In A

0 In

��
In A

0 In

��
0 �In
In 0

�
2 E2n(R)

since

�
0 �In
In 0

�
=

�
In �In
0 In

��
In 0

In In

��
In �In
0 In

�

Theorem 5.1.3 (Whitehead Lemma)

(i) E(R) = [E(R); E(R)] i.e. E(R) is perfect

(ii) E(R) = [GL(R); GL(R)]

Proof: (Sketch) (i) It follows from properties (ii) of elementary matrices that [E(R); E(R)] �
E(R). Also, En(R) is generated by elements of the form eij(a) = [eik(a); ekj(1)] and so E(R) �
[E(R); E(R)]. So, E(R) = [E(R); E(R)].

(ii) For A;B 2 GLn(R),�
ABA

�1
B
�1 0

0 In

�
=

�
AB 0

0 (AB)�1

��
A
�1 0

0 A

��
B
�1 0

0 B

�
2 E2n(R)

Hence [GL(R); GL(R)] � E(R) by 5.1.2. Also, from (i) above, E(R) � [E(R); E(R)] �
[GL(R); GL(R)]. Hence E(R) = [GL(R); GL(R)].

De�nition 5.1.4

K1(R) := GL(R)=E(R) = GL(R)=[GL(R); GL(R)]

= H1(GL(R);Z)
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Remarks 5.1.5

(i) For an exact category C, the Quillen de�nition of Kn(C); n � 0 coincides with the above de�-

nition of K1(R) when C = P(R) (see [66] or [67]). We hope to discuss Quillen construction

in a forthcoming chapter.

(ii) The above de�nition 4.1.4 is functorial i.e. any ring homomorphism R ! R
0 induces an

Abelian group homomorphism K1(R)! K1(R
0).

(iii) K1(R) = K1(Mn(R)) for any positive integer n and any ring R.

(iv) K1(R), as de�ned above, coincides with Kdet(P(R)) where Kdet(P(R)) is a quotient of the
additive group generated by all isomorphism classes [P; �], P 2 P(R); � 2 Aut(P ) (see

[18] or [8]).

5.1.6 If R is a commutative, the determinant map det : GLn(R) ! R
� commutes with

GLn(R) ! GLn+1(R) and hence de�nes a map det : GL(R) ! R
� which is surjective since

given a 2 R
�, there exists A =

�
a 0

0 I

�
such that detA = a. Now det induces a map

det : GL(R)=[GL(R); GL(R)] ! R
� i.e. det : K1(R) ! R

�. Moreover, �(a) =

�
a 0

0 I

�
for

all a 2 R
� de�nes a map � : R� ! K1(R) and det� = 1R. Hence K1(R) ' R

� � SK1(R)

where SK1(R) := Ker(det : K1(R) ! R
�). Note that SK1(R) = SL(R)=E(R) where SL(R) =

lim
n=1

SLn(R) and SLn(R) = fA 2 GLn(R)jdetA = 1g. Hence SK1(R) = 0 if and only if

K1(R) ' R
�.

Examples 5.1.7

(i) If F is a �eld, then K1(F ) ' F
�
;K1(F [x]) ' F

�.

(ii) If R is a Euclidean domain (for example Z;Z[i] = fa+ bi; a; b 2 Zg, polynomial ring F [x],

F a �eld) then SK1(R) = 0 i.e. K1(R) ' R
� (see [62] [78]).

(iii) If R is the ring of integers in a number �eld F , then SK1(R) = 0 (see [13] or [78]).

(iv) If R is a Noetherian ring of Krull dimension � 1 with �nite residue �elds and all maximal

ideals, then SK1(R) is torsion [8].

5.2 K1 of local rings and skew �elds

Theorem 5.2.1 [18] or [78]. Let R be a non-commutative local ring. Then there exists a

homomorphism det : GLn(R)! R
�
=[R�; R�] for each positive integer n such that

(i) En(R) � Ker(det)
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(ii)

det

0
BBBBBB@

�1

�2 0
. . .

0
. . .

�n

1
CCCCCCA
= ��1 ��2 � � � ��n where �i 2 R

�

for all i and �! �� is the natural map

R
� ! (R�)ab = R

�
=[R�; R�]

(iii)

GLn(R) �! GLn+1(R)

& .
(R�)ab

commutes

Note: The homomorphism `det' above is usually called Dieudonne determinant because it was

J. Dieudonne who �rst introduced the ideas in 4.2.1 for skew �elds (see [23]).

Theorem 5.2.2 [78]. Let R be a non-commutative local ring. Then the natural map GL1(R) =

R
�
,! GL(R) induces a surjection R�=[R�; R�]! K1(R) whose kernel is the subgroup generated

by the images of all elements (1� xy)=(1 � yx)�1 2 R
� for all x; y in the unique maximal ideal

m of R.

Theorem 5.2.3 [78]. If R is a skew �eld then K1(R) �= R
�
=[R�; R�].

5.3 Menicke symbols

5.3.1 Let R be a commutative ring with identity, a; b 2 R. Choose c; d 2 R such that ad�bc = 1

i.e. such that

�
a b

c d

�
2 SL2(R). De�ne Menicke symbols [a; b] 2 SK1(R) as the class of�

a; b

c; d

�
2 SK1(R). Then

(i) [a; b] is well de�ned

(ii) [a; b] = [b; a] if a 2 R
�

(iii) [a1a2; b] = [a1; b][a2; b] if a1a2R+ bR = R

(iv) [a; b] = [a+ rb; b] for all r 2 R

We have the following result

Theorem 5.3.2 [8]. If R is a commutative ring of Krull dimension � 1, then the Menicke

symbols generate SK1(R).

Remarks See [8] or [13] for further details on Menicke symbols.
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5.4 Stability for K1

5.4.1 Stability results are very useful for reducing computations of K1(R) to computations of

matrices over R of manageable size.

Let A be any ring with identity. An integer n is said to satisfy stable range condition

(SRn) for GL(A) if whenever r > n, and a1; a2; � � � ; ar) is a unimodular row, then there exists

b1; b2; � � � ; br�1 2 A such that (a1 + arb1; a2 + arb2; � � � ; ar�1 + arbr�1) is unimodular. Note that

(a1; a2; � � � ar) 2 A
r unimodular implies that (a1; a2; � � � ; ar) generates a unit ideal i.e. �Aai = A

(see [8]). For example, any semi-local ring satis�ed SR2 (see [100] or [8]).

Theorem 5.4.2 [8],[100]. If SRn is satis�ed, then

(i) GLm(A)=Em(A)! GL()=E(A) is onto for all m � n

(ii) Em(A) / GLr(A) if m � n+ 1

(iii) GLm(A)=Em(A) is Abelian for m � 2n

For further information on K1-stability, see [8] or [100] or [105].
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6 K1; SK1 OF ORDERS AND GROUP-RINGS;

WHITEHEAD TORSION

6.1 Let R be the ring of integers in a number �eld F , � an R-order in a semi-simple F -algebra

�. First we have the following result (see [8]).

Theorem 6.2 K1(�) is a �nitely generated Abelian group.

Proof: The proof relies on the fact that GLn(�) is �nitely generated and also that GLn(�)!
K1(�) is surjective (see [8]).

Remarks 6.3 Let R be a Dedekind domain with quotient �eld F , � an R-order in a semi-

simple F -algebra �. The inclusion � ,! � induces a map K1(�) ! K1(�). Putting SK1(�) =

Ker(K1(�) ! Ki(�)), it means that understanding K1(�) reduces to understanding K1(�)

and SK1(�). Since � is semi-simple, � = ��i where �i = Mni(Di), Di a skew �eld. So

K1(�) = �K1(Di).

One way of studying K1(�) and SK1(�);K1(�) is via reduced norms. We consider the case

where R is the ring of integers in a number �eld or p-adic �eld F .

Let R be the ring of integers in a number �eld or p-adic �eld F . Then there exists a �nite

extension E of F such that E 
 � is a direct sum of full matrix algebras over E, i.e. E is

a splitting �eld of �. If a 2 �, the element 1 
 a 2 E 
 � may be represented by a direct

sum of matrices and the reduced norm of a, written nr(a) is de�ned as the produced of their

determinants. We then have nr : GL(�) ! C
� where C = centre of � (if � =

m�
i=1

�i and

C =
m�
i=1

Ci we could compute nr(a) component-wise via GL(�i) ! C
�
i ). Since C� is Abelian

we have nr : K1(�)! C
�. Composing this with K1(�)! K1(�) we have a reduced norm map

nr : K1(�)! K1(�)! C
�.

From the discussion below, it will be clear that an alternative de�nition of SK1(�) = fx 2
K1(�)jnr(x) = 1g.

Theorem 6.4 Let R be the ring of integers in a number �eld F , � an R-order in a semi-

simple F -algebra �. In the notation of 6.3, let Ui be the group of all non-zero elements a 2 Ci

such that �(a) > 0 for each embedding � : Ci ! R at which R 
Ci �i is not a full matrix

algebra over R. Then (i) the reduced norm map yields an isomorphism nr : K1(�) �=
m

�
i=1

Ui (ii)

nr : K1(�) �
m
�
i=1

(Ui \R�i ) where Ri is the ring of integers in Ci.

Proof: See [18].

Remarks 6.5

(i) If � is a maximal R-order in �, then we have equality in (ii) of 6.4 i.e. nr(K1(�)) =
m

�
i=1

(Ui \R�i ). (See [18].) Hence rank K1(�) = rank
m

�
i=1

(Ui \R�i ).
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(ii) If � is any R-order in �, then nr(K1(�)) is of �nite index in S
� (see [18]).

(iii) For all n � 1;Kn(�) is �nitely generated and SKn(�) is �nite (see [49] or [50]).

Theorem 6.6 Let R be the ring of integers in a number �eld F , � any R-order in a semi-simple

F -algebra �. Then SK1(�) is a �nite group.

Proof: See [8]. The proof involves showing that SK1(�) is torsion and observing that SK1(�)

is also �nitely generated as a subgroup of K1(�) see 6.2.

The next results are local versions of 6.4 and 6.6.

Theorem 6.7 Let R be the ring of integers in a p-adic �eld F , � a maximal R-order in a semi-

simple F -algebra �. In the notation of 6.3, we have (i) nr : K1(�) ' C
�; (ii) nr : K1(�) �= S

�

where S = �Ri and Ri is the ring of integers in Ci.

Theorem 6.8

(i) Let F be a p-adic �eld (i.e. any �nite extension of Q̂P )), R the ring of integers of F , � any

R-order in a semi-simple F -algebra �. Then SK1(�) is �nite.

(ii) Let R be the ring of integers in a p-adic �eld F , m the maximal ideal of R; q = jR=mj.
Suppose that � is a maximal order in central division algebra over F . Then SK1(�) is a

cyclic group of order (qn � 1)=q � 1. SK1(�) = 0 i� D = F .

Remarks 6.9

(i) For the proof of 6.8, see [41] and [63].

(ii) It follows from 6.7 that rank K1(�) = rank(S�) for any maximal order � in a p-adic

semi-simple F -algebra.

(iii) If in 6.4 and 6.6 R = Z;F = Q;G a �nite group, we have that rank of K1(ZG) = s � t

where s is the number of real representations of G, and t is the corresponding number of

rational representations of G. (See [63].)

(iv) Computations of SK1(ZG) for various groups has attracted extensive attention because

of its applicability in topology. For details of such computations, (see [63]).

(v) That for all n � 1; SKn(ZG); SKn(ẐpG) are �nite groups are proved in [49], [50].

(vi) It also is known that if � is a maximal order in a semi-simple F -algebra �, then SK2n(�) = 0

and SK2n�1(�) = 0 for all n � 1 i� � is unrami�ed over its centre, (see [44]). These

generalisations will be discussed in a forthcoming chapter on Higher K-theory.
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6.10 Whitehead Torsion. J.H.C. Whitehead (see [119]) observed that if X is a topological

space with fundamental group G, and R = ZG, then the elementary row and column transfor-

mations of matrices over R have some natural topological meaning. To enable him to study

homotopy between spaces, he introduced the group Wh(G) = K1(ZG)=!(�G) where ! is the

map G! GL1(ZG)! GL(ZG)! K1(ZG), such that if f : X ! Y is a homotopy equivalence,

then there exists an invariant �(f) in Wh(G) such that �(f) = 0 if and only if f is a simple

homotopy equivalence i.e. �(f) = 0 i� f is induced by elementary deformations transforming X

to Y . The invariant �(f) is known as Whitehead torsion. (See [60]).

Now, it follows from 6.1 that Wh(G) is �nitely generated when G is a �nite group. More-

over, it is also well known that Tor(K1(ZG) = (�1) � G
ab � SK1(ZG) where SK1(ZG) =

Ker(K1(ZG)! K1(QG)) see [63]. So rank K1(ZG) = rank Wh(G) and it is well known that

SK1(ZG) is the full torsion subgroup of Wh(G) (see [63]). So, computations of Tor(K1(ZG))

reduce essentially to computations of SK1(ZG). The last two decades have witnessed extensive

research on computations of SK1(ZG) for various groups G (see [63]). More generally, if R

is the ring of integers in a number �eld or a p-adic �eld F , there has been extensive e�ort in

understanding the groups SKn(RG) = Ker(Kn(RG) ! Kn(FG) for all n � 1. (See [49], [50],

[51]) for all n � 1. More generally still, if � is an R-order in a semi-simple F -algebra � (i.e. �

is a subring of �, �nitely generated as an R-module and �
R F = �), there has been extensive

e�ort to compute SKn(�) = Ker(Kn(�) ! Kn(�)). (See [49], [50], [51]) the results of which

apply to � = RG. We shall discuss these computations further in the forthcoming chapter on

Higher K-theory.

Note also that Whitehead torsion is useful in the classi�cations of manifolds (see [63] or [60]).
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7 SOME K1 �K0 EXACT SEQUENCES

7.1 Mayer-Vietoris sequence

7.1.1 Let

A
f1! A1

#f2 #g1
A2 !

g1
A
0

, (I) be a commutative square of ring homomorphisms satisfying

(i) A = A1 �A A2 = f(a1; a2) 2 A1 � A2jg1(a1) = g2(a2)g i.e. given a1 2 A1; a2 2 A2

such that g1a1 = g2a2, then there exists one and only one element a 2 A such that

f1(a) = a1; f2(a) = a2.

(ii) At least one of the two homomorphisms g1; g2 is surjective. The square (I) is then called

a Cartesian square of rings.

Theorem 7.1.2 Given a Cartesian square of rings as in 7.1.1, then there exists an exact sequence

K1(A)
�1!K1(A1)�K1(A2)

�1!K1(A
0)

�!K0(A)
�0!K0(A1)�K0(A2)

�0!K0(A
0).

Note: Call this sequence the Mayer-Vietoris sequence associated to the Cartesian square (I).

For details of the proof of 7.1.2, see [62].

Sketch of proof: The maps �i; �i(i = 0; 1) are de�ned as follows: For x 2 Ki(A); �i(x) =

(f1�(x); f2�(x)) and for (y; z) 2 Ki(A1)�Ki(A2) i = 0; 1; �i(y; z) = g1�y� g2�z. The boundary

map � : K1(A
0) ! K0(A) is de�ned as follows: Represent x 2 K1(A

0) by a matrix  = (aij)

in GLr(A
0). This matrix determines an automorphism  : A

0n ! A
0n. Let (zj) = �aijzj

where fzjg is a standard basis for A
0n. Let P () be the subgroup of An

1 � A
n
2 consisting of

f(x; y)jgn1 (x) = g
n
2 (y)g where gn1 : An

1 ! A
0n
; g

n
2 : A!0n are induced by g1; g2 respectively. We

need the following

Lemma 7.1.3

(i) If there exists (bij) 2 GLn(A2) which maps to  = (aij), then P () ' A
n.

(ii) If g2 is surjective, then P () is a �nitely generated projective A-module.

For the proof of 7.1.3 see [63]. Conclusion of de�nition of �: Now de�ne

�[] = [P ()]� [An] 2 K0(A)

and verify exactness of the sequence 7.1.2 as an exercise.

Corollary 7.1.4 If A is a ring and a1;a2 ideals of A such that a1 \a2 = 0, then there exists an

exact sequence

K1(A)! K1(A=a1)�K1(A=a2)! K1(A=(a1 + a2))

��!K0(A)! K0(A=a1)�K0(A=a2)! K0(A=a1 � a2))
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Proof: Follows by applying 7.1.2 to the Cartesian square:

A
f1�! A=a1

f2

??y
??yg1

A=a2 �!
g2

A=(a1 + a2)

(II)

Example 7.1.5 Let G be a �nite group of order n, A = ZG. Let a1 be the principal ideal of A

generated by b = �g2G g, a2 the augmentation ideal = f�rggj�rg = 0g. Then a;\a2 = 0. So,

A2 = A=a2 ' Z; A
0 = A=(a1 + a2) ' Z=nZ from the Cartesian squares (I) and (II) above.

Now suppose that jGj = p, a prime. Let G = hxi. Put t = f1(x). Then, A1 has the form Z[t]

with a single relation �
p�1
i=0

t
i = 0. So, A1 may be identi�ed with Z[�] where � is the primitive

p
th root of unity.

We now have the following:

Theorem 7.1.6 If jGj = p, then F1 : K0(ZG) �= K0(Z[�]) is an isomorphism. Hence K0(ZG) '
Z � C`(Z[�]).

Proof: From 7.1.2, we have an exact sequence

K1(Z[�])�K1(Z)! K1(Z=pZ)
�!K0(ZG)! K0(Z[�])�K0(Z)! K0(Z=pZ)

Now since g2� : K0(Z) ' K0(Z=pZ) is an isomorphism, the result will follow once we show

that � = 0. To show that � = 0, it su�ces to show that K1(Z[�]) ! K1(Z=pZ) is onto. Let r

be a positive integer prime to p. Put u = 1 + � + � � � �r�1 2 Z[�]. Let �r = �, �s = �, for some

s > 0. Then � = 1 + � + � � �+ �
s�1 2 Z[�]. In Q(�), we have

� = (�s � 1)=(� � 1) = (� � 1)=(�r � 1) = 1=u

So, u 2 (Z[�])�, i.e. given r 2 (Z=pZ)� ' K1(Z=pZ), there exists u 2 (Z[�])� such that

g1�(u) = r. That K0(ZG)' Z � C`(Z[�]) follows from 2.1.7.

Remarks 7.1.7 (i) The Mayer-Vietoris sequence 7.1.2 can be extended to the right to negative

K-groups de�ned by H. Bass in [8]. More precisely, there exists functors K�n n � 1 from rings

to Abelian groups such that the sequence

� � � ! K0(A
0)! K�1(A)! K�1(A1)�K�1(A2)! K�1(A

0)! � � �

is exact.

(ii) The Mayer-Vietoris sequence 7.1.2 can be extended beyond K2 under special circum-

stances that will be discussed in the forthcoming chapter on Higher K-theory,
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7.2 Exact sequence associated to an ideal of a ring

7.2.1 Let A be a ring, a any ideal of A. The canonical map f : A! A=a induces f� : Ki(A)!
Ki(A=a) i = 0; 1. We write �A for A=a and for M 2 P(A) we put �M =M=aM ' �A
A M . Let

K0(A;a) be the Abelian group generated by expressions of the form [M;f;N ];M;N 2 P(A)
where f : �A
A M ' �A
A N with relations de�ned as follows:

For L;M;N 2 P(A) and �A-isomorphisms f : �L ' �M; g : �M ' �N , we have

[L; gf;N ] = [L; d;M ] + [M; g;N ]

(ii) Given exact sequences

0!M1 !M2 !M3 ! 0; 0! N1 ! N2 ! N3 ! 0

where Mi; Ni; Ni 2 P(A), and given �A-isomorphims fi : �Mi ' �Ni (i = 1; 2; 3) which com-

mute with the maps associated with the given sequences, we have [M2; f2; N2] = [M1; f1; N1] +

[M3; f3; N3].

Theorem 7.2.2 There exists an exact sequence

K1(A)! K1( �A)
�!K0(A;a)

�!K0(A)! K0( �A)

Remarks 7.2.3

(i) We shall not prove the above result in detail but indicate how the maps �; � are de�ned

leaving the rest as an exercise. It is clear how the maps Ki(A) ! Ki( �A) i = 0; 1 are

de�ned. The map � assigns to each f 2 GLn( �A) the triple [A
n
; f; A

n] 2 K0(A;a) while

the map � takes [M;f;N ] onto [M ]� [N ] for M;N 2 P(A) such that f : �M ' �N .

(ii) The exact sequence 7.2.2 could be extended to K2 and beyond with appropriate de�nitions

of Ki(A;a) i � 1. We shall discuss this in the context of Higher K-theory in a forthcoming

chapter, see [67].

7.3 Localisation sequences

7.3.1 Let S be a central multiplicative system in a ring A, HS(A) the category of �nitely

generated S-torsion A-modules of �nite projective dimension. Note that an A-module M is

S-torsion if there exists s 2 S such that sM = 0, and that an A-module has �nite projective

dimension if there exists a �nite P(A)-resolution i.e. there exists an exact sequence. (I)0 !
Pn ! Pn�1 ! � � � ! P0 !M ! 0 where Pi 2 P(A). Then we have the following theorem.

Theorem 7.3.2 With notation as in 7.3.1, there exist natural homomorphisms �, " such that

the following sequence is exact:

K1(A)! K1(AS)
�!K0(HS(A))

"!K0(A)! K0(AS)
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where AS is the ring of fractions of A with respect to S.

Proof: We shall not prove exactness in detail but indicate how the maps � and " are de�ned

leaving details of proof of exactness at each point as an exercise.

LetM 2 HS(A) have a �niteP(A)-resolution as in 7.3.1 above. De�ne "([M ]) = �(�1)i[Pi] 2
K0(A). We de�ne � as follows: If � 2 GLm(AS), let s 2 S be a common denominator for

all entries of � such that � = s� has entries in A. We claim that An
=�A

n 2 HS(A) and

A
n
=sA

n 2 HS(A). That they have �nite P(A)-resolutions follow from the exact sequences

0! A
n �!A

n ! A
n
=�A

n ! 0 and

0! A
n s!A

n ! A
n
=sA

n ! 0

To see that A=�An is S-torsion, let t 2 S be such that ��1t =  has entries in A. Then

A
n � A

n implies that tA
n � �A

n and hence that stA
n � s�A

n = �A
n. Then st 2 S

annihilates An
=�A

n.

We now de�ne

�[�] = [An
=�A

n]� [An
=sA

n]

So "�[�] = "[An
=�A

n]� "[An
=sA

n]

= ([An]� [An])� ([An]� [An]) = 0

Remarks 7.3.3

(i) Putting A = �[t] and S = ftigi�0 in 6.3.2, we obtain an exact sequence

K1(�[t])! K1(�[t; t
�1])

@!K0(Hftig(A[t])! K0(�[t])! K0(�[t; t
�1])

which is an important ingredient in the proof of the following result called the fundamental

theorem for K1 (see [8]).

(ii) Fundamental theorem for K1

K1(�[t; t
1�]) ' K1(�)�K0(�)�NK1(�)�NK1(�)

where NK1(�) = Ker(K1(�[t]
�!K1(�)) and � is induced by the augmentation �[t]! � :

(t = 1).

(iii) In the forthcoming chapter on Higher K-theory, we shall discuss the extension of the

localisation sequence 7.3.2 to the left for all n � 1 as well as some further generalisations

of the sequence.
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8 THE FUNCTOR K2 - BRIEF REVIEW

In this section we provide a brief review of the functor K2 due to J. Milnor, see [62]. A more

comprehensive treatment of this topic is envisaged for a chapter to be written by F. Keune.

8.1 K2 of a ring { De�nitions and basic properties

8.1.1 Let A be a ring. The Steinberg group of order n(n � 3) over A, denoted Stn(A) is the

group generated by xij(a); i 6= j; 1 � i; j � n, a 2 A, with relations

(i) xij(a)xij(b) = xij(a+ b)

(ii) xij(a); xk`(b)] = 1 j 6= k; i 6= `

(iii) [xij(a); xjk(b)] = xik(ab) i; j; k distinct

(iv) [xij(a); xki(b)] = xkj(�ba) j 6= k.

Since generators eij(a) of En(A) satisfy relations (i)-(iv), above, we have a unique surjective

homomorphism 'n : Stn(A)! En(A) given by 'n(xij(a)) = eij(a). Moreover, the relations for

Stn+1(A) include those of Stn(A) and so, there are maps Stn(A) ! Stn+1(A). Let St(A) =

lim
!

n

Stn(A), E(A) = lim
n
En(A), then we have a canonical map ' : St(A)! E(A).

De�nition 8.1.2 De�ne KM
2 (A) as the kernel of the map ' : St(A)! E(A).

Theorem 8.1.3 K
M
2 (A) is Abelian and is the centre of St(A). So St(A) is a central extension

of E(A).

Proof: See [62].

De�nition 8.1.4 An exact sequence of groups of the form 1 ! A ! E
'!G ! 1 is called a

central extension of G by A if A is central in E. Write this extension as (E;'). A central

extension (E;') of G by A is said to be universal if for any other central extension (E0; '0) of

G, there is a unique morphism (E;')! (E0; ').

Theorem 8.1.5 St(A) is the universal central extension of E(A). Hence there exists a natural

isomorphism K
M
2 (A) ' H2(E(A); Z).

Proof: The last statement follows from the fact that for a perfect group G (in this case E(A)),

the kernel of the universal central extension (E;') (in this case (St(A); ') is naturally isomorphic

to H2(G;Z) (in this case H2(E(A);Z)).

For the proof of the �rst part see [62].

De�nition 8.1.6 Let A be a commutative ring, u 2 A
�

wij(u) := xij(u)xji(�u�1)xij(u)
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De�ne hij(u) := wij(u)wij(�1). For u, v 2 A
�, one can easily check that '([h12(u); h13(v)]) = 1.

So [h12(u); h13(v)] 2 K2(A). It can be shown that h12(u); h13(v)] is independent of the indices

1,2,3. We write fu; vg for h12(u); h13(v)] and call this the Steinberg symbol.

Theorem 8.1.7 Let A be a commutative ring. The Steinberg symbol f; g : A� � A
� ! K2(A)

is skew symmetric and bilinear, i.e.

fu; vg = fv; ug�1 and fu1u2; vg = fu1; vgfu2; vg

Proof: See [62].

Theorem 8.1.8 Let A be a �eld, division ring, local ring or a semi-local ring. Then K
M
2 (A) is

generated by symbols.

Proof: See [20] or [108] or [26].

Theorem 8.1.9 (Matsumoto)

If F is a �eld, then K
M
2 (F ) is generated by fu; vg; u; v 2 F

� with relations

(i) fuu0; vg = fu; vgfu0; vg
(ii) fu; vv0g = fu; vgfu; v0g
(iii) fu; 1 � ug = 1

i.e. KM
2 (F ) is the quotient of F �


Z

F
� by the subgroup generated by the elements x
(1�x); x 2

F
�.

Examples 8.1.10

(i) K2(Z) is cyclic or order 2. See [62].

(ii) K2(Z(i)) = 1, so is K2(Z
p�7) see [62].

(iii) K2(Fq ) = 1 if Fq is a �nite �eld with q elements. See [62].

(iv) If F is a �eld K2(F [t]) ' K2(F ) see [62].

More generally K2(R[t]) ' K2(R) if R is a commutative regular ring.

Remarks 8.1.11

(i) There is a de�nition by J. Milnor of HigherK-theory of �eldsKM
n (F ) n � 1 which coincides

with K2(F ) above for n = 2. More precisely,

K
M
n (F ) := F

� 
 F
� 
 � � � 
 F

�| {z }
n times

.�
a1 
 � � � 
 an

��� ai + aj = 1 for some i 6= j

ai 2 F
�

�
i.e. KM

n (F )

is the quotient of F �
F
�
 � � � 
F

� (n times) by the subgroup generated by all a1
 a2

� � � 
 an ai 2 F such that ai + aj = 1 for some i 6= j. Note that KM

� (F ) =
1�
n�0

K
M
n (F ) is

a ring.
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(ii) The Higher K-groups de�ned by D. Quillen [66], [67], namely Kn(C), C an exact category

n � 0 and Kn(A) = �n(BGL(A)
+) n � 1 coincides with K

M
2 (A) above when n = 2 and

C = P(A).

8.2 Connections with Brauer group of �elds and Galois cohomology

8.2.1 Let F be �eld and Br(F ) the Brauer group of F , i.e. the group of stable isomorphism

classes of central simple F -algebras with multiplication given by tensor product of algebras. See

[57].

A central simple F -algebra A is said to be split by an extension E of F if E 
 A is E-

isomorphic to Mr(E) for some positive integer r. It is well known (see [57]) that such E could

be taken as some �nite Galois extension of F . Let Br(F;E) be the group of stable isomorphism

classes of E=split central simple algebras. Then Br(F ) := Br(F; Fs) where Fs is the separable

closure of F .

Theorem 8.2.2 [57] Let E be a Galois extension of a �eld F , G = Gal(E=F ). Then there

exists an isomorphism H
2(G;E�) �= Br(F;E). In particular Br(F ) �= H

2(G;F �s ) where G =

Fal(Fs=F ) = lim
 

Gal(Ei=F ), where Ei runs through �nite Galois extensions of F .

8.2.3 Now, for any m > 0, let �m be the group of mth roots of 1, G = Gal(Fs=F ), we have the

Kummer sequence of G-modules

0! �m ! F
�
s ! F

�
s ! 0

from which we obtain an exact sequence of Galois cohomology groups.

F
� m!F

� ! H
1(F; �m)! H

1(F; F �s )! � � �

where H
1(F; F �s ) = 0 by Hilbert theorem 90. So we obtain isomorphism �m : F �=mF

� �=
F
� 
 Z=m! H

1(F; �m).

Now, the composite

F
� 
ZF � ! (F � 
ZF �)
 Z=m! H

1(F; �m)
H
1(F; �m)! H

2(F; �m

2)

is given by a
b! �m(a)[�m(b) (where [ is cup product) which can be shown to be a Steinberg

symbol inducing a homomorphism g2;m : K2(F )
 Z=mZ! H
2(F; �m


2).

We then have the following result due to A.S. Merkurjev and A.A. Suslin, see [58].

Theorem 8.2.4 [58]. Let F be a �eld, m an integer > 0 such that the characteristic of F is

prime to m. Then the map

g2;m : K2(F )=m K2(F )! H
2(F; �m


2)
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is an isomorphism where H2(F; �m

2) can be identi�ed with the m-torsion subgroup of Br(F ).

Remarks 8.2.5 By generalising the process outlined in 8.2.3 above, we obtain a map

gn;m : KM
n (F )=m K

M
n (F )! H

n(F; �m

2) (I)

It is a conjecture of Bloch-Kato that gn;m is an isomorphism for all F;m; n. So, 8.2.4 is the

g2;m case of the Bloch-Kato conjecture when m is prime to the characteristic of F . Furthermore,

A. Merkurjev proved in [57], that 8.2.4 holds without any restriction on F with respect to m.

It is also a conjecture of Milnor that gn;2 is an isomorphism. In 1996, V. Voevodsky proved

that gn;2r is an isomorphism for any r. See [110].

8.3 Some applications in algebraic topology and algebraic geometry

8.3.1 K2 and pseudo-isotopy Let R = ZG;G a group. For u 2 R
�, put wij(u) := xij(u)xji(�u�1)xij(u).

LetWG be the subgroup of St(R) generated by all wij(g); g 2 G. De�neWh2(G) = K2(R)=(K2(R)\
WG).

Now let M be a smooth n-dimensional compact connected manifold without boundary. Two

di�eomorphisms h0; h1 of M are said to be isotopic if they lie in the same path component of

the di�eomorphism group. h0; h1 are said to be pseudo isotopic if there is a di�eomorphism of

the cylinder M � [0; 1] restricted to h0 on M � (0) and to h1 on M � (1). Let P (M) be the

pseudo-isotopy space of M i.e. the group of di�eomorphism h of M � [0; 1] restricting to the

identity on M � (0). Computation of �0(P (M
n)) helps to understand the di�erences between

isotopies and we have the following result due to Hatcher and Wagoner.

Theorem [33]. Let M be an n-dimensional (n � 5) smooth compact manifold with boundary.

Then there exists a surjective map

�0(P (M))!Wh2(�1(X))

where �1(X) is the fundamental group of X.

8.3.2 Bloch's formula for Chow groups

Let X be a regular scheme of �nite type over a �eld F , CHr(X) the Chow group of codi-

mension r cycles on X modulo rational equivalence (see [33]). The functors Kn; n � 0, are

contravariant functors from the category of schemes to the category of graded commutative

rings, see [67]. Now we can shea�fy the presheaf U ! Kr(U) for r � 0 to obtain a sheaf Kr;X .

The stalk of Kr;X at x 2 X can be shown to be Kr(OX;x). The following result, known as

Bloch's formula, provides a K2-theoretic formula for CH
2(X).

Theorem Let X be a regular scheme of �nite type over a �eld F . Then there is a natural

isomorphism

H
2(X;Kr;X) ' CH

2(X)
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Remark D. Quillen proved a generalisation of the above result i.e. H2(X;Kr;X) ' CH
r(X) for

all r > 1 in [67].
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