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Abstract

In this paper, we show how the generic coupling of moduli to the kinetic

energy of ordinary matter �elds results in a cosmological mechanism that

in�uences the evolution and stability of moduli. As an example, we reconsider

the problem of stabilizing the dilaton in a non-perturbative potential induced

by gaugino condensates. A well-known di�culty is that the potential is so

steep that the dilaton �eld tends to overrun the correct minimum and to

evolve to an observationally unacceptable vacuum. We show that the dilaton

coupling to the kinetic or thermal energy of matter �elds produces a natural

mechanism for gently relaxing the dilaton �eld into the correct minimum of

the potential without �ne-tuning of initial conditions. The same mechanism

is potentially relevant for stabilizing other moduli �elds.

A fundamental problem in supergravity and superstring theories is the stabilization of

moduli �elds, particularly the dilaton. Perturbatively, Φ ≡ exp(λφ) (the dilaton) has no

potential, although it does not behave as a free �eld because it has non-linear couplings to the
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kinetic energy of the axion �eld. (Throughout this paper, we use Φ and φ interchangeably

to represent the dilaton according to convenience; the constant λ =
√

16π/mpl, where mpl ≡
1.2 × 1019 GeV is the Planck scale, is chosen so that φ has a canonical kinetic energy

density, 1
2
φ̇2.) A non-perturbative potential can be induced by gaugino condensates [1�3].

With several gaugino condensates, parameters can be tuned so that there is a locally stable

minimum with zero cosmological constant [4]. See the solid curve in Fig. 1. However,

the potential is exponentially steep (V ∼ exp(− exp(φ))) and the desired minimum, Φmin,

is separated by an exponentially small barrier (compared to the Planck scale) from an

observationally unacceptable anti-de Sitter vacuum [5]. It appears that, unless the initial

conditions of the dilaton �eld are �nely-tuned to lie very near the correct minimum, the

�eld will overrun or miss altogether the desired minimum.

In this paper, we present a possible robust solution to this problem based on generic

properties of the dilaton and natural cosmological e�ects. The solution relies on the coupling

of the dilaton to the kinetic energy density of ordinary matter �elds which has important

consequences in the early universe when the thermal (kinetic) energy density is high. In the

radiation-dominated epoch, at least three e�ects come into play, two of which have been

considered previously.

First, the energy density in the thermal component increases the Hubble damping, as

emphasized by Barreiro et al [6]. If the thermal energy density is very large compared to

the dilaton energy density, the Hubble damping factor is signi�cantly enhanced and the

evolution of the dilaton is slowed. As a result, Φ can be allowed somewhat smaller initial

values (corresponding to climbing further up the steep part of the potential in Fig. 1) and

still be trapped at Φmin. This is a modest expansion in allowed initial conditions. In the

scheme presented here, we �nd that the range of allowed initial conditions is enormously

expanded.

Second, as pointed out by Horne and Moore [7], the dilaton couples non-linearly to the

axion �eld and, if both �elds have large initial kinetic energy densities compared to their

potential, the non-linear coupling causes Φ to undergo chaotic motion back and forth in its
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potential over a �nite range in Φ that includes the desired minimum. If the chaotic behavior

could be sustained, then this would enhance the probability that Φ is trapped in the correct

minimum. However, as pointed out by Banks et al [8], the axion kinetic energy decays too

quickly and spatial inhomogeneities grow too rapidly during the chaotic phase.

This paper points out a third feature of the dilaton in a cosmological setting that can

provide a robust mechanism for dilaton stabilization. Namely, although the dilaton couples

non-perturbatively to itself, it couples perturbatively to the kinetic energy and potential

energy of all matter and gauge �elds. In studying vacuum solutions, these �elds and their

kinetic energies are usually set to zero. However, in a cosmological setting, they produce

a non-negligible, temperature-dependent contribution to the dilaton e�ective potential that

can allow the dilaton �eld to be gently lowered into the desired minimum as the universe

expands and cools. Whether this mechanism works depends on the functional form of the

dilaton coupling to the matter and radiation energy densities. If we take forms suggested by

superstring theory, the scenario works. (When the �rst two e�ects above, Hubble damping

and coupling to the axion, are also included, they help to extend the range of dilaton

couplings which work.)

We write the lowest component of dilaton super�eld as S = Φ+iA/mpl, where Φ describes

the dilaton and A the axion. The non-perturbative dilaton potential, Vnp, is due to multiple

gaugino condensates, arranged to yield a stable minimum with zero cosmological constant

(Φ = Φmin): the racetrack model [4] as shown in Fig. 1. The energy scale has been blown up

by more than 60 orders of magnitude compared to the Planck scale in order to make visible

the features near Φmin. The minimum is locally stable. There is a barrier at Φ > Φmin

peaking at Φ = Φp which separates the desired minimum from an anti-de Sitter vacuum.

The height of the barrier is tiny, typically 50 or more orders of magnitude below the Planck

density. At Φ < Φmin the potential rises exponentially steeply to values Vnp[Φ] � Vnp[Φp].

Based on this description and Fig. 1, it is simple to see why it is hard to be trapped

at Φ = Φmin. If Φ begins at Φ0 > Φp, on the right side of the barrier from Φmin, it is

unlikely to be trapped at Φmin. For Φ0 < Φmin, there is a very limited range of initial
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conditions for which Φ is trapped at Φmin. In particular, if Vnp[Φ0] � Vnp[Φp], (e.g. if the

initial potential energy density is near the Planck scale or compacti�cation scale, which is

much greater than the barrier height) the �eld tends to roll rapidly down the exponential

potential, overshooting Φmin and the barrier (Φ = Φp), ending up in the wrong vacuum.

At high temperatures the relevant terms of a typical Lagrangian have the form:

√
|g|L =

√
|g|
{

1

2
(∂φ)2 +

fA(Φ)

2
(∂A)2 +

f(Φ)

2
|∂C|2 − g(Φ)VC(C) − Vnp(Φ, A)

}
(1)

where C is the complex scalar �eld in a chiral supermultiplet (a matter �eld) with potential

VC(C), fA(Φ) ≡ 1/2Φ2 is the dilaton-axion coupling, and f(Φ) and g(Φ) are, respectively,

the coupling of the dilaton to the kinetic energy and potential energy of C. The exact form

of f(Φ) and g(Φ) depends on the theory one is considering (see below). Vnp(Φ, A) is the

racetrack potential, constructed from the superpotential

W ∝ m3
plZ(Z + 1)2 ; Z ≡ e−αS (2)

and Kähler potential

K = −m2
pl ln

(
S + S

)
− . . . . (3)

Here α is a constant whose value depends on the gauge group. The result for the potential

is

Vnp = eK/m2
pl

[
KSSDSWDSW − 3

m2
pl

WW

]
=

1

Φ

5∑
j=1

hj(Φ, A)e−(j+1)αΦ (4)

here DSW ≡ ∂SW − KSW/m2
pl and the hj(Φ, A) are polynomials of degree 2 in Φ. The

functional form of W is chosen such that the cosmological constant is zero at the minimum.

From Eq. (4) we can see that Φ decreases exponentially fast for Φ < Φmin; and, as proven

in [5], using the holomorphic property of W , Vnp is forced to have a barrier at some Φ =

Φp > Φmin separating Φmin from an anti-de Sitter minimum at Φ > Φp. See Fig. 1.
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FIG. 1. A schematic of the racetrack potential for the dilaton Φ = exp(λφ), generated by

gaugino condensates (λ is a constant). This is represented by the solid curve. The desired minimum

at Φ = Φmin is separated by a small barrier, peaked at Φ = Φp. Beyond Φ = Φp (around Φ = 2.05 in

this example), there is an unacceptable anti-de Sitter vacuum. (The energy scale has been blown up

by more than 60 orders of magnitude to make the barrier visible.) The dashed line represents Veff ,

the e�ective potential for Φ stemming from the dilaton coupling f(Φ) = g(Φ) = 1/Φ at temperature

T = Ti. As T decreases from T1 to T2 to zero, this contribution adiabatically decreases. The dotted

line represents the total �nite temperature potential for Φ, VTi , which has a minimum at Φ = ΦTi .

Note that Eq. (1) includes a perturbative coupling of φ to the kinetic energy of the C

�eld. In previous treatments of dilaton stabilization at the minimum of racetrack potentials,

this coupling was ignored because the kinetic energy was treated as negligible. While this is

justi�ed at zero temperature, the kinetic energy is non-negligible at high temperature and,

then, this dilaton coupling is extremely important and should not be ignored.

Stabilization can result under two conditions: (a) coherent oscillation of a homogeneous
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scalar (matter) �eld; and (b) thermal excitation of matter �elds. Both are plausible sources

in the early universe. Let us �rst consider Case (a), the coherent oscillations of a scalar �eld

C. If the potential energy is VC ∝ |C|n for integer n ≥ 2, then the oscillatory C-�eld energy

density ρC decays as a−6n/(n+2). For simplicity, we will restrict ourselves to n = 4 for which

ρC ∝ a−4, similar to radiation. Furthermore, we take f(Φ) = g(Φ). Because the �eld is

assumed to be homogeneous, ∇C = 0. Then, the action in Eq. (1) contains the interaction

f(Φ)
[

1
2
|Ċ|2 − VC(C)

]
≡ f(Φ)pC , where pC is the pressure of the oscillatory scalar �eld.

Assuming a Friedmann-Robertson-Walker metric, the equation of motion for Φ = exp(λφ)

becomes

1

a3

d

dt

(
a3φ̇

)
− f ′pC + Vnp,φ = 0 (5)

where a(t) is the Robertson-Walker scale factor and f ′ = df/dφ. According to Eq. (5), the

pressure due to C exerts a force on φ equal to −f ′pC . From the equation-of-motion for C,

we see

C̈ +

(
3H +

ḟ

f

)
Ċ = −V ′

C(C) (6)

where V ′
C(C) = dV/dC. Using pC ≡ 1

2
|Ċ|2 − VC and de�ning ρC ≡ 1

2
|Ċ|2 + VC , Eq. (6) can

be recast as

ρ̇C = −
(

3H +
ḟ

f

)
(ρC + pC). (7)

For oscillations in a VC ∝ C4 potential, pC = ρC/3, so pC = p
(0)
C (a3f)−4/3, where p

(0)
C is the

initial value of the pressure. The force in Eq. (5) then becomes −p
(0)
C f ′(a3f)−4/3.

As a speci�c example, consider the case f(Φ) = g(Φ) = 1/Φ = exp(−λφ). This example

assumes a single moduli �eld (the dilaton). Later, we will discuss the case of two or more

moduli �elds, which is pertinent to perturbative string theory or non-perturbative M-theory

[9�12]. For f(Φ) = g(Φ) = 1/Φ, an exponentially strong force is induced by pC that adds

an e�ective potential to Vnp(φ) equal to

Veff(φ) =
3p

(0)
C

a4
exp(λφ/3). (8)
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Note that 1/a4 ∝ T 4, where the T is the temperature of the radiation background. Veff(φ) is

an exponentially increasing function that provides a force pushing φ towards smaller values

and opposes Vnp, which pushes φ toward higher values. Note that, expressed in terms of Φ,

the e�ective potential is Veff ∝ T 4Φ1/3.

Case (b), where C is in thermal equilibrium, proceeds similarly. Now the �uctuations in C

are non-negligible (∇C 6= 0) and contribute to the interaction term (f(Φ)/2)|∂C|2−g(Φ)VC,

which does not obey the same simple relationship to the pressure pC as above. A dif-

ferent approach must be used to compute Veff . As above, we take a quartic potential

VC = εC4 Under the assumption that Φ varies slowly compared to thermal interactions,

we can transform C → √
fC and g(Φ)VC = εgC4 → (εg/f 2)C4 ≡ εeffC

4. In ther-

mal equilibrium, the e�ective potential for a scalar �eld with quartic interactions is [13]

Veff = −(π2T 4/30)[1−(15/8)εeff + . . .], which includes a Φ-dependent piece proportional to

(π2T 4/48)(g/f 2). Whether this acts as an e�ective potential term that causes Φ to decrease

(stabilizes) or increase (destabilizes) depends critically on the dilaton coupling to the kinetic

energy. For example, consider the case f(Φ) = g(Φ) = 1/Φ. Naively, based on the potential

energy term alone, g(Φ)(εC4), one might suppose that the e�ective potential is proportional

to g(Φ) = 1/Φ, which is destabilizing. However, when the kinetic energy contribution is

properly included,

Veff =
π2

48

T 4

f(Φ)
∝ T 4Φ = T 4exp(λφ). (9)

As in the case of coherent oscillations, Veff increases as Φ increases, which is the stabilizing

condition we need. In the remainder of the paper, we will consider this case with thermal

excitations, although the same considerations apply to the coherent oscillation case.

As shown in Fig. 1, the net e�ect is that Veff + Vnp at �xed temperature (dotted curves

VTi
) has a temperature-dependent minimum, ΦTi

, about which the dilaton Φ oscillates. The

minimum lies at ΦTi
< Φmin. As the universe expands and cools, the temperature decreases

and Veff decreases, as well. The energy density at ΦTi
decreases and the value of Φ at the

minimum moves gradually towards Φmin.
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For this mechanism to work, an issue is that oscillations in Φ about ΦT must decay

su�ciently quickly that Φ does not jump over the barrier at low temperatures. That is,

even if ΦT gently decreases towards Φmin, it is conceivable that Φ is oscillating so wildly

about ΦT that it is carried past the peak Φp at low temperatures when Veff(Φp) ≤ Vnp(Φp).

The large initial oscillations must be damped rapidly. The greater is the damping rate, the

larger can be the initial oscillations, and, hence, the larger is the initial value of Φ that can

be stabilized.
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FIG. 2. The evolution of the various energy densities for the case of dilaton coupling

f = g = 1/Φ. TRH is the reheat temperature after in�ation. The initial value of Φ was cho-

sen to be Φ = 10 � Φmin. The �gure shows how the zero point (ρzp), oscillation (ρosc), and

perturbation (δρ) energy densities evolve. In particular, note that, although the system begins

with ρosc ∼ ρzp, the oscillations are heavily damped after a few e-folds, leading to ρosc � ρzp.

Furthermore, note that δρ (the contribution of inhomogeneity in all �elds to the energy density)

decays at the same rate as ρzp, so inhomogeneity in the universe does not come to dominate.

The total dilaton energy (ρφ) at �xed temperature can be split into the zero-point energy
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(ρzp ≡ Vnp(ΦT ) + Veff(ΦT ), where ΦT is the minimum of the �nite temperature e�ective

potential) and oscillation energy (ρosc ≡ ρφ − ρzp). Thus for stabilization of the dilaton to

be robust, we need ρosc to decay faster than ρzp. Figure 2 shows the results of a numerical

simulation for a typical case starting at a temperature of approximately TRH with Φ =

10 � Φmin and all of the components of the energy density comparable. Note that initially

ρosc ∼ ρzp, but after 10 e-folds of expansion it is about 4 orders of magnitude smaller. The

relative damping of oscillation energy can be understood as follows: the e�ective potential

energy for C decreases as T 4, like radiation. As Φ is rolling along Veff , the oscillation energy

decays due to the red shifting of its kinetic energy and due to the fact that Veff decreases as

the temperature decreases. If Φ were frozen (Φ̇ = 0) at some value away from the minimum

and all that happened is that Veff decreases, the energy in the dilaton would decay at the

same rate as Veff . With Φ oscillating (Φ̇ 6= 0), one has additionally the red shift of the

dilaton kinetic energy; hence, ρosc decreases more rapidly than Veff . However, the rate of

decay of the zero-point energy ρzp is approximately the same as Veff . Thus, ρosc decays

faster than ρzp and becomes negligible. That is, the dilaton settles down near the minimum

φT as the temperature decreases.

A more rigorous argument shows that ρosc decays faster than ρzp until ρosc/ρφ reaches

a negligibly small value and then the ratio remains roughly constant (10−4 in Fig. 2). The

remaining oscillations are not important for our purposes since they are too small to drive

Φ past Φp. The decay rate of ρosc/ρφ is so rapid once oscillations begin that it poses no

signi�cant constraint on our scenario. What does limit the range of initial conditions is that,

for su�ciently large Φ, there is insu�cient time for oscillations to commence. We will return

to this point below when we determine how robust the stabilization mechanism is.

Based on what has been learned from this example, it is straightforward to consider

couplings di�erent from f(Φ) = g(Φ) = 1/Φ. A necessary (but insu�cient) condition for

the coupling to produce a stabilizing Veff is that (g/f 2)′ = d(g/f 2)/dΦ > 0 for the case

of thermally excited C-�elds. Hence, f = g ∝ 1/Φn where n > 0 is a satisfactory form.

(Since Veff grows exponentially with φ for all n > 0, the stabilization mechanism is not very
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sensitive to the power n.)

We have focused on the dilaton coupling f(Φ) to the kinetic energy of the matter �elds

because they produce a net, stabilizing, e�ective potential. We note that S also couples to

the gauge �elds via an interaction h(Φ)FµνF
µν , where FµνF

µν ≈ B2−E2 in the case of U(1)

gauge �elds. At high temperature, < B2 >=< E2 >, and so the gauge interaction adds

zero e�ective potential for Φ. Hence, in the case of abelian gauge �elds, h(Φ)FµνF
µν can be

ignored for our purposes.

The dilaton coupling to the axion is yet another interesting example. The kinetic energy

of the axion couples to the dilaton with fA(Φ) = 1/2Φ2, a stabilizing form by the criterion

outlined above. However, the axion �eld is weakly coupled to matter, and so it cannot be

expected to be in thermal equilibrium with the matter-�elds. Instead, one can imagine that

the axion has large coherent time-variation, as discussed by Horne and Moore [7]. This

produces a steep, stabilizing, e�ective potential ∝ Φ2 = exp(2λφ) which forces φ towards

small values where it eventually gets trapped in the minimum of the combined potential due

to the thermally excited C-�eld and the non-perturbative potential Vnp. The axion-induced

force is not sustained for a very long time because the strength is proportional to its pressure,

pA ∝ 1/a6, which decays faster than the thermal energy. However, the brief contribution of

the axion-induced force to dilaton capture expands the range of f(Φ) and initial conditions

for the dilaton that are ultimately trapped.

How robust are the various stabilization mechanisms? That is, beginning from initial

conditions, what is the probability that Φ is trapped at Φmin? A precise answer is not pos-

sible because there is no rigorous understanding of the initial conditions. We use plausible

estimates similar to Horne and Moore [7] and others (e.g., we only consider energy densities

less than the Planck scale and rough equipartition of kinetic and potential energies). Origi-

nally, when the couplings between the dilaton and all other �elds were ignored, it appeared

that a very narrow range of initial conditions result in Φ being trapped at Φmin. Formally,

this is a set of measure zero if one imagines all possible initial values of Φ and Φ̇ as being

equally likely. Barreiro et al. propose a high-temperature thermal background of particles
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in order to increase the Hubble damping during the phase when Φ evolves along the poten-

tial. By increasing the damping of Φ̇, this e�ect enhances the range of initial conditions by

allowing Φ to lie somewhat further up the steep part of the potential at Φ < Φmin and still

not overshoot the peak at Φp. While this is an improvement, the range of allowed initial Φ

remains �nite and narrow; formally, this is also a set of measure zero.

Horne and Moore [7] argue that all possible values of Φ are not equally likely, if couplings

to the axion are properly included. The nonlinear coupling between axion and dilaton causes

the dilaton to follow a chaotic path of back and forth motion in the potential in which large

values of Φ >> Φmin are exponentially unlikely. They argue that the e�ect can be taken into

account by weighting the probability of Φ according to the Kähler metric, which leads to a

�nite phase volume. Fig. 3 shows two representations of the phase space of Φ and A. The

horizontal bounding curves represent A = 0 and A = 2πmpl/α. The probability of a given

Φ′ is proportional to the length of the vertical segment joining the upper and lower curves at

Φ = Φ′. Fig. 3a represents the naive expectation that all combinations of initial 1 ≤ Φ ≤ ∞
and 0 ≤ A ≤ 2πmpl/α are equally probable (all vertical segments joining the boundary have

the same length). In this case, the total volume is in�nite. However, the non-linear coupling

between Φ and A leads to chaotic dynamics at early times which causes the probability

distribution as a function of Φ to fall o� as 1/Φ2 [7]. Fig. 3b illustrates this distortion of the

phase space volume, which is now �nite. Horne and Moore conclude that, within the total

volume, the sub-volume of initial conditions that are ultimately trapped at Φmin is ∼ 14% of

the total volume, corresponding to Φ near Φmin. However, as later pointed out by Banks et

al. [8], the chaotic motion also causes the evolution of unacceptably large inhomogeneities in

the axion �eld. In particular, the homogeneous component of the axion energy responsible

for the chaotic motion decreases as 1/a6, whereas the density inhomogeneities grow as 1/a4.

So, while the universe may become trapped at Φ = Φmin, the density distribution is too

inhomogeneous.

In judging the stabilization mechanism proposed in this paper, we assume the axion

�eld is excited initially as well as the matter (C) �elds. Hence, we adopt the Kähler-
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weighted �nite measure of the phase space for initial φ as argued by Horne and Moore. To

estimate what initial conditions are trapped, we impose the conservative constraint that our

mechanism will rapidly stabilize the dilaton at Φ = ΦT beginning from some high initial

temperature, e.g., the reheat temperature after in�ation, TRH . We determine the maximum

Φ for which the dilaton completes one oscillation about ΦT before the temperature decreases

to 10−3TRH , say. After this oscillation, ρosc is already less than ρzp and Φ is essentially caught

near ΦT . We �nd that Φ ≤ 50 satis�es this conservative condition, which encompasses 98%

of the initial phase space volume. If we loosen our constraint by decreasing the bound below

10−3TRH , the fraction of allowed initial moduli space can be made even closer to unity.

1
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2π/α

10 20

1 10 20

Φ

Φ

A/
m

pl

0

2π/α
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m

pl

X

(a)

(b)

FIG. 3. A schematic illustration of initial phase space volume. The relative likelihood of an

initial Φ is represented by the vertical distance between the curves bounding the shaded region.

Naively, as shown in (a), all combinations of initial 1 ≤ Φ ≤ ∞ and 0 ≤ A ≤ 2πmpl/α might

appear equally probable, and the allowed volume of the shaded region is in�nite. However, based

on the arguments of Horne and Moore, the e�ective volume of moduli space is de�ned by the Kähler

metric and is �nite, as illustrated in (b). The initial conditions used in Fig. 2 are marked by �X.�
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As an example, consider the case of an initial value Φ = 10, the case depicted in Fig. 2

and marked by an �X� in Fig. 3. This value lies outside the trapped region of Barriero

et al., which considers the Hubble damping e�ect, and the trapped region of Horne and

Moore, which considers only the dilaton-axion coupling. But this value lies well within the

trapped region in our scenario, which includes the coupling between dilaton and C-�eld as

well. Trapping all initial conditions with Φ ≤ 10 would be arguable progress if Fig. 3a were

correct, since this range would represent formally a set of measure zero. But, in Fig. 3b,

this same range of initial conditions corresponds to 90% of the total phase volume.

Figures 1 and 2 apply for case of dilaton coupling f(Φ) = g(Φ) = 1/Φ. For a general

f(Φ), we can ask what fraction of the Kähler-weighted volume of phase space for Φ is

trapped at Φmin. Let us assume roughly equipartition initial conditions in which the kinetic

plus potential energy density in φ is comparable to the matter-�eld energy density. For

f(Φ) = g(Φ) = 1/Φn, this implies an e�ective potential Veff ∼ Φn/3 ∼ exp(nλφ/3), which

is exponentially steep, su�cient to trap nearly 100% of all initial conditions.

Unlike the case of Horne and Moore, our scenario does not su�er from the problem of

axion energy density inhomogeneities (δρ). In their scenario, energy density due to inhomo-

geneities δρ, which decays as 1/a4, always overtakes the homogeneous energy component,

the axion kinetic energy, which decays as 1/a6. In our scenario, the homogeneous energy

density is dominated by the thermal energy of the matter and gauge �elds, which decays as

1/a4. (Here δρ is de�ned as the deviation in the 0−0 component of the stress-energy tensor

due to perturbations in the dilaton, axion and C �elds as well as the metric [14].) Hence,

as shown in Fig. 2, δρ decays at the same rate as the total energy density (ρtot). Assuming

that the inhomogeneities are initially negligible, they remain negligible.

When two or more moduli �elds exist, the situation becomes more complicated. Both

f and g take di�erent forms. An example relevant to perturbative string theory or

non-perturbative M-theory [9�12] is f [S, T ] = (3/Re[T ]) + (β/Re[S]) and g[S, T ] =

1/(ST 3f [S, T ]). In models of the Ho°ava-Witten type, the dilaton S is replaced in the

non-perturbative superpotential W by S−βT , where T is the orbifold modulus. Hence, one
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can consider trapping in the S − βT direction; typically, an independent method is needed

to stabilize the S + βT direction. If one supposes a mechanism that �xes Re[S + βT ] = κ,

where β > 0 and κ = O(100) > 0 (as in the standard embedding), then the e�ective po-

tential along the the Re[S − βT ] direction is similar to the examples considered above. A

technical di�erence is that, since the physical regime is S > 0 and T > 0, the constraint,

Re[S + βT ] = κ, prevents Φ = Re[S] from exceeding κ; so trapping is only required for

S ≤ κ = O(100). The non-perturbative potential tends to push Φ = Re[S] to increase,

but the thermal contribution due to the matter �elds pulls Φ back to smaller values. As

in our toy model (see discussion of Eq. (9)), the critical feature is that the coupling to the

kinetic energy produces a a stabilizing contribution to the thermal e�ective potential. The

trapping force becomes small at large Φ. However, an initial axion kinetic energy produces

a steep, stabilizing potential at early times (until the axion kinetic energy density becomes

negligible compared to the dilaton energy). When all e�ects are included, the percentage of

initial conditions that become trapped rises to nearly 100%, as before.

The lesson to be learned from this study goes beyond �nding a long-sought mechanism

for stabilizing the dilaton. What we have seen is that the cosmological background can play

an important role in the evolution and stabilization of moduli �elds and the determination

of the present vacuum state. This is especially important for nearly-�at, non-perturbative

potentials with multiple vacua, as is common in supergravity and superstring theories, where

there is little guidance as to why one vacuum is observed and the others are irrelevant (at

least within our Hubble volume). A characteristic feature of these models is non-linear

sigma-model type couplings of the moduli �elds to the kinetic energy of the matter of the

type considered here. Whereas these couplings have been ignored in past considerations of

the moduli problem, here we have seen that they can have a strong in�uence in the early

universe. Hence, just as we have demonstrated for the dilaton, we expect the cosmological

background to have signi�cant e�ect on other moduli �elds.
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