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Abstract

In this report we describe the proposed beam separation and collision schemes for interaction
points 2 (ALICE experiment) and 8 (LHCb) in the LHC for optics version 6. The original
proposal for optics version 5 was redesigned to be compatible with new requirements and the
existing hardware. Contrary to the original scheme, in our scenario some magnets in the common
part of the two rings are used to establish part of the separation. However, individual control
of the two beams remains fully possible. The necessary corrector strengths are significantly
smaller and the aperture requirements less severe. Furthermore, this new scheme would allow to
further increase the crossing angle, if required. To achieve this, the compensation scheme of the
spectrometer magnets in IP2 and IP8 had to be redesigned and the implication of the desired
alignment of these magnets was studied.
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1 Introduction
The CERN Large Hadron Collider (LHC) is designed for highest luminosity and

therefore requires an operation with a large number of bunches [1]. The bunches are
closely spaced (25 ns) and in order to avoid unwanted collisions in the part where the
two beams share a common vacuum chamber, the beams must collide at a small crossing
angle in all experimental interaction regions [2]. The basic issues of a beam separation
scheme are described in an earlier report [3] where the scenario for interaction regions
1 (ATLAS) and 5 (CMS) are described. The ALICE experiment in IP2 is designed for
experiments with ions but should allow data taking at a reduced interaction rate with
proton beams. This leads to a large range of boundary conditions for the optics in IP2
[4]. Furthermore, the injection system for ring 1 of the LHC is located close to the ALICE
experiment and imposes further constraints. The LHCb experiment in IP8 aims at average
luminosities between 1 - 5 · 1032 cm−2s−1. To compensate for a loss of luminosity at lower
bunch intensities, the required β∗ at the interaction point ranges from 1.0 to 50 meters.
The interaction region 8 also houses the injection equipment for ring 2. The crossing and
compensation scheme has to allow for this required flexibility. In the original crossing and
separation scheme it was foreseen to cross vertically in both experiments.

1.1 Optics and modes of operation for IP2
The operation with ions differs significantly from the proton operation. The bunch

spacing is 125 ns (25 ns for protons) and the bunch intensities are some orders of magnitude
smaller than for proton bunches. The required optics parameters and bunch intensities
are summarized in [4]. The β-function at the interaction point can vary from 0.5 m to
50 m for ion operation and for proton operation β∗ = 10 m is foreseen. Since this would
still give too high interaction rates, the two proton beams do not collide head on but
with a finite separation, adjusted to fit the specifications [4]. A separation and collision
scheme must therefore allow for a large range of collision optics as well as for the option to
collide with a transverse offset of several times the transverse beam size. The larger bunch
spacing and lower bunch intensity for ion operation reduces the separation requirements
since the number of long range collisions [2] and their detrimental effects are significantly
smaller.

1.2 Optics and modes of operation for IP8
The main difference compared to other experiments is the shifted interaction point.

In order to accommodate the single arm spectrometer in the existing hall, the interaction
point and the focussing quadrupoles are displaced by 3λRF /2 (≈ 11.22 m) towards IP7.
The implications of this shift on the beam dynamics, in particular on beam-beam effects
are discussed in [8]. At collision it is desired to adjust the optics to fulfill the luminosity
requirements dynamically, i.e. to keep the luminosity approximately constant during one
run or for different beam intensities.

2 Spectrometer dipole magnet compensation
The experiments in IP2 and IP8 both use spectrometer magnets which distort the

beam trajectories in the vicinity of the interaction point and around the machine and their
effect has to be compensated locally with dedicated compensation magnets. Since these
strongly interfere with the crossing and separation scheme, the design of the compensation
scheme is important and requires attention. These compensators are all placed in the
straight sections between the interaction point and the final focussing triplet.
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2.1 Spectrometer magnet compensation in ALICE
The experiment uses a spectrometer magnet inside the muon detector. It is posi-

tioned at about 10 m from the IP towards IP3, is 3 m long and the integrated field is 3.2
Tm in the horizontal direction. In the original design this magnet is off during injection
and ramping and is compensated with 2 compensator magnets of the types MCBWA,
positioned at a distance of 20 m on both sides of IP2. The compensator magnets fully
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Figure 1: ALICE spectrometer magnet compensated with 2 (left) or 3 (right) compensa-
tion magnets. Interaction point is at the centre.

compensate the effects outside the bump, but create a vertical angle and vertical offset
at the interaction point.

Without additional compensation, this bump (see Fig. 1, left) produces a vertical
offset of ≈ 0.7 mm and an angle of ≈ 35 µrad. Since all magnets are common to both
beams, they generate a separation of 1.4 mm and a full crossing angle of ≈ 70 µrad. Fur-
thermore, the experiment may require a polarity reversal of the magnet, producing angles
and offsets of opposite sign. Both, the angle and the offset must be taken into account and
compensated with the separation and crossing scheme. In particular the compensation of
the vertical offset requires very large correction strengths [4, 5]. Furthermore, such a non-
local correction is sensitive to errors or changes to the optics in the interaction region and
would not allow to easily change the β-function at the collision point. A possible solu-
tion is to add a third compensation magnet, preferably symmetric to the spectrometer
magnet on the other side of the interaction point. This adds one degree of freedom for
the correction and the offset at the interaction point can be corrected to zero producing
an antisymmetric bump. The vertical angle (αspec) is still present and twice as large, i.e.
≈ ± 70 µrad, producing a full crossing angle of α ≈ ± 140 µrad but the vertical offset
is automatically compensated all the time and for all modes of operation and therefore
needs no special attention (see Fig. 1, right). Moreover, the spectrometer compensation
bump is completely decoupled from optics and orbit manipulations and therefore highly
desirable for the operation. The necessary parameters for the proposed full compensation
scheme are given in Table 1.

2.2 Spectrometer magnet compensation in LHCb
The LHCb experiment uses a spectrometer magnet which is positioned approxi-

mately 5.0 m from the IP towards IP1, it is 1.92 m long and the integrated field at 7 TeV
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Magnet type length (m) distance from IP (m)
∫

Bdl (Tm)

Compensator 1 MCBW 1.7 -20.066 1.555
Spectrometer 3.0 -9.75 3.200

Compensator 2 MBXW 3.4 9.75 3.200
Compensator 3 MCBW 1.7 20.066 1.555

Table 1: Proposed spectrometer compensation for ALICE with three compensator magnets.
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Figure 2: LHCb spectrometer magnet compensated with 2 (left) or 3 (right) compensation
magnets. Interaction point is at the centre.

is 4.2 Tm in the vertical direction. In previous schemes this spectrometer magnet was
compensated with 2 independent magnets only, producing a horizontal offset and angle
at the interaction point. The magnet is warm and is ramped proportional to the beam
energy and therefore these distortions are the same at injection and at top energy. With-
out additional compensation, this bump (see Fig. 2, left) produces a horizontal offset
of ≈ 0.9 mm and an angle of ≈ 180 µrad and therefore a separation of 1.8 mm and a
crossing angle of ≈ 360 µrad. Furthermore, the experiment requires a polarity reversal of
the magnet, producing angles and offset of opposite sign. As already observed for IP2,
the compensation of the horizontal offset requires too large correction strength [6] if it
is achieved with correctors near insertion quadrupoles. The preferred solution is again
the addition of a third compensation magnet beyond the spectrometer magnet on the
same side. The offset at the interaction point is now always compensated and with the
full field of the spectrometer, the angle αspec produced is ± 135 µrad in the horizontal
plane. The spectrometer bump is completely decoupled from optics and orbit manipula-
tions and allows to change the optics if required. In particular it allows to change the β∗

at the interaction point without separating the beams. The parameters for the proposed
compensation scheme are given in Table 2. The mechanical layout for the spectrometer
dipole compensation in IP2 and IP8 is shown in Fig. 23 in Appendix A.
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Magnet Type length (m) distance from IP (m)
∫

Bdl (Tm)

Compensator 1 MCBWB 1.00 20.416 1.08
Spectrometer 1.92 5.25 4.20

Compensator 2 MBXW 3.40 -5.25 4.22
Compensator 3 MCBW 1.70 -20.066 1.10

Table 2: Proposed spectrometer compensation for LHCb with three compensator magnets
at top energy (7 TeV).

3 Crossing and separation scheme
In collision, the separation of the unwanted encounters is provided by the finite

crossing angle. For adjustment of the collision, it is required to have individual control of
the two beams, at least over a large range of the crossing angle and collision offset [3].
The collision optics with β∗ = 10 m is also used for injection for both, IP2 and IP8 and
the separation scheme is therefore valid for collision at β∗ = 10 m and injection, although
the aperture requirements are tighter at injection.

3.1 Separation requirements
The basic parameters taking into account the above boundary conditions are sum-

marized in Tables 3 (IP2) and 4 (IP8) for the main phases of operation, i.e. injection,
ramp, pre-collision and collision. The minimum separation should not become smaller
than 10 σ at any of the parasitic encounters. The parallel separation refers to the separa-
tion of the central head-on collision point. In the presence of a separation in both planes,
the minimum separation dmin is calculated from the total distance of the beams using the
largest transverse beam size for the normalization. The studies [9] also indicate that it
could be necessary to further increase the crossing angle for very high beam intensities.

3.2 Separation strategies
The possible strategies to establish a sufficient crossing angle while keeping individ-

ual control of the two beams were described in detail in [3]. However, the rather large range
of optics configuration may require different strategies for the various options, although
the higher β∗ configurations should make it easier to obtain the required separation. For
the design of a crossing angle in IP2 and IP8, there is a very significant difference to the
low β interaction regions IP1 and IP5. While for the latter the phase advance between
the interaction point and the first dedicated correctors near Q4 is close to π/2, this phase
advance is close to π for IP2 and IP8. This is ideal to produce an angle with minimal
strength of the used correctors. It is therefore not necessary or advantageous to use com-
mon corrector magnets for the crossing angle like they were used for IP1 and IP5 [3].
However they are very useful to produce a parallel bump. For the smaller β∗ they become
important to reduce the required strengths on the other corrector magnets. The maximum
strengths of the available corrector magnets and their properties are given in Table 5 in
the appendix. It is unavoidable to use closed orbit correctors for a fine adjustment of the
bumps, but in order not to reduce the correction capabilities, the strengths used for the
separation scheme never exceed 20% of their maximum.
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State SPEC β∗x,y half external half crossing parallel dip dmin

angle αext angle α separation
(m) (µrad) (µrad) (mm) (σ) (σ)

Injection OFF 10.0 ± 210.0∗ ± 210.0 ± 2.00 14.3 10.8
End of ramp OFF 10.0 ± 100.0 ± 100.0 ± 0.80 22.6 22.6
Pre-collision neg 0.5 ± 170.0∗ ± 100.0 ± 0.10 12.6 6.4

Collision neg 0.5 ± 170.0∗ ± 100.0 0.0 - 6.3
Pre-collision pos 0.5 ± 80.0 ± 150.0 ± 0.10 12.6 3.7

Collision pos 0.5 ± 80.0 ± 150.0 0.0 - 3.6
Pre-collision neg 10.0 ± 170.0 ± 100.0 ± 0.80 22.6 22.6

Collision neg 10.0 ± 170.0 ± 100.0 0.0 - 10.0
Pre-collision pos 10.0 ± 80.0 ± 150.0 ± 0.80 22.6 17.3

Collision pos 10.0 ± 80.0 ± 150.0 0.0 - 14.9
Pre-collision neg 50.0 ± 105.0∗ ± 35.0 ± 0.50 6.3 6.3

Collision neg 50.0 ± 105.0∗ ± 35.0 0.0 - 4.3
Pre-collision pos 50.0 ± 80.0 ± 150.0 ± 0.50 6.3 6.3

Collision pos 50.0 ± 80.0 ± 150.0 0.0 - 18.5

∗ maximum possible due to strength or aperture

Table 3: Proposed separation conditions in IP2. The angles shown are the external angle
αext and the final crossing angle α = αext + αspec. The corresponding separation in units
of the beam size are given for the interaction point (dip) and the minimum (dmin) in the
whole common part, always using the largest beam size for the normalization and assuming
a normalized emittance of 3.75 µm. Operation at β∗ = 0.5 m and 50 m is planned for
ions only and therefore does not require a large separation in the drift space.

3.3 Crossing angle in IP2
A complication for the vertical crossing angle in IP2 is the vertical angle already

produced by the horizontal field of the spectrometer magnet and its compensators. Fur-
thermore, it is desired to allow both polarities of the spectrometer magnet. As it was
already discussed, the spectrometer compensation bump already produces a crossing an-
gle (αspec) and local separation. This bump is not long enough to separate the beams
sufficiently at all parasitic encounters, but it can be used as an integral part of the cross-
ing scheme. However, the mechanical aperture of the injection septum and kicker impose
constraints for the beam optics and separation at injection. Satisfying the aperture re-
quirements at the exit of the kicker required a vertical orbit of 2.7 mm [6, 7] for previous
versions of the optics. Although there are indications that this offset is not required with
the new separation scheme and the new optics, we allow for such a request in case of
problems. Such an orbit offset would fix the sign of the crossing angle [4] and therefore
the crossing scheme must be flexible enough to allow both polarities with the same sign of
the angle, should this become necessary. In the case the angle produced by the spectrom-
eter αspec has not the same sign as the desired angle α (neg in Table 3), the necessary
angle from the separation scheme αext must be larger by that amount, requiring a larger
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State β∗x,y half external half crossing parallel dip dmin

angle αext angle α separation
(m) (µrad) (µrad) (mm) (σ) (σ)

Injection 10.0 ± 210.0∗ ± 245.0 ± 2.00 14.3 10.8
End of ramp 10.0 ± 100.0 ± 235.0 ± 0.50 14.1 14.1
Pre-collision 10.0 ± 100.0 ± 235.0 ± 0.50 14.1 14.1

Collision 10.0 ± 100.0 ± 235.0 0.0 - 18.0
Collision 10.0 ± 65.0 ± 200.0 0.0 - 12.0

Pre-collision 1.0 ± 150.0 ± 285.0 ± 0.25 22 10.0
Collision 1.0 ± 150.0 ± 285.0 0.0 - 10.0

Pre-collision 50.0 ± 105.0∗ ± 240.0 ± 1.00 12.6 12.6
Collision 50.0 ± 105.0∗ ± 240.0 0.0 - 11.4

∗ maximum possible due to strength or aperture

Table 4: Proposed separation conditions in IP8. The shown angles are the external angle
αext and the final crossing angle α.

aperture and increased strength of the correctors, producing large separation outside the
spectrometer bump. Such a crossing angle bump is shown in Fig. 3 and the corresponding
strengths are given in Table 6. The required strengths are still well below the possible
maximum. In the case the two crossing angles have the same sign (pos in Table 3), the
actual angle at the crossing point is larger because one has to provide sufficient separa-
tion outside the spectrometer bump. However, the necessary strengths and the required
aperture are still significantly smaller than for the other polarity as shown in Fig. 4 and
Table 7. For ion operation a smaller β∗ is foreseen. The crossing angle bumps for both
polarities of the spectrometer dipole and β∗ = 0.5 m are shown in Figs. 5 and 6. The
corresponding strengths are given in Tables 8 and 9.

Since only operation with ions is foreseen with β∗ = 0.5 m, the required minimum
separation is smaller since the intensity is lower and the bunch distance much larger,
leading to strongly reduced long range beam-beam effects. The Fig. 7 shows the required
aperture for the largest bump amplitude. The aperture requirements for the separation
bumps have to be calculated taking into account the available aperture, the actual optics,
beam parameters and possible orbit errors. The aperture is quoted in terms of n1, the
maximum allowed position of the primary collimator in units of the beam size which
provides sufficient protection of the magnets. This value should not become smaller than
≈ 7 in Fig. 7. The values n1 are calculated with the aperture program apl [11], using a
peak closed orbit distortion of 4 mm, a momentum error of 0.1%, a β-beating of 20% and
standard mechanical tolerances [11]. At injection, the required crossing angle is ± 210 µrad
(Table 3). The resulting crossing angle bump is shown in Fig. 8 and the corresponding
strengths in Table 10. The required aperture at injection energy for the β∗ = 10 m optics
is shown in Fig. 9. In all cases the aperture is sufficient using the criteria defined above.
As mentioned above, the injection into ring 1 in interaction region 2 imposes constraints
for the optics and separation [7]. The aperture constraints at the kicker MKI could require
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Figure 3: Vertical crossing angle in IP2, β∗ = 10 m, α = ± 100 µrad, spectrometer magnet
negative, compensated with 3 compensators, Table 6.
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Figure 4: Vertical crossing angle in IP2, β∗ = 10 m, α = ± 150 µrad, spectrometer magnet
positive, compensated with 3 compensators, Table 7.

a vertical orbit up to 2.7 mm at the MKI for ring 1 [6, 7]. This must be superimposed
onto the separation bump for ring 1 only. Such a bump superimposed is shown in Fig.
10. This scheme requires an additional corrector magnet between the septum and the Q5
doublet. The required strengths for the added bump are given in Table 11. The additional
corrector is also very useful to control the orbit and angle of the beam in the injection
region. In case this bump is not necessary, the sign of the crossing angle can be chosen
freely to match the spectrometer polarity (labelled pos in Table 3).

7



0.0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1100. 1200.
s (m)

δ E/ p 0c = 0 .

Table name = TWISS

IP2 (ALICE) Ring 1, USE: SHORT
 lhc version 6.0  collision optics (thick lens  thin not  &              availab
HP/UX version 8.22/14 22/10/99  15.29.31

-.010

-.008

-.006

-.004

-.002

0.0

.002

.004

.006

.008

.010

y (
m) y

Figure 5: Vertical crossing angle in IP2, α = ± 100 µrad, spectrometer magnet negative,
compensated with 3 compensators, for β∗ = 0.5 m, Table 8.
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Figure 6: Vertical crossing angle in IP2, α = ± 150 µrad, spectrometer magnet positive,
compensated with 3 compensators, for β∗ = 0.5 m, Table 9.
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Figure 7: Required aperture in IP2, spectrometer magnet negative for ± 100 µrad and
β∗ = 0.5 m at collision energy.
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Figure 8: Crossing angle at injection in IP2, spectrometer magnet off, for ± 210 µrad and
β∗ = 10 m.
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Figure 9: Required aperture in IP2, spectrometer magnet off, for± 210 µrad and β∗ = 10 m
at injection energy.
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Figure 10: Crossing angle at injection in IP2, spectrometer magnet off, for ± 210 µrad
and β∗ = 10 m. As Fig. 8, but with offset of 2.7 mm at exit injection kicker.
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3.4 Crossing angle in IP8
Two important features of the LHCb spectrometer have suggested to reconsider

the crossing scheme in IP8: first the spectrometer magnet is warm and can be ramped
[10], and secondly, it produces a rather large, unavoidable crossing angle in the horizontal
plane of αspec = ± 135 µrad at all energies. It was therefore suggested to design the
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Figure 11: Horizontal crossing angle αext = ± 100 µrad in IP8, spectrometer magnet on,
compensated with 3 compensators, for β∗ =10 m, Table 12.
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Figure 12: Horizontal crossing angle αext = ± 65 µrad in IP8, spectrometer magnet on,
compensated with 3 compensators, for β∗ =10 m.

crossing scheme in the horizontal plane to avoid possible operational difficulties that
may be associated with a crossing in two planes simultaneously. An interference with
the injection scheme is automatically avoided and the sign of the crossing angle bump
can be chosen to match the angle produced by the spectrometer compensation bump.
The external bumps can therefore be designed independent of the spectrometer polarity
because for both polarities they are then identical but with opposite sign. However, one
of the two polarities may be more desirable: the crossing angle bump as well as the beam
separation dogleg provided by the D1 and D2 magnets create some residual horizontal
dispersion. It is advantageous to run with the sign of the bump where the dispersion
at least partially compensates rather than adds together. This is the case for a bump
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with the field of the spectrometer downwards and corresponds to the crossing bumps
shown in Figs. 11,12 and 13. Unfortunately, the separation produced by the spectrometer
bump alone is not sufficient because it is too short to separate the beams at all unwanted
collisions and an additional crossing angle bump is superimposed. This is shown in Fig.
11 where an external crossing angle designed for αext = ± 100 µrad is superimposed on
the spectrometer bump, thus producing a steepening and rather large crossing angle at
the interaction point of approximately α = ± 235 µrad. The corresponding strengths
are given in Table 12. The resulting separation is however larger than required and in
Fig. 12 a design angle of αext = ± 65 µrad was superimposed, producing a minimum
normalized separation of at least 12 σ everywhere, which is considered sufficient. The
aperture and strength requirements are significantly reduced and the actual crossing angle
at the collision point is exactly α = ± 200 µrad.

To compensate for lower intensities, smaller β∗ are foreseen: the crossing angle bump
for β∗ = 1 m is shown in Fig. 13 and the strengths are given in Table 13. The Fig. 14
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Figure 13: Horizontal crossing angle αext = ± 150 µrad in IP8, for β∗ = 1.0 m.

shows the required aperture for the crossing angle of αext = ± 150 µrad and β∗ = 1.0
m. The required aperture at injection is very similar to the case of IP2 as presented in
Fig. 9. As it can be seen from Table 4, the crossing angle in IP8 cannot be larger than
± 105 µrad for β∗ = 50.0 m due to strength limitations.
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Figure 14: Required aperture in IP8, for αext = ± 150 µrad and β∗ = 1.0 m.
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3.5 Horizontal and vertical parallel separation
Both interaction regions need a parallel separation bump at injection, during the

ramp, and before the collision. Moreover, such a parallel separation is required for the
ALICE experiment to control the luminosity in proton operation. The strategy used for
this separation is identical to that described in [3] for IP1 and IP5 and only the results are
presented. A parallel horizontal bump of ± 1 mm in IP2 is shown in Fig. 15 for β∗ = 10 m
and the correctors used are shown in Table 14. For β∗ = 0.5 m in IP2, the parallel
horizontal bump is shown in Fig. 16 and the strengths are given in Table 15. Similar, a
parallel vertical bump for IP8 is defined in Fig. 17 and Table 16. To demonstrate the
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Figure 15: Horizontal bump 1 mm in IP2, for β∗ = 10 m. Strengths in Table 14.
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Figure 16: Horizontal bump 0.2 mm in IP2, for β∗ = 0.5 m. Strengths in Table 15.

parallel separation for a smaller β∗ in IP8, the parallel vertical bump for β∗ = 1 m is
shown in Fig. 18 and the strengths are given in Table 17.

4 Alignment of spectrometer magnet with respect to machine plane
The LHC tunnel is slightly tilted with respect to the horizontal plane. The average

slope of the machine is 1.42% and the lowest point is close to IP8, i.e. LHCb. The machine
elements are aligned in this plane, but it is desired to align the spectrometer magnets to
the truly horizontal plane of the experimental halls. This introduces a small distortion
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Figure 17: Vertical bump 1 mm in IP8, for β∗ = 10 m. Strengths in Table 16.

0.0 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1100. 1200.
s (m)

δ E/ p 0c = 0 .

Table name = TWISS

IP8 (LHCB) Ring 1, USE: SHORT
 lhc version 6.0  collision optics (thick lens  thin not  &              availab
HP/UX version 8.22/14 19/10/99  16.02.11

-.010

-.008

-.006

-.004

-.002

0.0

.002

.004

.006

.008

.010

y (
m) y

Figure 18: Vertical bump 1 mm in IP8, for β∗ = 1.0 m. Strengths in Table 17.

of the beam trajectories. The main consequences of this different alignment are a small
rotation of the field direction around the direction of the beam, creating a small transverse
magnetic field, and a small slope with respect to the beam axis. In case of a vertical field,
the latter creates a small field along the direction of the beam, but since this angle with
respect to the beam is very small, its effect is negligible. The magnitude of the other
effect, i.e. the rotation around the beam axis, depends on the position in the ring and
is maximum where the ring is highest and lowest, i.e. near LHCb, where it is close to
1.4% or 11 mrad. The uncorrected effect of such a tilt is shown in Fig. 19. It creates a
vertical offset at the collision point of 33 µm and therefore requires a correction. The
compensator magnets can be used for this correction when they are all tilted by the same
amount, producing a small, closed antisymmetric bump in the plane perpendicular to the
field direction without an offset at the collision point and a small vertical angle of ≈ 1 µrad
(Figs. 20). A similar picture can be obtained in IP2, although the effect is smaller since
the spectrometer magnet is weaker and the tilt angle is smaller at the position of IP2 (see
Fig. 21 and 22). This method of correction requires all compensators and spectrometers
to be aligned in the same plane, thus producing automatically and always the necessary
compensation of the tilt.
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Figure 19: Spectrometer magnet tilted in IP8, not corrected.
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Figure 20: Spectrometer magnet tilted in IP8, corrected by tilting compensator magnets.

5 Summary
We present a proposal for a beam crossing and separation scheme for interaction

points 2 and 8. It fulfills the requirements from beam dynamics and constraints imposed
by the hardware. To achieve this, the redesign of the compensation schemes for the spec-
trometers in ALICE and LHCb was essential and allows a more flexible operation of the
machine. In particular the collisions of the two beams can be ensured for all optics condi-
tions in the insertions. The question of the relative alignment of the spectrometer magnets
with respect to the machine was addressed as well and a solution proposed.
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Figure 21: Spectrometer magnet tilted in IP2, not corrected.
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Appendix A

Figure 23: Mechanical layout for spectrometer compensation in IP2 (ALICE) and IP8
(LHCb). The spectrometer dipoles are not included in the figure.
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Appendix B

Type Maximum field Mag. length Max.
∫

Bdl Max. angle at 7 TeV
(T) (m) (Tm) (µrad)

MBXW 1.38 3.43 4.690 ± 200.0

MCB 3.0 0.84 2.520 ± 108.0

MCBL 3.0 1.25 3.750 ± 160.7

MCBY 3.0 0.84 2.520 ± 108.0

MCBX (h) 3.3 0.50 1.650 ± 70.7

MCBX (v) 3.3 0.50 1.650 ± 70.7

Table 5: Properties of available correction magnets.

Name Type Angle (µrad)
∫

Bdl (Tm)

KCV6.L2 MCB -1.005 0.023

KV1.L2 MCBY 58.34 1.361

KV1.R2 MCBY 9.53 0.222

KV2.R2 MCBY -49.09 1.145

Table 6: Required corrector strengths for α = αext + αspec = ± 100 µrad in IP2 collision
optics at 7 TeV (β∗ = 10 m, spectrometer ON negative, 3 compensation magnets).
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Name Type Angle (µrad)
∫

Bdl (Tm)

KCV6.L2 MCB 0.654 0.015

KV1.L2 MCBY 29.02 0.677

KV1.R2 MCBY 16.66 0.389

KV2.R2 MCBY -31.03 0.724

Table 7: Required corrector strengths for α = αext + αspec = ± 150 µrad in IP2 collision
optics at 7 TeV (β∗ = 10 m, spectrometer ON positive, 3 compensation magnets).

Name Type Angle (µrad)
∫

Bdl (Tm)

KCV6.L2 MCB 12.92 0.301

KV1.L2 MCBY 44.14 1.030

KCVQ1.L2 MCBX -25.0 0.583

KCVQ1.R2 MCBX 25.0 0.583

KV1.R2 MCBY 32.28 0.753

KV2.R2 MCBY -76.29 1.780

Table 8: Required corrector strengths for α = αext + αspec = ± 100 µrad in IP2 collision
optics at 7 TeV (β∗ = 0.5 m, spectrometer ON negative, 3 compensation magnets).

20



Name Type Angle (µrad)
∫

Bdl (Tm)

KCV6.L2 MCB 4.40 0.103

KV1.L2 MCBY 22.65 0.528

KCVQ1.L2 MCBX -15.0 0.350

KCVQ1.R2 MCBX 15.0 0.350

KV1.R2 MCBY 11.36 0.265

KV2.R2 MCBY -33.05 0.771

Table 9: Required corrector strengths for α = αext + αspec = ± 150 µrad in IP2 collision
optics at 7 TeV (β∗ = 0.5 m, spectrometer ON positive, 3 compensation magnets).

Name Type Angle (µrad)
∫

Bdl (Tm)

KCV6.L2 MCB -0.295 0.0004

KV1.L2 MCBY 73.385 0.1108

KV1.R2 MCBY 26.648 0.0400

KV2.R2 MCBY -71.948 0.1079

Table 10: Required corrector strengths for ± 210 µrad in IP2 at injection (β∗ = 10 m,
spectrometer OFF, no bump at MKI).

Name Type Angle (µrad)
∫

Bdl (Tm)

KCV5A.L2 MCB 794.506 1.192

KV1.L2 MCBY 235.825 0.354

KV2.L2 MCBY -1228.44 1.843

Table 11: Required corrector strengths for bump of 2.7 mm at MKI in ring 1.
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Name Type Angle (µrad)
∫

Bdl (Tm)

KH1.L8 MCBY 39.61 0.924

KH1.R8 MCBY -34.04 0.794

KCHQ1.L8 MCBX -14.0 0.327

KCHQ1.R8 MCBX 14.0 0.327

KCH6.R8 MCB 9.85 0.230

KCH7.L8 MCB -3.89 0.091

Table 12: Required corrector strengths for αext = ± 100 µrad in IP8 collision optics at
7 TeV (β∗ = 10 m).

Name Type Angle (µrad)
∫

Bdl (Tm)

KH1.L8 MCBY 24.26 0.566

KH1.R8 MCBY -29.44 0.687

KCHQ1.L8 MCBX -14.0 0.327

KCHQ1.R8 MCBX 14.0 0.327

KCH6.R8 MCB -20.37 0.475

KCH7.L8 MCB 14.68 0.343

Table 13: Required corrector strengths for αext = ± 150 µrad in IP8 collision optics at
7 TeV (β∗ = 1 m).
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Name Type Angle (µrad)
∫

Bdl (Tm)

KH1.L2 MCBY 26.18 0.611

KH1.R2 MCBY 13.02 0.304

KCHQ1.L2 MCBX 30.0 0.700

KCHQ1.R2 MCBX 30.0 0.700

KH2.L2 MCBY -4.45 0.104

KCH6.R2 MCB 0.39 0.009

Table 14: Required corrector strengths for ± 1 mm parallel bump in IP2 collision optics
at 7 TeV (β∗ = 10 m).

Name Type Angle (µrad)
∫

Bdl (Tm)

KH1.L2 MCBY 4.06 0.095

KH1.R2 MCBY 1.46 0.034

KCHQ1.L2 MCBX 5.0 0.117

KCHQ1.R2 MCBX 5.0 0.117

KH2.L2 MCBY -0.69 0.016

KCH6.R2 MCB 0.77 0.018

Table 15: Required corrector strengths for ± 0.2 mm parallel bump in IP2 collision optics
at 7 TeV (β∗ = 0.5 m).
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Name Type Angle (µrad)
∫

Bdl (Tm)

KV1.L8 MCBY 12.52 0.292

KV1.R8 MCBY 25.21 0.586

KCVQ1.L8 MCBX 30.0 0.700

KCVQ1.R8 MCBX 30.0 0.700

KCV5.R8 MCB -4.42 0.103

KCV6.L8 MCB 0.44 0.010

Table 16: Required corrector strengths for ± 1 mm parallel bump in IP8 collision optics
at 7 TeV (β∗ = 10 m).

Name Type Angle (µrad)
∫

Bdl (Tm)

KV1.L8 MCBY 9.00 0.210

KV1.R8 MCBY 22.18 0.518

KCVQ1.L8 MCBX 24.0 0.560

KCVQ1.R8 MCBX 24.0 0.560

KCV5.R8 MCB -4.53 0.106

KCV6.L8 MCB 2.61 0.061

Table 17: Required corrector strengths for ± 1 mm parallel bump in IP8 collision optics
at 7 TeV (β∗ = 1 m).
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