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SPECTRAL SHIFT FUNCTION IN THE LARGE

COUPLING CONSTANT LIMIT

O. SAFRONOV

Abstract. Given two selfadjoint operators H0 and V = V+�V
�

,

we study the motion of the spectrum of the operator H(�) =

H0 + �V as � increases. Let � be a real number. We consider

the quantity �(�;H(�);H0) de�ned as a generalization of Krein's

spectral shift function of the pair H(�); H0. We study the as-

ymptotic behavior of �(�;H(�);H0) as � ! 1: Applications to

di�erential operators are given.

0. Introduction

Let H0 = H�

0
be a selfadjoint operator and let V = V � be of the

form

V = V+ � V�: (1)

We put

H(�) = H0 + �V; � > 0

and denote by �(�; �) = �(�;H(�);H0) the \generalized spectral shift

function" of the pairH(�); H0 which coincides with the Kreins spectral
shift function if V is of trace class. For trace class operators V the
function �(�; �) 2 L1 can be de�ned by the relation

Tr[�(H(�))� �(H0)] =

Z
+1

�1

�(�; �)�0(�)d�;

called the trace formula. ( Here � is an arbitrary function on R of
a suitable class.) The main object of our study is the leading term
(in the power expansion) of the asymptotics of �(�; �) as �!1: We
�nd conditions on H0; V ensuring the stability of such an asymptotics
under variations of � 2 R. A similar theorem for negative V = �V� was
obtained in [7]. We treat the more di�cult case of the perturbations of
the form (1). It should be mentioned also that the idea of the stability
theorem is presented in [1], where only the discrete spectrum of H(�)
was studied.

In x1 we formulate the problem and describe the main result in detail.
It should be noted that if � 2 �(H0) is a regular point for H0, then
�(�; �) coincides with the di�erence between the number of eigenvalues
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of H(�) having crossed � in each of the two directions. This allows
us to study the asymptotics of �(�; �) for � 2 �(H0) with the help
of a special perturbation theory developed in [8], [9]. The stability
theorem obtained in this paper reduces the case of an arbitrary � to
that of � 2 �(H0). In applications to di�erential operators, this o�ers
a possibility of using known results.
If V < 0,then the function �(�; �) is monotone decreasing in � (for

a �xed � = �) and coincides with a certain integral of the distribution
function of a compact selfadjoint operator. A suitable version of the
representation formula can be found in [6], [7]. In [7], the said above
forms a basis of the proof of a stability theorem for V < 0:
The study of the perturbations (1) requires, �st of all, a new version

of representation formula for �(�; �). Such a formula is obtained in [4].
Moreover, the technique used in [8], [9] can be also simpli�ed with the

help of this representation.
Acknowledgments. The author is grateful to A. Pushnitskii for

his suggestions and remarks to the text.

1. Main result (Theorem 1.1)

1. Notations Throughout the paper formulae and statements with
double indices (� or �) are understood independently, as pairs of for-

mulae. Below H is a separable Hilbert space. By �(T ), �(T ) we denote
respectively the resolvent set, the spectrum of a linear operator T . For
a selfadjoint operator T let ET (�) be the spectral measure of a Borel
set � � R and

2T� := jT j � T:

By S1 we denote the space of compact operators. For T = T � 2 S1
and s > 0 let n�(s; T ) = rankET�(s;+1), and for T 2 S1 and s > 0

let n(s; T ) = n+(s
2;T �T ). Recall (see, e.g., [2]) that for a pair of

compact operators the following two inequalities hold:

n(s1 + s2; T1 + T2) � n(s1; T1) + n(s2; T2); s1; s2 > 0;

and (the Horn inequality)

n(s1s2; T1T2) � n(s1; T1) + n(s2; T2); s1; s2 > 0: (1.1)

These inequalities are applicable not only to compact operators but at
least to all bounded normal operators for which the right hand side is
�nite. Moreover one can write the estimates which are equivalent to
the Weyl inequalities for selfadjoint operators T1, T2:

n�(s1 + s2; T1 + T2) � n�(s1; T1) + n�(s2; T2); s1; s2 > 0:
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For 0 < p < 1 a class Sp is de�ned as the set of all compact
operators T such that the following functional is �nite:

kTkpSp := p

Z
1

0

sp�1n(s; T )ds <1:

Functional k � kSp is a norm for p � 1 and a quasinorm for p < 1. For
0 < p <1 a class �p is de�ned as the set of all compact operators T
such that the following functional (which is a quasinorm) is �nite:

kTk
p
�p

:= sup
s>0

spn(s; T ) <1:

2. Let R = R� be a bounded operator and let the spectrum of R in
the interval � = (a; b) is disctrete or empty. Then for every selfadjoint
compact operator K and � 2 � we introduce the number

�(�;R+K;R) := ind(ER+K(�1; �); ER(�1; �));

where

ind(P;Q) = dim Ker(P �Q� I)� dim Ker(P �Q+ I):

Some properties of the function � should be mentioned here. For ex-
ample we have the \addition property":

�(�;R+K1 +K2; R) =

= �(�;R+K1 +K2; R+K1) + �(�;R +K1; R);

which holds for Kj = K�

j 2 S1, j = 1; 2: And for signde�nite pertur-
bations K the following Birman-Schwinger principle holds true.

Proposition 1.1. Let �K � 0 and � 2 �(R). Then

�(�;R +K;R) = � lim
s!1�0

n�(s; T ); (1.2)

where

T =
q
jKj(R � �I)�1

q
jKj:

Proof. In fact Proposition 1.1 is a slight modi�cation of Corollary 4.8
of [4]. In particular it was shown that under the conditions �K � 0,
K 2 S1, � 2 �(R + K) the value of ��(�;R + K;R) coincides with
the number of eigenvalues of R + tK which pass � as t grows from 0
to 1. Thus, according to the classical Birman-Schwinger principle (see
for example [1]) the relation (1.2) holds true for K 2 S1. Moreover it
was proved in [4] that if � 2 �(R+K), then the left hand side of (1.2)
is continuous with respect to small perturbations of K in the operator
norm. Therefore for general operators K 2 S1; � 2 �(R + K), the

equality (1.2) is obtained by approximation K by operators from S1.
Now note that both sides of (1.2) are left continuous with respect to
�, therefore we get rid of the assumption � 2 �(R +K). 2
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3. Let H0; V be selfadjoint operators in the Hilbert space H and
J = J� be the sign of V . Suppose

jV j1=2jH0 + iIj�1=2 2 S1:

The family of selfadjoint operators

H(�) = H0 + �V; � > 0;

is understood in the sense of quadratic forms (see [10]). For a real
valued function f(�) (de�ned on R) such that

�f(�1) > 0;

we introduce the operator

Vf = f(J)jV j

and de�ne the family of perturbed operators

Hf (�) = H0 + �Vf ; � > 0:

The main question of our paper is how to describe the motion of the
spectrum of H(�) as � grows. The family of operators Hf (�) plays

only an auxiliary role. We shall always assume that the limit

X� := lim
z!�+i0

q
jV j(H0 � zI)�1

q
jV j (1.3)

exists in the operator norm for a.e. � and for these �

B� := ImX� 2 S1: (1.4)

Below we also use the notation

A� := ReX�; � 2 R:

For a.e. � 2 R; we de�ne the \generalized spectral shift function" for
the pair of selfadjoint operators H(�);H0 as follows

�(�;H(�);H0) =

=

Z
+1

�1

�(0;J + �(A� + tB�); J)dw(t); (1.5)

dw(t) = ��1(1 + t2)�1dt:

Note that for trace class perturbations V the function � coincides with
Krein's spectral shift function (see [4]).

If the limit (1.3) exists and the relation (1.4) is ful�lled only for a.
e. � 2 �, where � is a measurable subset of R then we say that the
generalized spectral shift function (1.5) is de�ned on �.
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4. Here we present our main result which requires some additional
conditions. First of all we shall assume that there exists a point � =
� 2 �(H0) and a number p > 0 such that

�(�;Hf (�);H0) � (C+jf(1)j
p � C�jf(�1)j

p)�p; (1.6)

�!1; �f(�1) > 0;

where the constants C� do not depend on f (but may depend on V�).
Moreover, denoting

Q = Q(t) := �(A� + tB� �X�);

we also require thatZ
+1

�1

n(�;Q(t))(1 + t2)�1dt = o(�p); �!1; 8� > 0:
(1.7)

Theorem 1.1. Let � = � 2 �(H0) and let the conditions (1.6),

(1.7) be ful�lled. Then for the function

 (�) := �(�;H(�);H0)� �(�;H(�);H0)

the following relation holds for a.e. � 2 R

 (�) = o(�p); �!1:

2. Proof of Theorem 1.1

1. We start with the following auxiliary

Proposition 2.1. Assume that f(�1) < 0 and f(1) > 0. Then

�(�;Hf (�);H0) =

=
Z

+1

�1

�(0; f(J)�1 + �(A� + tB�); f(J)
�1)dw(t); (2.8)

dw(t) = ��1(1 + t2)�1dt:

Proof. For every pair of selfadjoint bounded operators R;K, such
that 0 2 �(R) and K 2 S1 we introduce the operators

Rs: = SRS; Ks = SKS;

where S = S� is a bounded invertible operator. Then in order to
establish (2.8) it is su�cient to prove that

�(0;Rs +Ks; Rs) = �(0;R+K;R): (2.9)

Moreover the substantiation of (2.9) can be reduced to the cases K � 0
and K � 0. But if K is of de�nite sign, the quantity �(0;R +K;R)
coincides with the number of eigenvalues of the operator R+ tK which
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pass point 0 as t grows from 0 to 1. Therefore (2.9) follows from
equivalence of the two statements:

0 2 �(R+ tK), 0 2 �(Rs + tKs):

Now to complete the proof let us take S = jf(J)j�1=2; R = signf(J)

and Ks = �(A� + tB�) in (2.9). 2

2. The rest of the section is devoted to the proof of Theorem 1.1.
Consider the function

�(0;J + �(A� + tB�); J):

In order to compare this function with �(0;J + �X�; J); � 2 �(H0);

we use its additivity :

�(�) := �(0;J + �(A� + tB�); J)� �(0;J + �X�; J) =

= �(0;J + �(A� + tB�); J + �X�):

Denoting Y := f� 2 R+ : 0 2 �(J + �X�)g and using the Birman-
Schwinger principle (see Proposition 1.1) we obtain

�n�(1 � 0; T (+)) � �(�) � n+(1; T
(�)); � 2 Y;

where

T (�) :=
q
Q
�
(J + �X�)

�1

q
Q
�

and

Q = Q(t) = �(A� + tB� �X�):

By the Horn inequality (1.1),

n�(1; T
(�)) � 2n(�;Q) + n(��1; (J + �X�)

�1):

Since Z
+1

�1

n(�;Q(t))(1 + t2)�1dt = o(�p); �!1;

it is su�cient to establish that

lim sup
�!1

��pn(��1; (J + �X�)
�1) � C(�)

and

lim
�!0

C(�) = 0:

First of all note that

n(��1; (J + �X�)
�1) = rankE(J+�X�)

(��; �) �

� �(�;J + �X�; J)� �(��;J + �X�; J) =: m(�):

It is easy to see from the de�nition of the function �, that

m(�) = �(0; (f+(J) + �X�); f+(J))� �(0; (f�(J) + �X�); f�(J));
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where

f�(J) = J � �I:

Denoting

H�(�) = H0 + �f�(J)
�1jV j

and using the representation for �(�;H�(�);H0) (see (2.8)) we obtain

m(�) = �(�;H+(�);H0)� �(�;H�(�);H0):

Therefore

m(�) � (C+ + C�)[(1� �)�p � (1 + �)�p]�p; �!1;

and

lim
�!0

lim sup
�!1

��pm(�) = 0:

The proof is complete.

3. Limits of compact operators

Here we present some conditions on V and H0 which ensure exis-
tence of (1.3) and guarantee (1.4). We begin with the statement which

immediately follows from the results of [5]. For 0 < q � 1 we de�ne q�

q� = q; if q < 1;

q� > 1;�any number; if q = 1:

Proposition 3.1. Assume that for every bounded open interval � �
R the following inclusion holds:

jV j1=2EH0
(�) 2 S2q; 0 < q � 1: (3.10)

Then for a.e. � 2 R the limit

X(�; �) := lim
z!�+i0

q
jV jEH0

(�)(H0 � zI)�1
q
jV j

exists in the Sq�-norm and

ImX(�; �) 2 Sq:

The following statement is a direct consequence of Proposition 3.1.

Proposition 3.2. [7] Assume that for every bounded interval � �
R

jV j1=2EH0
(�) 2 S2: (3.11)

Then for a.e. � 2 R the limit (1.3) exists and the condition (1.4) is

ful�lled.

The proof of the following statement is a repeat of the proof of The-
orem 4.1 in [7].
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Proposition 3.3. Let the condition (3.10) be satis�ed and

p � q; if q < 1;

p > 1; if q = 1:

Assume that

jV j1=2jH0 + iIj�1=2 2 �2p (3.12)

Then for a.e. � 2 R the condition (1.7) holds.

4. Regular points of H0

Here we present some su�cient for (1.6) conditions. For a regular
point � 2 �(H0) we introduce the operators

X�

� :=
q
V�(H0 � �I)�1

q
V�

and

X0

� :=
q
V+(H0 � �I)�1

q
V�:

Theorem 4.1. Let � = � 2 �(H0). Assume that there exist con-

stants C0

�; C
0

+
such that

n�(s;X
�

� ) � C0

�s
�p; s! 0; p > 0; (4.13)

and

n(s;X0

�) = o(s�p); s! 0: (4.14)

Then (1.6) is ful�lled with C� = C0

� , in particular

�(�;H(�);H0) � (C0

+
�C0

�)�
p; �!1: (4.15)

Proof. It is su�cient to establish (4.15). In our case

�(�;H(�);H0) = �(0;J + �X�; J):

We are going to compare this function with

�(0;J + �L; J); L := X+

� +X�

� :

We use its additivity :

�0(�) := �(0;J + �X�; J)� �(0;J + �L; J) =

= �(0;J + �X�; J + �L):

Denoting Y0 := f� 2 R+ : 0 2 �(J + �L)g and using the Birman-
Schwinger principle (see Proposition 1.1) we obtain

�n�(1� 0; T
(+)

0 ) � �0(�) � n+(1; T
(�)

0 ); � 2 Y0;

where

T
(�)

0 :=
q
Q0
�(J + �L)�1

q
Q0
�
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and

Q0 := �(X� � L):

By the Horn inequality (1.1),

n�(1; T
(�)) � 2n(�;Q0) + n(��1; (J + �L)�1):

Since by (4.14)

n(�;Q0) = o(�p); �!1;

it is su�cient to establish that

lim sup
�!1

��pn(��1; (J + �L)�1) � C(�)

and

lim
�!0

C(�) = 0:

First of all note that

n(��1; (J + �L)�1) = rankE(J+�L)(��; �) �

� �(�;J + �L; J)� �(��;J + �L; J) =: m0(�):

It is easy to see from the de�nition of the function �, that

m0(�) = �(0; (f+(J) + �L); f+(J))� �(0; (f�(J) + �L); f�(J));

where

f�(J) = J � �I:

It follows from (4.13) that

�(0; f(J) + �L; f(J)) � (C0

+
jf(1)j�p � C0

�jf(�1)j
�p); �!1;

for real f such that f(�1) < 0 and f(1) > 0. Therefore

m0(�) � (C0

+
+ C0

�)[(1� �)�p � (1 + �)�p]�p; �!1;

and

lim
�!0

lim sup
�!1

��pm0(�) = 0:

The proof is complete.
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5. Applications

In this section we present some applications of Theorem 1.1 to the
study of di�erential operators.
1. Below we write

R
:=
R
Rd

and denote Dj = �i @
@xj
; D = �ir =

(D1; : : : ;Dd):
In the �rst example we deal with the Dirac operator perturbed by

a decreasing electric potential. Let g = (g1; g2; g3) and g0 be (4 � 4)-
Dirac matrices; 1 denotes the unit matrix. The Dirac matrices satisfy
the relations

gjgk + gkgj = �jk1; j; k = 0; 1; 2; 3: (5.16)

Let us consider the unperturbed Dirac operator in H = L2(R
3; C 4)

H0 = g �D + g0;

g �D = �i
3X

j=1

gj
@

@xj
;

and perturb the operator by a real potential

H(�) = H0 + �V; � > 0; (5.17)

V 2 L3(R
3); V = V: (5.18)

The operator (5.17) needs to be correctly de�ned. Under the condi-
tion (5.18) it is impossible to introduce the operator as the di�erence
of two operators, but it can be understood in a sense of the sum of
the sesquilinear forms. This de�nition could be used not only for semi-
bounded operators but for general ones, too. The corresponding scheme
for non-semibounded operators is given in [10].
The spectrum of the operator H0 is absolutely continuous and covers

the complement of the interval � = (�1; 1). The essential spectrum

of the operator A(�) coincides with the spectrum of H0. Besides, the
operator H(�) has a discrete spectrum in the gap �. It is clear that
the generalized spectral shift function of the pair H(�); H0 exists on
the interval � in the sense of (1.5).

Theorem 5.1. Let H0 be the Dirac operator and � 2 �. Under the

condition (5.18) the following asymptotics holds

�(�;H(�);H0) � (5.19)

� (3�)�2�3(
Z
V 3

+
dx�

Z
V 3

�dx);

�!1:



SPECTRAL SHIFT FUNCTION 11

Proof. It is su�cient to note that the condition (4.13), (4.14) are
ful�lled and

C0

� = (3�)�2
Z
V 3

�dx:

For the reference concerning (4.13) see [3]. The relation (4.14) is ob-
tained in [9]. In fact the proof of (5.19) can be found also in [9]. 2
Now we are going to apply our abstract theorem to the Dirac oper-

ator. Note that the condition (3.11) is ful�lled if and only if

V 2 L1(R
3):

The inclusion (3.12) follows from the results of [3], but it can be also
found in [9]. Combining Theorem 1.1 with Proposition 3.3 and Theo-
rem 5.1, we obtain

Theorem 5.2. Let H0 be the Dirac operator. Under the condition

V 2 L3(R
3) \ L1(R

3) (5.20)

the following asymptotics holds for a.e. � 2 R

�(�;H(�);H0) � (5.21)

� (3�)�2�3(

Z
V 3

+
dx�

Z
V 3

�dx);

�!1:
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