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WAVELET ANALYSIS ON MANIFOLDS I

Dieter Klusch �

Abstract

The purpose of this note is to describe a new Cauchy wavelet analysis of selfadjoint
operators in Hilbert spaces and its applications to fundamental problems of Global Analysis.
We use the wavelet synthesis integral operator to introduce (i) a new wavelet calculus for
power and exponential functions and (ii) a new class of generalized (fractal) zeta and eta
functions. This extends the Seeley{Grubb functional calculus [GS96] and the abstract setting
of the recent Br�uning{Lesch spectral theory [BL99].
In the applications we describe how Cauchy wavelet analysis works in the theory of elliptic
di�erential operators on manifolds. We show that the Duistermaat{Guillemin{Weinstein
`wave trace invariants' [Gui96] are actually `fractal zeta function invariants'. We use the
pseudodi�erential resolvent analysis of Grubb and Seeley [GS95], [G99] to determine the
full singularity structures of the fractal zeta and eta functions and the resulting heat trace
expansions for pseudodi�erential boundary problems for general elliptic systems of order
d � 1 on compact manifolds. This generalizes recent fundamental trace expansion results of
Grubb [G99], and { for the important special case of �rst order well{posed boundary problems
for Dirac{type operators { of course the prominent results of Atiyah{Patodi{Singer [APS75],
of Grubb and Seeley [GS95], [GS96], of Booss and Wojciechowski [BW93], of M�uller [M�u94]
and of Br�uning and Lesch [BL97], [BL99].

1 Introduction

In a series of papers we will develop systematically a new Cauchy wavelet analysis of selfadjoint

operators in Hilbert spaces with applications to fundamental problems of Global Analysis.

We extend the wavelet spectral geometry of [K97] and use Cauchy wavelets to introduce a

new wavelet calculus and a new family of wavelet zeta and eta functions in a general functional

analytic Hilbert space setting. This extends the abstract framework of the recent Br�uning{Lesch

spectral theory of boundary value problems for Dirac type operators (cf. [BL97], [BL99]). In

particular, we combine the wavelet calculus with the �ne pseudodi�erential resolvent analysis of

Seeley & Grubb [GS95] and of Grubb [G99] in order to generalize or to reprove zeta and heat trace

expansions for pseudodi�erential boundary problems for general elliptic systems (P; S%) of order

d � 1 with pseudo{normal  do boundary conditions S [G99;x9]. We show that the results apply

of course to �rst order well{posed boundary problems, especially to those prominent examples

considered for the product or non{product case by Atiyah, Patodi and Singer [APS75], by Grubb

and Seeley [GS95], [GS96], by Booss{Bavnbek and Wojciechowski [BW93] or by Br�uning and

Lesch [BL97], [BL99].

The purpose of this note is to describe

{ a wavelet analysis associated to locally compact groups

{ a new wavelet calculus for selfadjoint operators in a Hilbert space, de�ned from the continu-

ous wavelet transform and its inverse with respect to Cauchy wavelets and combined with the

holomorphic Seeley{Grubb calculus [GS95], [GS96]

�Supported by Deutsche Forschungsgemeinschaft, SFB 288 'Di�erentialgeometrie und Quantenphysik'. Hum-

boldt Universit�at zu Berlin, D{10099 Berlin
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{ a new wavelet family of fractal zeta and eta functions, generalizing the fractal Riemann{

Weierstrass functions of wavelet analysis [HT91], [H95], [JM96] as well as the zeta and eta

functions of elliptic operators on manifolds [ABP73], [APS75], [GS96], [BL97]

{ a new wavelet theoretic characterization of the Duistermaat{Guillemin{Weinstein \Wave Trace

Invariants" [DG75], [Gui96] as wavelet zeta function invariants

{ the singularitiy structures of the fractal zeta and eta functions and the complete heat trace

expansions for pseudodi�erential boundary problems for general elliptic systems (P; S%) on com-

pact manifolds with speci�cations to �rst order well{posed boundary problems [G99].

Extensions of the results to the case of admissible manifolds [GK93] by use of M�uller's theory

of \Relative zeta functions" [M�u97], wavelet theoretic extensions of the recent Br�uning{Lesch

spectral theory [BL99], index theorems [BL99], [Sch98], a new wavelet spectral geometry of

singular manifolds and the details of the material presented here will be given in subsequent

papers.

2 Wavelet Analysis

2.1 General set{up

We here consider `wavelet' analysis associated to square integrable representations of locally

compact groups [H95], [Me90], [GMP85], [HW89].

Let U(H) be the group of unitary operators acting in some Hilbert space H . If G is a group,

then U 2 Hom(G;U(H)) is called a unitary representation of G in H . For g 2 H the set of

vectors fU(x)gjx 2 Gg is called the orbit of g, and g is cyclic i� spanfU(x)gjx 2 Gg = H . A

representation U is irreducible i� every vector g 6= 0 is cyclic.

Now consider the Hilbert space L2(G; d�l) of square integrable functions over a locally compact

group G with respect to the left{invariant Haar measure d�l:

kfk2L2(G;d�l) =

Z
G
jf(x)j2d�l(x) <1 :

De�nition 2.1

A representation U of G in H is called square integrable if there exists one vector g 2 H; g 6= 0

such that

hU(x)gjgiH 2 L2(G;d�l) ;

i.e. Z
G
jhU(x)gjgiH j

2d�l(x) <1 :

We now can introduce the `wavelet' transform for arbitrarily locally compact groups in an

abstract functional analytic Hilbert space setting.
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De�nition 2.2

Let U be a square integrable representation of a locally compact group G acting in a Hilbert space

H. Then the left{transform over G of a function s 2 H with respect to a vector g 2 H; g 6= 0 is

de�ned by the set of scalar products

Lgs(x) = hU(x)gjsiH (x 2 G) :

Note that from the Schwarz inequality jLgs(x)j � kgkHkskH it follows that Lg is in general of

higher regularity than the analysed function s itself.

Moreover, the left{transform Lgs with respect to an admissible analysing vector g conserves

energy:

De�nition 2.3

A vector g 2 H is called admissible if

cg :=

Z
G
jLgg(x)j

2d�l <1 : (2:1)

Theorem 2.4

Let g 2 H be an admissible vector. Then we have

hLgsjLgriL2(G;d�l) =

Z
G
Lgs(x)Lgr(x)d�l = cghsjriH ;

where cg > 0 is given by (2:1).

It follows from Theorem 2.4 that the left{transform is an isometry, i.e. we have

kLgs(x)k
2
L2(G;d�l)

= cgksk
2
H :

Thus Lg may be inverted by the adjoint. But more general inversion formulae exist. For this

purpose one introduces the left{synthesis L�h with respect to an admissible vector h as the adjoint

operator of the left{transform with respect to h, i.e.

hsjL�hT iH = hLhsjT iL2(G;d�l) ;

where T 2 L2(G; d�l) and

L�hT =

Z
G
T (x)U(x)hd�l(x) :

Thus the left{systhesis L�h : L
2(G;d�l)! H is a bounded linear map with

kL�hTk
2
H � chkTk

2
L2(G;d�l)

:

Note that the left{systhesis allows one to write functions in H as superpositions of group{

translated functions U(x)h with weight T (x).

Moreover, the left{synthesis with respect to a reconstruction vector is actually the inversion of

the left{transform:

De�nition 2.5

A vector h 2 H is called a reconstructing vector for the analysing vector g 2 H i�

cg;h :=
hLhgjLghiL2(G;d�l)

hgjhiH
(2:2)

3



satis�es 0 < jcg;hj <1.

Theorem 2.6

Let h 2 H be an admissible reconstruction vector of an admissible vector g 2 H. Then we have

L�hLg = cg;hIH ;

where the constant cg;h is given by (2:2).

2.2 Wavelet transform

To de�ne the desired wavelet calculus we need the following speci�cations of the general set{up.

(a) Let G = (RI ;+) and H = L2(RI ). Then the translation operator

Tb : L
2(RI )! L2(RI ); s(t) 7! s(t� b) (b 2 RI )

is a unitary, but not irreducible representation of G in L2(RI ).

(b) Let G = (RI +; �) and H = L2(RI ) . Then the dilation operator

Da : L
2(RI )! L2(RI ) ; s(t) 7! a�1=2s(t=a) (a 2 RI +)

is a unitary, but not irreducible representation of G in L2(RI ).

(c) Let IH = f(b; a)jb 2 RI ; a 2 RI +g be the upper half{plane and G = (IH; Æ) be the aÆne

group. Then a unitary representation of IH on L2(RI ) is given by

U : IH ! U(L2(RI )) ; (b; a) 7! U(b; a) = TbDa :

(d) Denote by H2
+(RI ) and H2

�(RI ) the closed subspaces of L2(RI ) consisting of those functions

f of L2(RI ) that are progessive (i.e. suppf̂ � RI +
0 ) or regressive (i.e. suppf̂ � R�) respectively.

Then U = TbDa is irreducible on H
2
+(RI ) and, by symmetry, also on H2

�(RI ). Thus L2(RI ) can

be split into irreducible components L2(RI ) = H2
+(RI )�H2

�(RI ).

(e) Let G = (IH; Æ) and H = L2( RI ). A function g 2 L2(RI ) with ĝ(0) = 0 is called a wavelet.

If g is admissible, then the aÆne group IH has a square integrable representation on L2(RI ). In

fact, let U(b; a) : g ! a�1=2g((t� b)=a), then

a�1=2
Z
RI
g

�
t� b

a

�
g(t)dt 2 L2(IH; d�l)

with left invariant Haar measure d�l = dadb=a2.

This leads to the following version of the L2-left{transform.

De�nition 2.7

Let f 2 L2( RI ) and g be a wavelet. The left{transform a1=2Lgf(b; a) over IH is called the

continuous 1{D wavelet transform of f with respct to the wavelet g:

a1=2Lgf(b; a) := (Lgf)(b; a) :=
1

a

Z
RI
g

�
t � b

a

�
f(t)dt : (2:3)
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2.3 Cauchy wavelets

To de�ne the wavelet class of fractal zeta and eta functions in an abstract Hilbert space setting

we need a wavelet calculus that substitutes the familiar Seeley{Grubb holomorphic functional

calculus [GS95], [GS96] by a new wavelet transform technique. This is not based as usual on

the Mellin transform and its inversion, but on the wavelet transform and the wavelet synthesis

operator with respect to 1D{Cauchy wavelets with complex parameter (also called `Hyperbolic

chirp wavelets' [H95]).

The familiar Cauchy wavelets are progressive wavelets with real{valued Fourier transform and

are de�ned on RI by

��(t) :=
1

2�
�(� + 1)(1� it)���1 (� > 0) (2:4)

with Fourier transform

�̂�(v) =

(
v� expf�vg (v > 0)

0 (v � 0)
:

These wavelets have been at �rst investigated in the context of Quantum mechanics by T.

Paul [Pau85], and in the wavelet analysis of the fractal Riemann{Weierstrass function by M.

Holschneider and Ph. Tchamitchian [HT91], [H95] or S. Ja�ard and Y. Meyer [JM96].

In the Global Anlysis the 1D{Cauchy wavelets appear for the �rst time in connection with

spectral geometry for the Laplacian on manifolds with cusps in [K97].

Recently, the class of directional 2D{Cauchy wavelets was studied in connection with image

processing in [AMV99].

The complex valued Cauchy wavelets are of high regularity, but have at most a polynomial decay

at 1, and for � 2 NI they are nothing but the �th derivate of the Cauchy kernel. Accordingly,

since

2�a�1��

�
t � b

a

�
= a��(� + 1)

�
i

! � t

��+1
;

with ! = b+ ia 2 IH , the wavelet transform (1.6) of f 2 L2(RI ) with respect to �� is { up to a

prefactor { a holomorphic function on the Poincar�e upper half{plane and can be written as (cf.

[K97])

(L��f)(b; a) =
a�

2�
�(� + 1)

Z
RI
(a+ it)���1f(t+ b)dt : (2:5)

A reconstruction wavelet of �� is any integrable function h� 2 L
1(RI ) withZ

RI +
a��1ĥ�(a)e

�ada = 1 ; ĥ�(0) = 0 : (2:6)

>From now on we consider the progressive hyberbolic chirp wavelets �s with � > 0 replaced by

the complex variable s with Re s > 0.

3 Wavelet calculus

In view of Theorem 2.6 the usual inversion formula for (2.3) gives rise to a linear operator Mh

mapping arbitrary functions F (b; a) over the half{plane IH to functions over the real line RI .

With hb;a := TbDah; h any reconstruction wavelet, one thus de�nes

(MhF )(t) :=

Z
RI +

Z
RI
F (b; a)a�1hb;a(t)dbda ;
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whenever the double integral is absolutely convergent. Note that for h 2 L1(RI ) it is well{de�ned

for all functions F in the Frechet space S(IH) since they are rapidly decaying as jbj or a+ (1=a)

tends to in�nity.

The wavelet synthesis operatorMh itself gives rise to the following wavelet calculus in an abstract

functional analytic Hilbert space{setting.

Let Q be a lower bounded self{adjoint operator in a Hilbert space H with dense domain D(Q)

and compact resolvent R�(Q) := (Q� �)�1.

(1) For � = a� ib;Re � > 0 the exponential function of Q can be de�ned by

e��Q(I � P0(Q)) =
i

2�

Z
C
e���R�(Q)d� ; (3:1)

where P0 is the orthogonal projection onto kerQ and the integration curve C � CI is given by

(cf. [GS96])

C := f� = rei� j1 > r � r0g [ f� = r0e
i'j� � ' � ��g [ f� = rei(2���)jr0 � r <1g

with 0 < � < �=2, and r0 chosen so that R�(Q) is holomorphic on 0 < j�j � r0 with kR�(Q)kH =

0(j�j�1), and meromorphic at � = 0.

(2) We now de�ne the wavelet power function of Q for Re s > 0 and x 2 RI by

Z(Q; s; x) :=

Z
RI +

Z
RI
as�2hs

�
x� b

a

�
e��Qdbda ; (3:2)

where hs is the reconstruction wavelet (2.3) for the Cauchy wavelet �s.

Clearly, the integral over the half{plane is well{de�ned as norm{convergent integral. If Q is

invertible then Z(Q; s; x) = exp(ixQ)Q�s.

For x = 0 we have

Z(Q; s; 0) := Z(Q; s) =

Z
RI +

Z
RI
as�2hs

�
�
b

a

�
e��Qdbda :

This coincides with the usual power function (cf. [GS96])

Z(Q; s) =
i

2�

Z
C
��sR�(Q)d� (Re s > 0) ;

with Z(Q; s) = 0 on the nullspace of Q, since
R
C �

�s�1d� = 0.

Moreover, it follows that

Y (Q; s; x) := QZ(Q2;
s+ 1

2
; x) =

Z
RI +

Z
RI
a(s�3)=2h(s+1)=2

�
x� b

a

�
Qe��Q

2

dbda (3:3)

is well{de�ned for Re s > 0 and x 2 RI .

More generally, if B : D(Q)! H is any bounded linear operator with

P0(Q)BP0(Q) = 0 ; (3:4)

then the wavelet power function

Y (Q;B; s; x) := BZ(Q2;
s+ 1

2
; x) =

Z
RI +

Z
RI
a(s�3)=2h(s+1)=2

�
x� b

a

�
Be��Q

2

dbda (3:5)
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is well{de�ned for Re s > 0 and x 2 RI .

(3) We turn to wavelet space. It follows from the scalar formulas, valid in each eigenspace, that

the exponential functions are related to the wavelet power functions by the following `wavelet

transforms' with respect to Cauchy wavelets:

(Re �)se��Q = a�1
Z
RI
�s

�
x � b

a

�
Z(Q; s; x)dx ; (3:6)

(Re �)(s+1)=2Qe��Q
2

= a�1
R
RI �(s+1)=2

�
x� b

a

�
Y (Q; s; x)dx ; (3:7)

(Re �)(s+1)=2Be��Q
2

= a�1
Z
RI
�(s+1)=2

�
x� b

a

�
Y (Q;B; s; x)dx ; (3:8)

� = a� ib;Re � > 0; b 2 RI and Re s > 0.

4 Fractal zeta and eta functions

We can now introduce a new wavelet family of fractal zeta and eta functions for the operators

Q and B de�ned in the previous section. In addition, we assume that

(Q+ i)�1 2 Cp(H) (3:9)

for some p > 0, where Cp(H) denotes the v. Neumann { Schatten class of order p (cf. [BL97]).

Then the wavelet calculus immediately implies the following results:

Lemma 4.1

Let Q be a lower bounded self{adjoint operator in Hilbert space H with dense domain D(Q)

and compact resolvent R�(Q). Assume that (Q + i)�1 2 Cp(H), for some p > 0, and let

B : D(Q)! H with (3:4) be a bounded linear operator in H.

Then, for x 2 RI and � = a � ib;Re � > 0; b 2 RI we have:

(1) The fractal zeta function of Q � 0

�(Q; s; x) := trHZ(Q; s; x) =

Z
RI +

Z
RI
as�2hs

�
x� b

a

�
trHe

��Qdbda

=
X

�2spec(Q)nf0g

��s expfi�xg

is holomorphic for Re s >> 0.

(2) The fractal eta function of Q

�(Q; s; x) := trHY (Q; s; x) =

Z
RI +

Z
RI
a(s�3)=2h(s+1)=2

�
x� b

a

�
trHQe

��Q2

dbda

=
X

�2spec(Q)nf0g

sign(�)j�j�s expfi�2xg

is holomorphic for Re s >> 0.
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(3) The fractal eta function of Q and B

�(Q;B; s; x) := trHY (Q;B; s; x) =

Z
RI +

Z
RI
a(s�3)=2h(s+1)=2

�
x� b

a

�
trHBe

��Q2

dbda

=
X

�2spec(Q)nf0g

tr(P�B)j�j
�s�1 expfi�2xg

is holomorphic for Re s >> 0. Here P� is the orthogonal projection onto the �{eigenspace of Q,
and tr(P�B) =: trker(Q��)B.

Remark:
The fractal zeta and eta functions of Lemma 4.1 can also be represented in Mellin space. In particular,
note that

�(Q;B; s; x) =
1

�((s + 1)=2)

Z
RI +

a(s�1)=2trHBe
��Q2da

with � = a� ix;Re � > 0; x 2 RI is holomorphic for large Re s >> 0.

The special fractal eta function �(Q;B; s; 0) := �(Q;B; s), recently studied by Br�uning and Lesch [BL97]

in connection with the gluing law and non{local boundary value problems, has a meromorphic extension

to the whole s{plane provided that the heat trace trHB exp(�aQ2) has an asymptotic expansion as

a! 0+.

In wavelet space we obtain the corresponding `wavelet traces' as wavelet transforms of the fractal

zeta and eta functions with respect to Cauchy wavelets:

Lemma 4.2

Under the assumptions of Lemma 4.1 we have for Re s >> 0 and � = a� ib;Re � > 0; b 2 RI :

(1) (L�s�(Q; s; x))(�) = (Re �)strHe
��Q = (Re �)s

X
�2spec(Q)nf0g

e��� ;

(2) (L�(s+1)=2
�(Q; s; x))(�) = (Re �)(s+1)=2trHQe

��Q2

= (Re �)(s+1)=2
X

�2spec(Q)nf0g

�e���
2

;

(3) (L�(s+1)=2�Q;B; s; x))(�) = (Re �)(s+1)=2trHBe
��Q2

= (Re �)(s+1)=2
X

�2spec(Q)nf0g

tr(P�B)e
���2 :

Remarks:
1. A prominent example of a fractal zeta function is the classical `non{di�erentiable' fractal Riemann{
Weierstrass function de�ned by

W�(t) = 2
X
n�1

n�2� expfin2tg (� > 1=2) ;

(cf. [H95],[HT91]).
It is associated to the scalar Laplacian @2� : L2(S1) ! L2(S1); S1 = fz 2 CI

��jzj = 1g, by encoding the
discrete spectrum spec(@2� ) = fn2gn2ZZ. By Lemma 4.1, we have the scale space representation

W�(t) = �(@2� ; �; t) =

Z
RI +

Z
RI

a��2h�

�
t� b

a

�h
trL2e

��@2� � dimker @2�

i
dbda ;

and, by Lemma 4.2, the wavelet trace

(L�� �(@
2
� ; �; t))(� ) = (Re � )�

h
trL2e

��@2� � dimker @2�

i
= (Re � )� [#(� )� 1] ;
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where #(� ) =
P+1
�1

expf�n2�g; � = a� ib;Re � > 0 is a classical Jacobi theta function.
It is a very remarkable fact that the pointwise di�erentiability of W�(t) at selected points in the orbits
of 0 and 1 with respect to the modular group G# can be deduced from general results of fractal analysis
through wavelet transforms, as was shown by an analysis of the theta function near the imaginary axis
in [HT91], [H95] and [JM96].

2. The concept of generalized fractal Riemann{Weierstrass functions was at �rst introduced in [K97] with

applications to spectral geometry, analytic number theory and signal analysis. This new uni�ed wavelet

analytic approach to fundamental results of harmonic analysis and of di�erential geometry extends the

results of [K91] and [K92].

In the next sections we describe fundamental applications of the fractal zeta and eta functions

in Global Analysis.

5 Fractal zeta function invariants

Let M be a compact (n+ 1){dimensional manifold and Q > 0 a self{adjoint elliptic pseudodif-

ferential operator, ordQ = 1, operating on the space of smooth half-densities C1(M;
1=2).

Consider the fractal zeta funtion of Q

�(Q; s; x) = trZ(Q; s; x) =

Z
RI +

Z
RI
as�2hs

�
x� b

a

�
tr e��Qdbda ; (5:1)

holomorphic for Re s >> 0. Then the associated `Wave trace' [Gui96]

e(t) :=
X

�2spec(Q)

ei�t (5:2)

is a tempered distribution with the following properties [Ch73], [DG75]:

(a) let �(Q)(z; �) be the leading symbol of Q, and let E be the Hamiltonian vector �eld on

T �Mn0 associated with �(Q):

E :=
X @

@�i
�(Q)

@

@zi
�

@

@zi
�(Q)

@

@�i
: (5:3)

Then a necessary condition for T 2 RI to be in the singular support of e(t) is that there exists

a T{periodic trajectory  of E.

(b) If  is nondegenerate, it contributes to the wave trace (5.2) a singularity of the form

e(t) �
X
r�1

cr(t� T + i0)�2+r log(t� T + i0) ; (5:4)

and the coeÆcient, c1 of the leading term in (5.4) is given by Duistermaat{Guillemin formula

c1(Q; T ) =
T

2�
i� jdet(I � P)j

�1=2 exp

"
i

Z T

0
�sub(Q)()dt

#
; (5:5)

where T is the primitive period of ; � is the Maslov index of ;P is the linearized Poincar�e

map about ; �sub(Q) is the subprinciple symbol of Q.

The coeÆcients cr are called `Wave trace invariants'.
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Recently, V. Guillemin [Gui96] has proved the conjecture of A. Weinstein that the higher wave

trace invariants cr determine the entire Birkho� canonical form (see [Gui96] for de�nition and

proof).

One crucial point in Guillemin's proof is the characterization of the wave trace invariants as

`zeta function invariants', due to S. Zelditch (see [Gui96, App. A.]).

The following theorem gives a new interpretation of this result in the wavelet analytic setting.

Theorem 5.1

Let M be a compact (n + 1)-dimensional manifold and Q > 0 a self{adjoint elliptic pseudodif-

ferential operator, ordQ = 1, operating on the space of smooth half{densities C1(M;
1=2). Let

e(t) be the `wave trace' (5:2) with the properties (a) and (b).

Let T be the period of a nondegenerate trajectory of the Hamilton vector �eld (5:3) and hs be the

reconstructing wavelet (2:6) for the Cauchy wavelet �s. Then the fractal zeta function at x = T

�(Q; s; T) = tr Z(Q; s; T ) =

Z
RI +

Z
RI
as�2hs

�
T � b

a

�
tr e��Qdbda =

X
�2spec(Q)

��sei�T

is holomorphic for Re s >> 0, and extends meromorphically on CI with simple poles at s =

1; 0;�1; : : : . The residues at these points are the wave trace invariants cr(Q; T ), i.e. the full

singularity structure of the fractal zeta function is described by

�(Q; s; T) �
1X
k=0

ck+1(Q; T)[s� (1� k)]�1

and c1(Q; T) is given by (5:5).

Remarks:
1. Theorem 5.1 includes the fact that the wave trace invariants at T = 0 (\big" singularity) are the usual
zeta function invariants, as was shown by Duistermaat & Guillemin in [DG75].

2. Recently, J. Jorgenson and S. Lang [JL99] have studied relations between the heat operator exp(�t�)

and the wave operator exp(�it
p
�);� the Laplacian on a Riemannian manifold.

Note that the methods and results in [JL99] are also of wavelet analytic nature, since { what is overlooked

by the authors { the basic Jorgenson{Lang G{transform [JL99,x2] is essentially a continuous wavelet

transform with respect to Marr{Wavelets [Ma82], [H95]. We will return to this really new aspect in part

III.

6 Fractal zeta functions and pseudodi�erential boundary prob-

lems

6.1 General elliptic systems

(i) Let M be a n{dimensional compact C1 manifold with boundary @M = N , and P :

C1(M;E1)! C1(M;E2) an elliptic di�erential operator of order d � 1 between sections

of Hermitian vector bundles Ei; dimEi = m.

As usual, let Uc = N � [0; c] be a collar neighborhood of the boundary N; xn 2 [0; c] a

normal coordinate with normal derivate @xn . We assume that in Uc the Ei are isomorphic
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to the pull backs of the E�
i := EijN .

Let Hs(M;Ei) be the Sobolev space of order s of sections of Ei and set

Ks(E�di ) :=
Y

0�j<d

Hs�j�1=2(E�i ) ; E�d
i :=

M
0�j<d

E�
i :

Then, for s > d� 1=2, the operator % := f0; : : : ; d�1g with ju := (�i@xn)
jujxn=0 maps

Hs(Ei) into K
s(E�d

i ).

The sections u of E1 and w of E2 in H
s satisfy the Green's formula

hPu; wiM � hu; P �wiM = hA%u; %wiN ;

whereA := (Ajk)j;k=0;:::;d�1 is upper skew{triangular with di�erential operatorsAjk ; ord (Ajk) =

d� 1� j � k, Ajk = 0 for k > d� 1� j and the Ajk with k = d� 1� j are isomorphisms.

Let S be an operator on Ks(E�d
i ), then the boundary condition

S%u = 0 (6:1)

determines a realization PS of P with domain

D(PS) = fu 2 Hd(M;E1)jS%u = 0g (6:2)

(ii) We assume that S de�nes a pseudo-normal boundary condition in the sense of Grubb

[G99; Ass.2.1]:

S = (Sjk)j;k=0;:::;d�1 is a matrix of admissible classical  do0s with Sjk : E�
1 ! Fj ; Fj

admissible bundles over N , and ord(Sjk) = j � k; Sjk = 0 for j < k. Moreover, Sjj is

surjective and uniformly surjectively elliptic.

(iii) To de�ne the fractal zeta and eta functions of PS by means of the wavelet calculus we

need the following resolvent growth conditions in the sense of Grubb [G99;Ass.2.2]:

Let E1 = E2 = E and J � [0; 2�] an open interval. Then there is an open sector

� = f� 2 CI nf0gj arg� 2 Jg, such that the following holds:

(G1): P is elliptic, and for the principal symbol pÆ of P; pÆ(y; �){� is invertible for all

(y; �; �) with � 2 � [ f0g; j�j2 + j�j2=d � 1, the inverse being 0(j�jd + j�j�1) on closed

subsectors �0 � �, uniformly in y 2 Uc; y := (y0; xn).

(G2): dim[F :=
Ld�1

j=0 Fj ] = (md)=2, the system fP; S%g is elliptic, and for any closed

subsector �0 there exists an r � 0 such that the resolvent R�(PS) = 0(��1) for � 2 �0r :=

f� 2 �0jj�j � rg.

(iv) We now turn to the fractal zeta and eta functions of PS . For this purpose let [�=2; 3=2�] be

in the interior of J , and let R� exist on the keyhole region R := f�jj�j � r or j arg���j �

�=2 + "g. Then the exponential function of PS can be de�ned by

e��PS =
i

2�

Z
@R
e���(PS � �)�1d� ;

� = a� ib;Re � > 0; b 2 RI . This implies

e��PS =
i

2�

Z
@R
@m� (PS � �)�1(��)�me���d�

11



for (m+ 1)d > n = dimM .

By the wavelet calculus the fractal power function of PS is well de�ned for Re s > 0; x 2 RI ,

and is given by

Z(PS ; s; x) =
i

2�

Z
@R
@m� (PS � �)�1

Z
RI +

Z
RI
as�2hs

�
x� b

a

�
(��)�me���dbdad�; :

Let ' be any compactly supported morphism in E. Then '@m� R� maps L2(E) into

H(m+1)d(EjM1
), where M1 is a smooth compact neighborhood of supp ' in M such that

@M1 =M1 \N is a neighborhood of supp '\N in N . Thus the operator '@m� R� is trace

class with continuous kernel, and the trace is the integral of the �ber trace of the kernel

on the diagonal with integration over M1.

It follows that the fractal zeta function

tr('Z(PS ; s; x)) =
i

2�

Z
@R
tr('@m� (PS��)

�1)

Z
RI +

Z
RI
as�2hs

�
x� b

a

�
(��)�me���dbdad�

(6:3)

with � = a � ib; x 2 RI is holomorphic for Re s >> 0, and the same holds for the fractal

eta function

tr('Y (PS ; s; x)) =

i

2�

Z
@R
tr('PS@

m
� (P

�
SPS � �)�1)

Z
RI �

Z
RI
a(s�3)=2h(s+1)=2

�
x � b

a

�
(��)�me���dbdad� :

(6:4)

Since M is compact the resolvent has a pole at � = 0 if kerPS 6= 0. Thus r(�) :=

tr('@m� (PS��)
�1) is meromorphic at � = 0 with r(�) = �(m+1)(��)�m�1tr('P0(PS))+

h(�); h(�) holomorphic at � = 0.

Now the wavelet calculus combined with the fundamental resolvent expansion of Grubb [G99;Theorem

9.1)] yields the following trace expansions which seem to be not available by the familiar Mellin

transform technique of the heat equation method used, e.g., in [ABP73], [Gi95], [BW93], [M�u94],

[GS95], [GS96], [BL97] or [BL99].

The passage from the resolvent expansion to the fractal zeta and eta function asymptotics is

described by the following general wavelet transition formula.

Proposition 6.1

Let B be a Banach space and r : CI ! B be meromorphic at � = 0 with Laurent expansion

r(�) =
1X
�k

bj(��)
j ; j�j � � :

Let r be holomorphic in �Æ0 = f� 2 CI jj arg(� � �j) < Æ0 � �g and r(�) = 0(j�j��), some

� 2 (0; 1], as �!1, uniformly in each sector �Æ for Æ < Æ0.

Let C be a Laurent loop and de�ne for Re s > 1� �; x 2 RI and � = a� ib;Re � > 0

�(s; x) :=

Z
RI +

Z
RI
as�2hs

�
x� b

a

�
i

2�

Z
C
r(�)e���d�dbda ;

where hs is a reconstruction wavelet for the Cauchy wavelet �s. Suppose that r(�) has an

asymptotic expansion as �!1

r(��) �
X
j�0

njX
�=0

aj��
��j(log�)� ; �j 2 RI +; lim

j!1
�j = +1; nj 2 NI 0 ;
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uniformly for �� in �Æ, for each Æ < Æ0.

Then �(s)�(s; x) is meromorphic on CI with singularity structure

�(s)�(s; x) �
�1X

j=�k

�bj(x)

s� j � 1
+
X
j�0

njX
�=0

aj�(x)�!

(s+ �j � 1)�+1
;

in the sense that for large N , the left{hand side minus the sums for j � N in the right{hand

side is holomorphic for 1� �N < Re s < N + 1.

>From [G99;(9.1)], (6.3), (6.4) and Proposition 6.1 we can deduce the following new result.

Theorem 6.2

Let PS be a realization (6:2) de�ned from a di�erential operator P , ord P = d � 1, in a bundle

E over a compact manifold M such that S de�nes a pseudo{normal boundary condition (6:1).

Suppose that the resolvent growth conditions (G1) and (G2) hold. Let (m+1)d > n = dimM;x 2

RI and ' be any compactly supported morphism in E. Then the fractal zeta and eta functions

have singularity structures described by:

�(s)tr('Z(PS ; s; x)) � tr('P0(PS))s
�1 +

a0(P; S; x)

s� n=d

+
X
k�1

ak(P; S; x) + bk(P; S; x)

s � (n� k)=d
(6:5)

+
X
k�0

�
ck(P; S; x)

(s+ k=d)2
+
c�k(P; S; x)

s+ k=d

�
;

�(s)tr('Y (PS ; 2s� 1; x)) �
a0(P; S; x)

s� (n+ 1)=d
+
X
k�1

ak(P; S; x) + bk(P; S; x)

s� (n� k + 1)=d

(6:6)

+
X
k�0

�
ck(P; S; x)

(s+ (k � 1)=d)2
+

c�k(P; S; x)

s+ (k � 1)=d

�
:

For x = 0 the coeÆcients are related to those in [G99;Th:9:1] by suitable gamma factors.

We now turn to wavelet space. From the wavelet calculus we obtain the wavelet traces

(Re �)str('e��PS) = a�1
Z
RI
�s

�
x� b

a

�
tr('Z(PS ; s; x))dx

and

(Re �)(s+1)=2tr('PSe
��P �

S
PS) = a�1

Z
RI
�(s+1)=2

�
x� b

a

�
tr('Y (PS ; s; x))dx

� = a� ib;Re � > 0; b 2 RI and Re s >> 0.

The dependency on the parameter x is now `killed' by integration, and for b = 0 we obtain

special wavelet theoretic `zooms' (cf. (2.5))

tr('e�aPS ) =
�(s+ 1)

2�

Z
RI
(a+ it)�s�1tr('Z(PS ; s; t))dt (6:7)
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and

tr('PSe
�aP �

S
PS ) =

�((s + 3)=2)

2�

Z
RI
(a+ it)�(s+3)=2tr('Y (PS ; s; t))dt ; (6:8)

which represent the heat traces of PS resp. P �SPS .

Inserting in (6.7) the fractal zeta expansion (6.5) we can reprove the heat trace expansion of

Grubb [G99;Cor.9.2] for the compact case.

Theorem 6.3

Under the assumptions of Theorem 6.2 for PS and ', the `zoom' exp(�aPs) has the asymptotic

behaviour for a! 0:

tr('e�aPS) � �0a
�n=d +

X
k�0

(�k + �k)a
(k�n)=d +

X
k�0

(k loga+ �k)a
k=d ;

here the coeÆcients are proportional to those in [G99;(9.1)] by universal factors.

Remark:

To extend Theorems 6.2 and 6.3 to the case of admissible manifolds in the sense of Grubb{Kokholm

[GK93] one can use W. M�uller's [M�u97] theory of `Relative zeta functions'. This will be discussed in part

III.

6.2 First order well-posed problems

The results also hold for injectively elliptic realisations DB and D�
B of �rst order di�erential

operators D with well-posed boundary conditions B0u = 0 in the sense of Seeley [S69]. Such

realisations can be imbedded into a truly elliptic system, which can be treated by use of the

Calderon projector and by the calculus of weakly polyhomogenuous  do's [G99;x5]. Let 	0
cl(E

�
1)

be the algebra of classical  do's in E�
1 of order 0 with holomorphic functional calculus [S67].

Then Theorem 6.2 yields the following generalisations of the zeta expansions of Grubb [G99].

Theorem 6.4

Let D : C1(M;E1)! C1(M;E2) be a �rst order elliptic di�erential operator with a well{posed

boundary condition in the sense of Seeley

B0u = 0 ;

B 2 	0
cl(E

�
1) and 0u = ujN .

Let ' and  be compactly supported morphisms in Ei resp. from Ek to Ei; i; k = 1; 2. Let DB

be the realisation of D and set

�1 := D�
BDB; �2 := DBD

�
B :
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Then the fractal zeta and eta functions have singularity structures described by:

�(s)tr('Z(�i; s; x)) � s�1tr('P0(DB)) +
n�1X
j=0

ai;j�n(D;B; x)

s+ 1=2(j � n)

+
X
k�0

 
�ai;k(D;B; x)

(s+ 1=2 k)2
+
a�i;k(D;B; x)

s + 1=2 k

!
;

�(s)tr( DBZ(�1; s; x)) �
n�1X
j=0

b1;j�n(D;B; x)

s+ 1=2(j � n � 1)

+
X
k�0

 
�b1;k(D;B; x)

(s+ 1=2(k� 1))2
+

b�s;k(D;B; x)

s+ 1=2(k � 1)

!
;

�(s)tr( D�
BZ(�2; s; x)) �

n�1X
j=0

b2;j�n(D;B; x)

s+ 1=2(j � n � 1)

+
X
k�0

 
�b2;k(D;B; x)

s + 1=2(k� 1))2
+

b�2;k(D;B; x)

s+ 1=2(k� 1)

!
:

For x = 0 we obtain the following results of Grubb [G99;(9.11)].

Corollary 6.5

In Theorem 6.4 let x = 0. Then the familiar zeta and eta functions have singularity structures

described by

�(s)tr('��s
i ) � �s�1tr('P0(DB))

+
n�1X
j=0

ai;j�n(D;B; 0)

s + 1=2(j � n)

+
X
k�0

 
�ai;k(D;B; 0)

(s+ 1=2k)2
+
a�i;k(D;B; 0)

s+ 1=2 k

!
; i = 1; 2 ;

�(s)tr( DB�
�s
1 ) �

n�1X
j=1

b1;j�n(D;B; 0)

s+ 1=2(j � n� 1)

+
X
k�0

 
�b1;k(D;B; 0)

(s+ 1=2(k� 1))2
+

b�1;k(D;B; 0)

s+ 1=2(k� 1)

!
;

�(s)tr( D�
B�

�s
2 ) �

n�1X
j=1

b2;j�n(D;B; 0)

s+ 1=2(j � n� 1)

+
X
k�0

 
�b2;k(D;B; 0)

(s+ 1=2(k� 1))2
+

b�2;k(D;B; 0)

s+ 1=2(k� 1)

!
:
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We now turn to wavelet space (cf. (6.7{6.8)). For Re s >> 0 and a > 0 the corresponding `zooms'

are given by the formulas

tr('e�a�i) =
�(s + 1)

2�

Z
RI
(a+ it)�s�1tr('Z(�i; s; t))dt ; i = 1; 2 ; (6:9)

tr( DBe
�a�1) =

�((s+ 3)=2)

2�

Z
RI
(a+ it)�(s+3)=2tr( Y (DB; s; t))dt ; (6:10)

tr( D�
Be

�a�2) =
�((s+ 3)=2)

2�

Z
RI
(a+ it)�(s+3)=2tr( Y (D�

B; s; t))dt : (6:11)

Inserting in (6.9){(6.11) the wavelet zeta expansions of Theorem 6.4 we obtain the following

recent results of Grubb [G99;(9.10)].

Corollary 6.6

Under the assumptions of Theorem 6.4 the `zooms' have asymptotic expansions for a! 0:

tr('e�a�i) �
n�1X
j=0

ai;j�n(0)a
(j�n)=2 +

X
k�0

(ai;k(0) loga+ a�i;k(0))a
k=2; i = 1; 2 ;

tr( DBe
�a�1) �

n�1X
j=0

b1;j�n(0)a
(j�n�1)=2 +

X
k�0

(b1;k(0) loga+ b�1;k(0))a
(k�1)=2 ;

tr( D�
Be

�a�2) �
n�1X
j=0

b2;j�n(0)a
(j�n�1)=2 +

X
k�0

(b2;k(0) loga+ b�2;k(0))a
(k�1)=2 :

The coeÆcients are proportional to those in Corollary 6.5 by universal factors.

Remark:

The results of our wavelet machinery apply of course to prominent examples of well{posed problems

for Dirac{type operators in the product or non{product case as considered, e.g. by Atiyah, Patodi and

Singer [APS75], by Grubb and Seeley [GS95], [GS96], by Booss{Bavnbek and Wojchiechowski [BW93],

by M�uller [M�u94], by Br�uning and Lesch [BL97], [BL99] or by Grubb [G99;x4]. This will be discussed in

part II.

Since index DB = tr e�a�1 � tr e�a�2 is constant in a > 0 [G96;Sec.4.3] we �nally obatin from

Corollary 6.6 the following index theorem of Grubb [G99;Cor.9.7].

Corollary 6.7

In Corollary 6.6 let ' = 1. Then the index of DB equals

indexDB = a�1;0(0)� a�2;0(0) :

Moreover, all the other coeÆcients coincide for i = 1 and 2, i.e. a1;k(0) = a2;k(0) for all k � �n

and a�1;k(0) = a�2;k(0) for all k > 0.

Acknowledgement: I thank J. Br�uning, P.B. Gilkey, G. Grubb, W. M�uller and B.{W. Schulze

for interesting suggestions.
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