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Abstract

We present a class of N = 1 supersymmetric “standard” models of particle physics, derived

directly from heterotic M–theory, that contain three families of chiral quarks and leptons coupled

to the gauge group SU(3)C ×SU(2)L×U(1)Y . These models are a fundamental form of “brane

world” theories, with an observable and hidden sector each confined, after compactification on

a Calabi–Yau threefold, to a BPS three-brane separated by a higher dimensional bulk space

with size of the order of the intermediate scale. The requirement of three families, coupled to

the fundamental conditions of anomaly freedom and supersymmetry, constrains these models

to contain additional five-branes located in the bulk space and wrapped around holomorphic

curves in the Calabi–Yau threefold.
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1 Introduction

In fundamental work, it was shown by Hořava and Witten [1, 2] that if M–theory is compactified

on the orbifold S1/Z2, a chiral N = 1, E8 gauge supermultiplet must exist in the twisted sector of

each of the two ten-dimensional orbifold fixed planes. It is important to note that, in this theory,

the chiral gauge matter is confined solely to the orbifold planes, while pure supergravity inhabits

the bulk space between these planes. Thus, Hořava-Witten theory is a concrete and fundamental

representation of the idea of a “brane world”.

Witten then showed [3] that, if further compactified to four dimensions on a Calabi–Yau three-

fold, the N = 1 supersymmetric low–energy theory exhibits realistic gauge unification and gravi-

tational coupling strength provided the Calabi–Yau radius, R, is of the order of 1016GeV and that

the orbifold radius, ρ, is larger than R. Thus, Hořava–Witten theory has a “large” internal bulk

dimension, although it is of order the intermediate scale and not the TeV size bulk dimensions, or

larger, discussed recently [4].

When compactifying the Hořava–Witten theory, it is possible that all or, more likely, a subset

of the E8 gauge fields do not vanish classically in the Calabi–Yau threefold directions. Since

these gauge fields “live” on the Calabi–Yau manifold, 3 + 1-dimensional Lorentz invariance is left

unbroken. Furthermore, by demanding that the associated field strengths satisfy the constraints

Fab = Fāb̄ = gab̄Fab̄ = 0, N = 1 supersymmetry is preserved. However, these gauge field vacua

do spontaneously break the E8 gauge group as follows. Suppose that the non-vanishing gauge

fields are associated with the generators of a subgroup G, where G × H ⊆ E8. Then the E8

gauge group is spontaneously broken to H, which is the commutant subgroup of G in E8. This

mechanism of gauge group breaking allows one, in principle, to reduce the E8 gauge group to smaller

and phenomenologically more interesting gauge groups such as unification groups E6, SO(10) and

SU(5) as well as the standard model gauge group SU(3)C × SU(2)L × U(1)Y . The spontaneous

breaking of E8 to E6 by taking G = SU(3) and identifying it with the spin connection of the Calabi–

Yau threefold, the so-called “standard embedding”, was discussed in [1, 2]. A general discussion of

non-standard embeddings in this context and their low energy implications was presented in [5, 6].

We will refer to Hořava–Witten theory compactified to lower dimensions with arbitrary gauge vacua

as heterotic M–theory.

It is, therefore, of fundamental interest to know, given a Calabi–Yau threefold X, what non-

Abelian gauge field vacuum configurations associated with a subgroup G ⊆ E8 can be defined on

it. One approach to this problem is to simply attempt to solve the six-dimensional Yang–Mills

equations with the appropriate boundary conditions subject to the above constraints on the field

strengths. However, given the complexity of Calabi–Yau threefolds, this approach becomes very
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difficult at best and is probably untenable. One, therefore, must look for an alternative construction

of these Yang-Mills connections. Such an alternative was presented by Donaldson [7] and Uhlenbeck

and Yau [8], who recast the problem in terms of holomorphic vector bundles. These authors prove

that for every semi-stable holomorphic vector bundle with structure group G over X, there exists

a solution to the six-dimensional Yang–Mills equations satisfying the above constraints on the field

strengths, and conversely. Thus, the problem of determining the allowed gauge vacua on a Calabi–

Yau threefold is replaced by the problem of constructing semi–stable holomorphic vector bundles

over the same threefold.

It was shown in recent publications [9, 10, 11, 12, 13], relying heavily on work on holomorphic

vector bundles by several authors [14, 15, 16], that a wide class of semi-stable holomorphic vector

bundles with structure groups SU(n) ⊂ E8 can be explicitly constructed over elliptically fibered

Calabi–Yau threefolds. The restriction to SU(n) subgroups was for simplicity, other structure

subgroups being possible as well. Thus, using holomorphic vector bundles and the Donaldson,

Uhlenbeck, Yau theorem, it has been possible to classify and give the properties of a large class of

SU(n) gauge vacua even though the associated solutions of the Yang–Mills equations are unknown.

As presented in [9, 10], three–family vacua with phenomenologically interesting unification

groups such as E6, SO(10) and SU(5) could be obtained, corresponding to vector bundle structure

groups SU(3), SU(4) and SU(5) respectively. However, it was not possible to break E8 directly to

the standard gauge group SU(3)C × SU(2)L × U(1)Y in this manner. A natural solution to this

problem is to use non-trivial Wilson lines to break the GUT group down to the standard gauge

group [17, 18]. This requires that the fundamental group of the Calabi–Yau threefold be non-

trivial. Unfortunately, one can show that all elliptically fibered Calabi–Yau threefolds are simply

connected, with the exception of such threefolds over an Enriques base which, however [10], is not

consistent with the requirement of three families of quarks and leptons.

With this in mind, recall that an elliptic fibration is simply a torus fibration that admits a zero

section. We were able to show that it is the requirement of a zero section that severely restricts

the fundamental group of the threefold to be, modulo the one exception mentioned above, trivial.

Hence, if one lifts the zero section requirment, and considers holomorphic vector bundles over torus-

fibered Calabi–Yau threefolds without section, then one expects to find non-trivial first homotopy

groups and Wilson lines in vacua that are consistent with the three-family requirement. In [19] we

gave the relevant mathematical properties of a specific class of torus-fibered Calabi–Yau threefolds

without section and constructed holomorphic vector bundles over such threefolds. We then used

these results to explicitly construct a number of three-family vacua with unification group SU(5)

which is spontaneously broken to the standard gauge group SU(3)C × SU(2)L ×U(1)Y by Wilson

lines.
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The results of [19] represent N = 1 “standard” models of particle physics derived directly from

M–theory. Each of these vacua has three families of chiral quarks and leptons coupled to the

standard SU(3)C × SU(2)L × U(1)Y gauge group. As discussed above, this “observable sector”

lives on a 3 + 1 dimensional “brane world”. It was shown in [20, 21] that this 3 + 1 dimensional

space is the worldvolume of a BPS three–brane. It is separated from a “hidden sector” three–brane

by a bulk space with an intermediate scale “large” extra dimension. The requirement of three

families, coupled to the fundamental condition of anomaly freedom and supersymmetry, constrains

the theory to admit an effective class describing the wrapping of additional five-branes around

holomorphic curves in the Calabi–Yau threefold. These five-branes “live” in the bulk space and

represent new, non-perturbative aspects of particle physics vacua.

In this talk, we present the rules for building phenomenological particle physics “standard”

models in heterotic M-theory on torus-fibered Calabi–Yau threefolds without section realized as

quotient manifolds Z = X/τX . These quotient threefolds have a non-trivial first homotopy group

π1(Z) = Z2. Specifically, we construct three-family particle physics vacua with GUT group SU(5).

Since π1(Z) = Z2, these vacua have Wilson lines that break SU(5) to the standard SU(3)C ×
SU(2)L × U(1)Y gauge group. We then present several explicit examples of these “standard”

model vacua for the base surface B = F2 of the torus fibration. We refer the reader to [19] for the

mathematical details and a wider set of examples, including the base B = dP3.

2 Rules for Realistic Particle Physics Vacua

In this section, we give the rules required to construct realistic particle physics vacua, restricting

our results to vector bundles with structure group SU(n) for n odd. The rules presented here lead

to N = 1 supersymmetric theories with three families of quarks and leptons with the standard

model gauge group SU(3)C × SU(2)L × U(1)Y .

The first set of rules deals with the selection of the elliptically fibered Calabi–Yau threefold

X with two sections, the choice of the involution and constraints on the vector bundles, such

that the bundles descend to vector bundles on Z = X/τX . If one was using this construction to

construct vector bundles for each of the two E8 groups in Hořava-Witten theory, then this first set

of constraints is applicable to each bundle individually. The rules are

• Two Section Condition: Choose an elliptically fibered Calabi–Yau threefold X which admits

two sections σ and ξ. This is done by selecting the base manifold B of X to be a 1) del Pezzo,

2) Hirzebruch, 3) blown-up Hirzebruch or 4) an Enriques surface. The threefold X with two
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sections is then specified by its Weierstrass model with an explicit choice of

g2 = 4(a2 − b), g3 = 4ab. (2.1)

The discriminant is then given by

∆ = ∆1∆2
2, (2.2)

where

∆1 = a2 − 4b, ∆2 = 4(2a2 + b). (2.3)

• Choice of Involution: Using the properties of the base, explicitly specify an involution τB on

B. Now choose sections a and b to be invariant under τB. This allows one to construct an

involution τX on X. Find the set of fixed points FτB
under τB and show that

FτB
∩ {∆ = 0} = ∅. (2.4)

• Bundle Constraint: Consider semi-stable holomorphic vector bundles V over X. To construct

any such vector bundle one must specify a divisor class η in the base B as well as coefficients

λ and κi. These coefficients satisfy

λ − 1
2 ∈ Z, κi − 1

2m ∈ Z, (2.5)

with m an integer. Furthermore, we must have that

η is effective (2.6)

as a class on B.

• Bundle Involution Condition: In order for V to descend to a vector bundle VZ over Z, the

class η in B and the coefficients κi must satisfy the constraints

τB(η) = η,∑
i

κi = η · c1
(2.7)

The second set of rules is directly particle physics related. The first of these is the requirement

that the theory have three families of quarks and leptons. The number of generations associated

with the vector bundle VZ over Z is given by

Ngen = 1
2c3(VZ). (2.8)

Requiring Ngen = 3 leads to the following rule for the associated vector bundle V over X.
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• Three-Family Condition: To have three families we must require

6 = λη(η − nc1). (2.9)

The second such rule is associated with the anomaly cancellation requirement that

[WZ ] = c2(TZ) − c2(VZ1) − c2(VZ2), (2.10)

where [WZ ] is the class associated with non-perturbative five-branes in the bulk space of the Hořava-

Witten theory. Vector bundles VZ1 and VZ2 are located on the “observable” and “hidden” orbifold

planes respectively. In this talk, for simplicity, we will always take VZ2 to be the trivial bundle.

Hence, gauge group E8 remains unbroken on the “hidden” sector, c2(VZ2) vanishes and condition

(2.10) simplifies accordingly. Using the definition

[WZ ] =
1
2
q∗[W ], (2.11)

condition (2.10) can be pulled-back onto X to give

[W ] = c2(TX) − c2(V ). (2.12)

It follows that

[W ] = σ∗WB + c(F − N) + dN (2.13)

where

WB = 12c1 − η (2.14)

and

c = c2 +
(

1
24

(n3 − n) + 11
)

c2
1 −

1
2

(
λ2 − 1

4

)
nη (η − nc1) −

∑
i

κ2
i , (2.15)

d = c2 +
(

1
24

(n3 − n) − 1
)

c2
1 −

1
2

(
λ2 − 1

4

)
nη (η − nc1) −

∑
i

κ2
i +

∑
i

κi. (2.16)

The class [WZ ] must represent an actual physical holomorphic curve in the Calabi–Yau threefold

Z since physical five-branes are required to wrap around it. Hence, [WZ ] must be an effective class

and, hence, its pull-back [W ] is an effective class in the covering threefold X. This leads to the

following rule.

• Effectiveness Condition: For [W ] to be an effective class, we require

WB is effective in B, c ≥ 0, d ≥ 0. (2.17)
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Finally, consider subgroups of E8 of the form

G × H ⊂ E8. (2.18)

If G is chosen to be the structure group of the vector bundle, then, naively, one would expect the

commutant subgroup H to be the subgroup preserved by the bundle. However, Rajesh, Berglund

and Mayr [22] have shown that this will be the case if and only if the vector bundle satisfies a

further constraint. If this constraint is not satisfied, then the actual preserved subgroup of E8

will be larger than H. Although not strictly necessary, we find it convenient in model building to

demand that this constraint hold.

• Stability Constraint: Let G × H ⊂ E8 and G be the structure group of the vector bundle.

Then H will be the largest subgroup preserved by the bundle if and only if

η > nc1. (2.19)

If one follows the above rules, then the vacua will correspond to a grand unified theory with

unification group H and three families of quarks and leptons. In this talk, we will only consider

the maximal subgroup SU(5) × SU(5) ⊂ E8. We then choose

G = SU(5). (2.20)

Therefore, the unification group will be

H = SU(5). (2.21)

However, these vacua correspond to vector bundles over the quotient torus-fibered Calabi–Yau

threefold Z which has non-trivial homotopy group

π1(Z) = Z2. (2.22)

It follows that the GUT group will be spontaneously broken to the standard model gauge group

SU(5) → SU(3)C × SU(2)L × U(1)Y , (2.23)

if we adopt the following rule.

• Standard Gauge Group Condition: Assume that the bundle contains a non-vanishing Wilson

line with generator

G =

(
13

−12

)
. (2.24)

Armed with the above rules, we now turn to the explicit construction of phenomenologically

relevant non-perturbative vacua.
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3 Three Family Models

We begin by choosing the base of the Calabi–Yau threefold to be the Hirzebruch surface

B = F2. (3.1)

As discussed in the Appendix of [10], the Hirzebruch surfaces are CP
1 fibrations over CP

1. There

are two independent classes on F2, the class of the base S and of the fiber E . Their intersection

numbers are

S · S = −2, S · E = 1, E · E = 0. (3.2)

The first and second Chern classes of F2 are given by

c1(F2) = 2S + 4E , (3.3)

and

c2(F2) = 4. (3.4)

We now need to specify the involution τB on the base and how it acts on the classes on B.

We recall that there is a single type of involution on CP
1. If (u, v) are homogenous coordinates on

CP
1, the involution can be written as (u, v) → (−u, v). This clearly has two fixed points, namely

the origin (0, 1) and the point at infinity (1, 0) in the u-plane. To construct the involution τB, we

combine an involution on the base CP
1 with one on the fiber CP

1. Thus FτB
contains four fixed

points.

To ensure that we can construct a freely acting involution τX from τB, we need to show that

the discriminant curve can be chosen so as not to intersect these fixed points. We recall that the

two components of the discriminant curve are given by

∆1 = a2 − 4b, ∆2 = 4
(
2a2 + b

)
, (3.5)

and that parameters a and b are sections of K−2
B and K−4

B respectively, where KB is the canonical

bundle of the base. In order to lift τB to an involution of X, we required that

τB(a) = a, τB(b) = b. (3.6)

This restricts the allowed sections a and b and, consequently, the form of ∆1 and ∆2. One can

show that, for a generic choice of a and b satisfying conditions (3.6), there is enough freedom so

that the discriminant curves do not intersect any of the fixed points.
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We now want to consider curves η in F2 that are invariant under the involution τB. This can

be done by first determining how this involution acts on the effective classes. We find that the

involution preserves both S and E separately, so that

τB(S) = S, τB(E) = E . (3.7)

Since any class η is a linear combination of S and E , we see that an arbitrary η satisfies τB(η) = η.

We can now search for η, λ and κi satisfying the three family, effectiveness and stability condi-

tions given above. We find that there are two classes of solutions

solution 1: η = 14S + 22E , λ = 3
2 ,∑

i

κi = η · c1 = 44,
∑

i

κ2
i ≤ 60,

solution 2: η = 24S + 30E , λ = −1
2 ,∑

i

κi = η · c1 = 60,
∑

i

κ2
i ≤ 76.

(3.8)

First note that the coefficients λ satisfy the bundle constraint (2.5). Furthermore, one can

find many examples of κi with i = 1, . . . , 4η · c1, satisfying the bundle constraint (2.5), the given

conditions on
∑

i κ
2
i and the invariance condition

∑
i κi = η · c1.

Using n = 5, (3.3), (3.8) and the intersection relations (3.2), one can easily verify that both

solutions satisfy the three-family condition (2.9).

Next, from (2.13), (2.14), (2.15) and (2.16), as well as n = 5, (3.3), (3.4), (3.8) and the

intersection relations (3.2), we can calculate the five-brane curves W associated with each of the

solutions. We find that

solution 1: [W ] = σ∗ (10S + 26E) + (112 − k) (F − N) + (60 − k)N,

solution 2: [W ] = σ∗ (18E) + (132 − k) (F − N) + (76 − k)N,
(3.9)

where

k =
∑

i

κ2
i (3.10)

It follows that the base components for [W ] are given by

solution 1: WB = 10S + 26E ,

solution 2: WB = 18E ,
(3.11)

which are both effective. Furthermore, we note that for each five-brane curve the c and d coefficients

of classes F −N and N respectively are non-negative integers (given the constraints on k). Hence,

effectiveness condition (2.17) is satisfied.
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Finally, note that for n = 5 the stability condition becomes η > 5c1. In both of the above

solutions

η > 5c1 = 10S + 20E (3.12)

so that the stability condition is satisfied. Note that this condition is consistent with the somewhat

stronger condition used in [19] since η and c1 have integer coefficients.

We conclude that, over a Hirzebruch base B = F2, one can construct torus-fibered Calabi–Yau

threefolds, Z, without section with non-trivial first homotopy group π1(Z) = Z2. Assuming a

trivial gauge vacuum on the hidden brane, we have shown that we expect these threefolds to admit

precisely two classes of semi-stable holomorphic vector bundles VZ , (3.8), associated with an N = 1

supersymmetric theory with three families of chiral quarks and leptons and GUT group H = SU(5)

on the observable brane world. Since π1(Z) = Z2, Wilson lines break this GUT group as

SU(5) → SU(3)C × SU(2)L × U(1)Y , (3.13)

to the standard model gauge group. Anomaly cancellation and supersymmetry require the existence

of non-perturbative five-branes in the extra dimension of the bulk space. These five-branes are

wrapped on holomorphic curves in Z whose homology classes, (3.9), are exactly calculable.
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