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1 Introduction

There are three things that this paper will compute. The first is the response of a
distribution to an applied field. The second is the point at which Landau damping
ceases to stabilize the beam. Both questions are most straightforwardly answered
in the frequency domain, and are in fact intimately related to each other. The
third thing that will be computed in this paper is the Schottky spectrum for a
beam. This also turns out to be related to the other two items, but through a
significantly more complex process. In all cases, the discussion is restricted to
storage rings.

The response of a beam distribution at a given frequency to an excitation at
that same frequency will be proportional to the field applied at that frequency,
and the proportionality constant, which is a function of frequency, is known as a
beam transfer function.

The beam transfer function depends on the beam current. This dependence
is to be expected: if the current is large enough for the beam to be unstable,
then perturbing the beam should cause it to go unstable, and one wouldn’t have
very much to measure. Thus, one expects that this current dependence should
be closely related the instability threshold.

In many cases, an instability threshold can be computed by means of what
is known as a stability diagram (see [Zot76] for an early example of these, or
[BR96, BR98, BG99] for more modern examples). A stability diagram is a curve
drawn in the complex plane such that if one plots current times impedance (or
a related quantity) in the complex plane, the stability of a beam is related to
where that number falls with relation to the curve. The stability diagram reflects
the point at which Landau damping ceases to stabilize the beam. Because of
the relationship between beam transfer functions and instability thresholds, one
also expects to have a relationship between beam transfer functions and stability
diagrams. This will prove to be true.

The concept of a beam transfer function is not in fact new, and has been
computed as far back as 1971 [MS71]. The corresponding instabilities were stud-
ied even earlier [NS65, LNS65]. This paper simply shows how to compute these
beam transfer functions in a general framework which is in principle extensible to
more complex phase space dynamics than the simple one-dimensional transverse
or longitudinal dynamics one generally considers (although we do not compute
more complex cases here). The generality allows us to find expressions which in
some cases have terms which were previously unknown. We also use a modern
formulation for impedances and single-particle dynamics, in fact adding some
generality to the definition of impedances which allows one to begin to consider
impedances distributed non-uniformly throughout the ring, although again we
do not expand much on this possibility here (see [Chi85, Rug86, Suz87] for some
phenomena resulting from this).

The Schottky spectrum of a beam is the signal measured when no external
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excitation is applied to the beam. This spectrum results from the fact that
the beam is not really a continuous distribution, but a large number of discrete
particles.

This paper will start by introducing some definitions for these problems. The
definitions will be slightly more general than what is generally done for impedance
driven collective effects. This will both allow for more generality in applying the
formalism, but will also produce more compact results which are straightfor-
wardly applied to specific cases.

These definitions will involve defining the force on a test charge through a
Hamiltonian. This Hamiltonian will then be used in the Vlasov equation to
determine the time evolution of perturbations to an equilibrium distribution.
The resulting equations will be Fourier analyzed. These results will be used
to determine the beam transfer function as well as the threshold for instability.
The Hamiltonian will then be used to describe the motion of individual particles
when there is no external driving force, and statistical averaging will be applied
to determine what the measured signal will be.

1.1 The Vlasov Equation

The Vlasov equation is an equation describing the time evolution of the Hamilto-
nian. It is true under the assumption that the two-particle distribution function
is the product of one particle distribution functions. For a system described by
a Hamiltonian, it can be written as

∂Ψ̄

∂s
+ [Ψ̄, H ] = 0 (1.1)

where Ψ̄ is the one-particle distribution function in phase space and H is the
Hamiltonian describing the force on a single particle. The expression [f, g] is the
Poisson bracket of f and g.

Say that one finds a solution Ψ0 to the Vlasov equation. Consider perturba-
tions Ψ to that distribution such that Ψ̄ = Ψ0 + Ψ. Furthermore, assume that H
can be written as the sum H0+V (Ψ̄), where the dependence of V on its argument
is linear. Then, ignoring second order terms in Ψ, one gets

∂Ψ

∂s
+ [Ψ, H0 + V (Ψ0)] + [Ψ0, V (Ψ)] = 0 (1.2)

If, in addition, there is a term in the Hamiltonian H1 which is considered to be
perturbatively small, but is independent of Ψ̄, then the Vlasov equation becomes

∂Ψ

∂s
+ [Ψ, H0 + V (Ψ0)] + [Ψ0, V (Ψ)] + [Ψ0, H1] = 0 (1.3)

where again, second order terms are dropped.
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1.2 Construction of the Hamiltonian

The force on a test charge will be defined by describing the force through a
Hamiltonian. There are three components to that force:

1. Forces coming from elements in the ring which are designed to confine the
particles along the design orbit, such as magnets and r.f. cavities (although
the latter are not present for unbunched beams).

2. Forces which depend on the beam distribution, in other words, those that
come from the beam interacting with itself.

3. External forces applied to the beam in order to measure the beam response
and therefore the beam transfer function.

A derivation for the Hamiltonian for the first two parts is given in appendix A.
In describing the Hamiltonian, we will use x, y for the horizontal and vertical

transverse planes; their conjugate momenta are px and py which are made dimen-
sionless by scaling by the momentum of the reference particle (which is βγmc).
The longitudinal coordinate will be z = −βct, where t is the arrival time at a
given point. Its conjugate momentum is δ, defined such that the particle’s energy
is γmc2(1 + β2δ). s, the position along the ideal orbit, will be the independent
variable.

1.2.1 Action-Angle Variables

The first step will be to find an equilibrium solution of the Vlasov equation (i.e., a
distribution periodic in s, the arc length along the beam’s design orbit) using the
first two components in our Hamiltonian, which will be referred to as Ψ0. The task
of this paper is to determine how perturbations to this equilibrium distribution
evolve in time. This paper will not discuss how to find such a distribution. Once
such a distribution is found, one can then write the Hamiltonian for the first two
components using this distribution in the second component.

This Hamiltonian will then be normalized, meaning that a canonical trans-
formation will be found for which the Hamiltonian in the new variables is purely
a function of the action variables J and δ. In general, this is not possible. How-
ever, one can do so in a power series about the origin [DF76, DF83, FBI89] for
regions near the origin (how “near” depends on how many terms in the power
series you take). Furthermore, one can argue that for small resonances, there is
a normalized Hamiltonian which averages over the resonance [WR92], and that
therefore the overall effects on a distribution of such a resonance would be similar
to the effect of the averaging Hamiltonian on such a distribution. This normal-
ized Hamiltonian will be called H0(J , δ) (note that this H0 differs from the H0

introduced earlier). In these variables, Ψ0 will only be a function of J and δ.
Henceforth, this paper will work in the action-angle variables defined via this

approximate normalization. The conjugate variables to the action variables J

4



are the angle variables θ; the conjugate variable to δ is z. Due to the time-
independence of the elements of the system, this normalized δ will not change
from its original definition, and z will only differ from its original definition by
a function of J , θ, and δ. The relationship between this normalized z and the
arrival time is thus given by −βct = z + z0(J , θ, δ, s).

1.2.2 Wakefield Term in Action-Angle Variables

The functions fα and gα defined in appendix A, as well as Ψ, can be written in
terms of action-angle variables. The result is the wakefield term (see equation
A.17)

HW [Ψ] =
q2N

β2γmqc2
∑
α

fα(J , θ, δ, s)
∫
wα
(
z+z0(J , θ, δ, s)− z̄−z0(J̄ , θ̄, δ̄, s), s

)

gα(J̄ , θ̄, δ̄, s)Ψ(J̄ , θ̄, z̄, δ̄, s) d2J̄ d2θ̄ dz̄ dδ̄ (1.4)

1.2.3 Externally Applied Forces

There are essentially geometric considerations which determine the relationship
between the gα and the f̄α which are defined in appendix A. The f̄α are expected
to be able to describe any field pattern which can arise in the vacuum cham-
ber, under the assumption that any field pattern can be generated by a current
moving parallel to the ideal orbit. Thus, if a field pattern is generated instead
by electrodes with an oscillating voltage, one can expect that the generated field
is described by some combination of the f̄α. The generated field will be taken
to only depend on the longitudinal position s and the arrival time. This argu-
ment is not rigorous, but in practice our assumptions hold. Since the arguments
for describing the wakefields as we did (as an extra “potential”-like term in the
Hamiltonian) were based only on the effect on a test charge, the term in the
Hamiltonian due to an externally applied field can just be added to the wakefield
term. The term added to the Hamiltonian can be written as

HV =
q

β2γmqc2
fα(J , θ, δ, s)Vα

(
z + z0(J , θ, δ, s), s

)
(1.5)

Note that fαVα has units of voltage.

2 Solving the Vlasov Equation

Now, the Hamiltonian, consisting of H0, plus HW [Ψ] (equation (1.4)), plus HV

(equation (1.5)) can be put into the Vlasov equation for perturbations (equa-
tion (1.3)). The result is an integro-differential equation for Ψ.
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2.1 Fourier Transformation

To solve the equation, one Fourier transforms the equation in z and θ. After
doing so, the result is

∂Ψm

∂s
+ im · ∂H0

∂J
Ψm(J , δ, ω, s) + i

ω

βc

∂H0

∂δ
Ψm(J , δ, ω, s)

−
(
m · ∂Ψ0

∂J
+

ω

βc

∂Ψ0

∂δ

)
q

β2γmqc2
∑
α

Fαm(J , δ, ω, s)

[
iVα(ω, s) +

(2π)2qNβczα(ω, s)
∑
m̄

∫
G∗
αm̄(J̄ , δ̄, ω, s)Ψm̄(J̄ , δ̄, ω, s)d2J̄ dδ̄

]
= 0 (2.1)

where

Ψm(J , δ, ω, s) =
1

(2π)2βc

∫ ∞

−∞

∫
e−iωz/βce−im·θΨ(J , θ, z, δ, s) d2θ dz (2.2)

zα(ω, s) =
i

βc

∫ ∞

−∞
e−iωz/βcwα(z, s) dz (2.3)

Vα(ω, s) =
1

βc

∫ ∞

−∞
e−iωz/βcVα(z, s) dz (2.4)

Fαm(J , δ, ω, s) =
1

(2π)2

∫
e−im·θfα(J , θ, δ, s)eiωz0(J ,θ,δ,s)/βc d2θ (2.5)

Gαm(J , δ, ω, s) =
1

(2π)2

∫
e−im·θgα(J , θ, δ, s)eiωz0(J ,θ,δ,s)/βc d2θ (2.6)

At this point, one must decide how to handle the s-dependence. Note that
the choice to do an infinite Fourier analysis in z requires s to implicitly be over
the finite interval [0, L), where L is the circumference of the ring. Choosing
periodicity in s will cause unstable behavior to show up by ω having a positive
imaginary part. This may seem unusual at first, since s is the independent
variable. The reason things work out this way is that the fact that a particle
passes by a given point turn after turn is expressed by integrating over an infinite
interval in z (see equation (1.4)).

Thus, if one assumes periodicity in s, it is desirable to Fourier analyze in s
over the interval [0, L) and get an associated Fourier mode number k. For the
first 3 terms in (2.1), the Fourier transform is trivial. However, for the last term,
there is a complication: the Fαm and the zα all strongly depend on s. Fourier
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analyzing in s, one gets the equation

Ψmk(J , δ, ω) = −i q

γβ2mqc2

βcm · ∂Ψ0

∂J
+ ω

∂Ψ0

∂δ

kω0 + βcm · ∂H0

∂J
+ ω

∂H0

∂δ∑
α

1

L

∫ L

0
ds̄ Fαm(J , δ, ω, s̄)e−2πiks̄/L

[
iVα(ω, s̄)

+ (2π)2qNβczα(ω, s̄)
∑
k̄m̄

e2πik̄s̄/L
∫
G∗
αm̄(J̄ , δ̄, ω, s̄)Ψm̄k̄(J̄ , δ̄, ω) d2J̄ dδ̄

]
(2.7)

where

Ψmk(J , δ, ω) =
1

L

∫ L

0
Ψm(J , δ, ω, s)e−2πiks/Lds (2.8)

and ω0 = 2πβc/L is the angular revolution frequency for the ring.
One is not able to measure Ψmk(J , δ, ω) directly. One instead measures the

moments of the distribution, as defined in equation (A.7), as a function of time
(z). We can Fourier transform those dipole moments in time and define

dα(ω, s) =
1

βc

∫
e−iω[z+z0(J ,θ,δ,s)]/βcgα(J , θ, δ, s)Ψ(J , θ, z, δ, s) d2J d2θ dδ dz

= (2π)2
∑
mk

e2πiks/L
∫
G∗
αm(J , δ, ω, s)Ψmk(J , δ, ω) d2J dδ (2.9)

These are our true measured quantities. Writing equation (2.7) in terms of these
dα, we find

dα(ω, s) = −i(2π)2 q

γβ2mqc2
∑
mk


βcm · ∂Ψ0

∂J
+ ω

∂Ψ0

∂δ

kω0 + βcm · ∂H0

∂J
+ ω

∂H0

∂δ

G∗
αm(J , δ, ω, s)

∑
ᾱ

1

L

∫ L

0
Fᾱm(J , δ, ω, s̄)e2πik(s−s̄)/L

[qNβczᾱ(ω, s̄)dᾱ(ω, s̄) + iVᾱ(ω, s̄)] ds̄ d
2J dδ (2.10)

2.2 Simplifications

The s dependence in this equation is still very complex, and it is not obvious how
to simplify it to give a more easily soluble system. The difficulty lies primarily
with the first term in brackets in the second integral. If the denominator inside the
first integral is ignored, then dᾱ is multiplied by a term which is perturbatively
small; thus, the only case where a significant contribution from that term is
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expected is when the denominator inside the first integral is small. For a given ω,
one expects that this will only be true for one k, assuming that ω is sufficiently
small. The extent to which and under what conditions this constraint is met will
be discussed later in this paper. Were it not for the s-dependence in Fᾱm and
Gαm, this would determine a one-to-one relationship between ω and k, and the
problem would be diagonal in k.

It turns out that it is a good approximation in many cases to write

Gαm(J , δ, ω, s) = Gα(ω, s)Ḡαm(J , δ, ω) (2.11)

We can now turn the equation for dα into an equation for

d̄α(ω, s) =
dα(ω, s)

G∗α(ω, s)
(2.12)

which is

d̄α(ω, s) = −i(2π)2 q

γβ2mqc2
∑
mk


βcm · ∂Ψ0

∂J
+ ω

∂Ψ0

∂δ

kω0 + βcm · ∂H0

∂J
+ ω

∂H0

∂δ

Ḡ∗
αm(J , δ, ω)

∑
ᾱ

1

L

∫ L

0
Fᾱm(J , δ, ω, s̄)e2πik(s−s̄)/L

[
qNβczᾱ(ω, s̄)G∗ᾱ(ω, s̄)d̄ᾱ(ω, s̄) + iVᾱ(ω, s̄)

]
ds̄ d2J dδ (2.13)

Now, Fourier analyze this equation in s, and define

d̄αk(ω) =
1

L

∫ L

0
d̄α(ω, s)e

−2πiks/Lds (2.14)

The result is an equation coupling all the d̄αk(ω) with different k to each other.
There is no analytic expression for the result of inverting that matrix.

However, a useful analytic formulation for an approximate solution can be
obtained by considering the denominator inside the integral in (2.13). Note that
because both terms in brackets on the right hand side of (2.13) are perturbatively
small quantities, to have a significant d̄α on the left hand side, it is necessary
for the denominator inside the integral in (2.13) to be small. As long as the
frequency spread in the beam (variation in ω[∂H0/∂δ]) is small compared to ω0

and the transverse tune spread in the beam (variation in βcm · [∂H0/∂J ]/ω0) is
small, the denominator can only be small for one value of k for a given ω and m.
If the transverse tunes are sufficiently different and if the frequency spread in the
beam is sufficiently small, the denominator will only be small for a given m. For
finding instabilities (Vα = 0), this corresponds to saying that second order terms
in the beam current are small. For finding beam transfer functions (nonzero Vα),
this means that the lines for the beam transfer function do not overlap. When
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this is the case, the coupling between dαk with different k is eliminated, and (2.13)
becomes

d̄αk(ω) = −i(2π)2 q

γβ2mqc2
∑
m


βcm · ∂Ψ0

∂J
+ ω

∂Ψ0

∂δ

kω0 + βcm · ∂H0

∂J
+ ω

∂H0

∂δ

Ḡ∗
αm(J , δ, ω)

∑
ᾱ

[
qNβcd̄ᾱk(ω)

1

L

∫ L

0
Fᾱm(J , δ, ω, s̄)zᾱ(ω, s̄)G∗ᾱ(ω, s̄)ds̄

+ i
1

L

∫ L

0
e−2πiks̄/LFᾱm(J , δ, ω, s̄)Vᾱ(ω, s̄)ds̄

]
d2J dδ (2.15)

This equation has simplified (2.13) to give an equation which only couples dαk
with the same k but potentially different α. It will turn out that for the cases we
study, the nature of Gαm will eliminate coupling between dαk with different α.

One further simplification is often useful. Just as Gαm could often be broken
into a product of terms of the form (2.11), a similar operation can be performed
on Fαm:

Fαm(J , δ, ω, s) = Fα(ω, s)F̄αm(J , δ, ω) (2.16)

Using this in (2.15) gives

d̄αk(ω) = −i(2π)2 q

γβ2mqc2

∑
ᾱm


βcm · ∂Ψ0

∂J
+ ω

∂Ψ0

∂δ

kω0 + βcm · ∂H0

∂J
+ ω

∂H0

∂δ

Ḡ∗
αm(J , δ, ω)F̄ᾱm(J , δ, ω) d2J dδ

[
qNβcd̄ᾱk(ω)

1

L

∫ L

0
Fᾱ(ω, s̄)zᾱ(ω, s̄)G∗ᾱ(ω, s̄)ds̄

+ i
1

L

∫ L

0
e−2πiks̄/LFᾱ(ω, s̄)Vᾱ(ω, s̄)ds̄

]
(2.17)

To analyze equation (2.17), it is useful to examine three quantities. The first
is

Bαᾱk(ω) =

(2π)2
∑
m


βcm · ∂Ψ0

∂J
+ ω

∂Ψ0

∂δ

kω0 + βcm · ∂H0

∂J
+ ω

∂H0

∂δ

Ḡ∗
αm(J , δ, ω)F̄ᾱm(J , δ, ω) d2J dδ (2.18)

From equation (2.17), this can be seen to give the frequency dependence of the
response of the beam to a signal whose distribution in s is proportional to e2πks/L
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(modulo some s-dependent weighting factors to be discussed shortly). The next
quantity of interest is

V̄αk(ω) =
∫ L

0
e−2πiks̄/LFα(ω, s̄)Vα(ω, s̄)ds̄ (2.19)

This indicates that the signal that drives the beam oscillation is not just the k’th
Fourier mode of Vα: Vα must first be weighted by Fα. The practical consequences
of this will become clearer when specific examples are considered. The final
quantity of interest is

Zα(ω) =
∫ L

0
Fα(ω, s̄)zᾱ(ω, s̄)G∗α(ω, s̄)ds̄ (2.20)

The relevant quantity is not just the average impedance around the ring; the
impedance must be weighted by an s-dependent quantity. Putting these quanti-
ties together, (2.17) can be written as

d̄αk(ω) = −i q

γβ2mqc2L

∑
ᾱ

Bαᾱk(ω)
[
qNβcZᾱ(ω)d̄ᾱk(ω) + iV̄ᾱk(ω)

]
(2.21)

In many of the cases considered here, Bαᾱk(ω) is nonzero only when α = ᾱ.
In this case, (2.21) can be solved for d̄αk:

d̄αk(ω) =
q

γβ2mqc2L

Bααk(ω)V̄αk(ω)

1 + i
q2N

γβmqcL
Bααk(ω)Zα(ω)

(2.22)

The homogeneous equation (V̄αk = 0) will have solutions only when

−i q2N

γβmqcL
Bααk(ω)Zα(ω) = 1 (2.23)

As usual, one would look for ω which satisfy this equation. If there are any with
ω having a positive imaginary part, then unstable oscillations in the beam can
occur. Note that there is an intimate relationship between (2.22) and (2.23). The
zeros of the denominator of (2.22) occur for the ω which satisfy (2.23).

Equation (2.23) can be used to find a stability diagram by rewriting it as

q2N

γβmqcL
Zα(ω) =

i

Bααk(ω)
(2.24)

Since instability occurs once ω gets a positive imaginary part, the stability di-
agram is obtained by plotting i/Bααk(ω + iε) for real ω and ε an infinitesimal
positive quantity. If the left hand side of (2.24) lies inside (on the origin side of)
the curve, there is no ω satisfying (2.24) (or at least any such ω has a negative
imaginary part), and therefore the motion is stable.
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Next, the question arises on how to find the beam transfer function. The
obvious answer is to evaluate (2.22) for real ω. However, the difficulty with this
is that (2.22) cannot always be evaluated for real ω: one must give ω either small
positive imaginary part, or a small negative imaginary part. The reason lies with
the denominator of the integrand in (2.18). For real ω, that denominator will
become zero. Since the singularity cannot be integrated over, one must make
a choice of how to handle it. The choice can be made by examining how the
measurement of a beam transfer function is made: at one point in time, one
begins making the measurement, and continues to make the measurement for an
arbitrarily long time in the future. If one is examining the beam a long time
in the future, it is the exponentially growing solutions which are still giving a
signal, not the exponentially damping ones. Thus, when one is forced to choose
between giving ω a positive imaginary part and a negative imaginary part, the
positive imaginary part should be chosen. This can be justified mathematically
by examining the inverse Laplace transform:

f(t) =
1

2π

∫
γ

f(s)estds (2.25)

The curve γ goes from c−i∞ to c+i∞ for c real and satisfying certain conditions.
From the definition of the Laplace transform

f(s) =
∫ ∞

0
f(t)e−stdt (2.26)

it is expected that f(s) exists for s sufficiently positive. Thus, c can be taken
to be positive. The curve γ can be distorted in the negative real direction. If
there are any singularities on the imaginary axis, part of the curve must remain
to the right of those singularities. Note that the inverse Laplace transform is
really just a rotated Fourier transform. The curve γ remaining to the right of the
singularities corresponds to the integration curve in ω for our Fourier transform
remaining below the singularities, which is equivalent to integrating above the
singularities in the complex plane, or in other words giving ω an infinitesimal
positive imaginary part. Thus, when finding (2.22), Bααk(ω) should always be
evaluated at ω + iε with ω real. Note that this is exactly the same prescription
which was used for finding the stability diagrams.

2.3 Specific Examples

Two examples will be done. They are generally referred to as the longitudinal
and the transverse cases of the problem. It turns out that for the approximations
considered here (which are that the beam pipe is cylindrically symmetric and
that the coordinate transforms are those given in appendix B), Bαᾱk = 0 when
α 6= ᾱ.
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2.3.1 Longitudinal

This is the case where gα is 1. If one has a cylindrically symmetric beam pipe,
the definition of fα in appendix A means that fα = 1 as well. By convention,
Zα(ω) = βcZ‖(ω)/ω. The electric field that the beam sees at time t and position
s is given by

1

βc

∂

∂t
Vα(−βct, s) (2.27)

Clearly Fα and Gα are both 1. F̄αm is 1 for m = 0 and zero otherwise;
similarly for Ḡαm. The final quantity one needs is H0. A form for this is derived
in appendix B, and given by equation (B.14).

One can now compute Bzzk(ω) for this case (α = z): it is

(2π)2ω



∂Ψ0

∂δ

kω0 − ω

(
1 + ηδ − 2πνxJxξx

L
− 2πνyJyξy

L

)dδ d2J (2.28)

This is a difficult integral to perform because it depends both on δ and J , and
both are contained in the denominator. The most straightforward way to compute
the integral is to neglect one of the terms in the denominator. The terms which
depend on J are both roughly the square of the r.m.s. angular spread in the beam
times the chromaticity. The chromaticity in a corrected machine is typically much
smaller than 1. Here it will be assumed that this is much smaller than η times
the r.m.s. δ (relative energy spread). In that case the terms depending on J in
the denominator can be neglected.

The integration over J can now be performed. Define

ρ̄(x) = (2π)2Lσδ

∫
Ψ0(J , δ̄ + σδx)d

2J (2.29)

where

δ̄ = (2π)2L
∫
δΨ0(J , δ)d

2J dδ (2.30)

σ2
δ = (2π)2L

∫
δ2Ψ0(J , δ̄ + δ)d2J dδ (2.31)

Then Bzzk becomes

Bzzk(ω) =
ω

σδL

∫ ∞

−∞
ρ̄′(x) dx

kω0 − ω(1 + ηδ̄ + ησδx)
(2.32)

It is convenient to write this in terms of a dimensionless function B̄z(x) which
has a dimensionless argument x:

B̄z(x) =
∫ ∞

−∞
ρ̄′(y)
y − x

dy (2.33)
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in which case

Bzzk(ω) = − 1

ησ2
δL
B̄z

(
kω0 − ω(1 + ηδ̄)

ησδω

)
(2.34)

Note that for x real,

lim
ε→0+

Bz(x+ iε) =
∫ ∞

−∞
ρ̄′(y)
y − x

dy + iπρ′(x) (2.35)

Thus, the imaginary part of the beam transfer function at low current can be used
to find the beam distribution. The first two terms in the asymptotic expansion
for B̄z(x) give

B̄z(x) ∼ 1

y2
+

3

y4
+O

(
1

y5

)
(2.36)

Now let’s compute B̄z(x) for various distributions. First, consider a Gaussian
distribution

ρ̄(x) =
1√
2π
e−x

2/2 (2.37)

Then

B̄z,g(x) = −1− i

√
π

2
xe−x

2/2

[
erf

(
i
x√
2

)
+ sgn(Im{x})

]
(2.38)

Next, consider the “parabolic-like” distribution

ρ̄(x) =
1√
2πµ

Γ(µ)

Γ(µ− 1/2)

(
1− x2

2µ

)µ−3/2

(2.39)

This is a distribution with a standard deviation of 1 which goes to zero at x =√
2µ. In this case,

B̄z,p(µ) =
1

x2
F
(
1,

3

2
;µ;

2µ

x2

)
(2.40)

Here F is a (Gauss) hypergeometric function [AS72]. If µ is an integer or half-
integer, this can be computed in terms of elementary functions; see appendix C
for details.

2.3.2 Transverse

Let’s consider oscillations in the vertical direction. Then

fα(J , θ, δ, s) = gα(J , θ, δ, s) =
√

2Jyβy(s) cos
(
θy + ∆ψy(s)

)
(2.41)
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The transverse gradient of the electric field is given by

1

βc

∂

∂t
Vα(−βct, s) (2.42)

We can easily find Fym(J , δ, ω, s) = Gym(J , δ, ω, s) to be

Fy(0,±1)(J , δ, ω, s) =

√
Jyβy(s)

2
e±i∆ψy(s) (2.43)

Next, we note that as long as the betatron tune is not too near a half integer and
the frequency ω is small enough, the denominator in Byyk(ω) will be nonzero for
only one of m = (1, 0) or m = (−1, 0) (see discussion before Eq. (2.15)). Thus,
the sum over m can be eliminated, and we can thus split Fαm as

Fα(ω, s) =
√
βy(s)e

±i∆ψy(s) F̄α(0,±1)(J , δ, ω) =

√
Jy
2

(2.44)

and Gα and Ḡαm are exactly the same as Fα and F̄αm respectively. This implies
that

Zy(ω) =
∫ L

0
βy(s)z⊥(ω, s) ds (2.45)

where z⊥(ω, s) is the transverse impedance per unit length at s. Similarly, Vy

must be weighted by
√
βy(s) to get V̄αk, where

− q

γmq
Vy(−βct, s) (2.46)

is the transverse acceleration in the y direction at time t and position s.
Computing Byyk(ω), we get

2π2



Jy

(
±βc∂Ψ0

∂Jy
+ ω

∂Ψ0

∂δ

)
d2J dδ



kω0 ± ωy − ω + (±ωyξy − ωη)δ

+

(
±ω0ᾱxy +

ωωxξx
βc

)
Jx +

(
±ω0ᾱyy +

ωωyξy
βc

)
Jy




(2.47)

In the numerator, we can ignore the second term as long as βc/εy � ω/σδ, which
is a safe assumption as long as we’re not looking at extremely high frequencies.
It is not much more difficult to include that term in the computation; the result
will just have an additional term.

We will simplify the denominator by considering two separate cases. The first
is when we ignore the terms proportional to Jx and Jy. In that case, we get

Byyk(ω) = ±2π2βc


Jy
∂Ψ0

∂Jy
d2J dδ

kω0 ± ωy − ω + (±ωyξy − ωη)δ

(2.48)
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This can be rewritten as

Byyk(ω) =
βc

2L

1

σδ(ωyξy ∓ ωη)
B̄⊥

(
ω ∓ ωy − kω0

(±ωyξy − ωη)σδ
− δ̄

σδ

)
(2.49)

where

B̄⊥(y) =
∫ ∞

−∞
ρ̄(x) dx

y − x
(2.50)

As before, for y real we can compute

lim
ε→0+

B̄⊥(y) =
∫ ∞

−∞
ρ̄(x) dx

y − x
− iπρ(y) (2.51)

Also note that B̄′
⊥(y) = −B̄z(y). The first two terms in the asymptotic expansion

of B̄⊥(y) for large y give

B̄⊥(y) ∼ 1

y
+

1

y3
+O

(
1

y4

)
(2.52)

For a Gaussian distribution,

B̄⊥(y) = −i
√
π

2
e−y

2/2

[
erf

(
i
y√
2

)
+ sgn(Im{y})

]
(2.53)

and for the parabolic-like distribution (2.39),

B̄⊥(y) =
1

y
F

(
1,

1

2
;µ;

2µ

y2

)
(2.54)

The second case is when we ignore terms proportional to δ in the denominator.
This case is important for frequencies ω ≈ ±ωyξy/η, when the frequency spread
resulting from energy spread becomes small. In this case,

Byyk(ω) =

±


2π2βcJy

∂Ψ0

∂Jy
d2J dδ

kω0 ± ωy − ω +

(
±ω0ᾱxy +

ωωxξx
βc

)
Jx +

(
±ω0ᾱyy +

ωωyξy
βc

)
Jy

(2.55)

We now assume that the distribution satisfies

Λ(x+ y) = (2π)2εxεyL
∫ ∞

−∞
Ψ0(εxx, εyy, δ)dδ (2.56)
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where

εx =
∫
JxΨ0(J , δ)d

2J dδ εy =
∫
JyΨ0(J , δ)d

2J dδ (2.57)

This is not necessary for the computation to be tractable, but gives relatively
nice results and is also a realistic assumption (the beam shape is elliptically
symmetric). With this assumption, we can write

Byyk(ω) =

± βc

2L

1

ω ∓ ωy − kω0

T̄




ω ∓ ωy − kω0

εx

[
±ω0ᾱxy +

ωωxξx
βc

] , ω ∓ ωy − kω0

εy

[
±ω0ᾱyy +

ωωyξy
βc

]  (2.58)

where

T̄ (X, Y ) = −
∫ ∞

0

∫ ∞

0

yΛ′(x+ y) dx dy

1− x/X − y/Y
(2.59)

This can be rewritten as

T̄ (X, Y ) =



XY 2

T̂ ′(Y )− T̂ (Y )− T̂ (X)

Y −X
Y −X

X 6= Y

1

2
X3T̂ ′′(X) X = Y

(2.60)

where

T̂ (z) = −
∫ ∞

0
Λ̄(u) ln

(
1− u

z

)
du (2.61)

For nearly real z,

lim
ε→0+

T̂ (z + iε) = −
∫ ∞

0
Λ̄(u) ln

∣∣∣∣1− u

z

∣∣∣∣ du− iπλ̄(z) (2.62)

where

λ̄(z) =
∫ ∞

z
Λ̄(u) du (2.63)

is the normalized distribution in action in one variable. The first two terms in
the asymptotic expansion of T̂ (z) for large z can be computed, giving

T̂ (z) ∼ 1

z
+

1

z2
+O

(
1

z3

)
(2.64)

In particular, this asymptotic expansion does not give the imaginary contribution
for real z.
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The function Λ̄(u) = e−u corresponds to the Gaussian distribution (2.37), and
gives

T̂ (z) = −e−zE1(−z) (2.65)

where E1 is the exponential integral function [AS72]. The Λ̄ corresponding to a
parabolic-like distribution (2.39) in each coordinate is

Λ̄(u) =
(µ− 1)(µ− 2)

µ2

(
1− u

µ

)µ−3

(2.66)

and the corresponding T̂ is

T̂ (z) =
1

z
F
(
1, 1;µ;

µ

z

)
(2.67)

3 Schottky Spectra

The treatment of Schottky spectra will not be as detailed as the treatment of
beam transfer functions was, for reasons explained at the end of this section.
The computation is basically identical to the computation in [BBH+74], except
greater generality is allowed in the description of the motion of particles.

3.1 Spectra without Interactions

Begin by finding the Schottky spectra for non-interacting particles. There are
several steps involved in this:

1. Give an expression for the motion for a single particle by finding and solving
the equations of motion for the Hamiltonian (B.14).

2. Describe the measured signal at a pickup forN particles with different initial
conditions.

3. Find the Fourier transform of that signal.

4. Square that Fourier transform, separating terms into coherent (proportional
to N2) and incoherent (proportional to N) terms.

5. Find the resulting incoherent signal when the initial conditions are dis-
tributed according to some distribution function.

3.1.1 Equations of Motion

In this paper, dependence of particle motion on action will be ignored. Thus,
solving for particle motion for the Hamiltonian (B.14) gives

z = −(s− s0)(1 + ηδ0) θx,y = θx,y;0 +
2πνy
L

(1 + ξx,yδ0)(s− s0) (3.1)
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where the 0-subscripted symbols are the initial conditions at “time” z = 0. All
other variables will retain their initial conditions. The specification of a fixed
value for a dependent variable in the initial conditions may seem backwards, but
in reality it is the only sensible way to do things (due to issues involving wrapping
around the ring).

3.1.2 Measured Signals

We treat the pickup just like the source term for a wakefield, using (A.7). Thus,
the moment-weighted current corresponding to a set of N particles with initial
conditions (θl,J l, δl, sl) and charges ql is

∑
l

qlgα

(
J l, θl +

2πν

L
(1 + ξδl)(s− sl), δl, s

)
δ
(
t− (s− sl)(1 + ηδl)/βc

)
(3.2)

where the ξ is the chromaticity corresponding to the vector component in ques-
tion. This is the current that will be measured at a given position s. The variable
s incorporates two physical realities: the position along the ideal orbit of the ring,
and the number of times that the particle has passed that position in the ring.
Thus, if you want the signal at a given position for all times, there is an implicit
summation in (3.2) over all turns, which is incorporated into s. Let’s say that
s = 0 corresponds to the observation point in the ring. Then that summation
gives

∑
kl

qlgα

(
J l, θl +

2πν

L
(1 + ξδl)(kL− sl), δl, 0

)
δ
(
t− (kL− sl)(1 + ηδl)/βc

)
(3.3)

3.1.3 Fourier Transformation

It is trivial to Fourier transform (3.3): the result is

dα(ω) =
∑
kl

qlgα

(
J l, θl +

2πν

L
(1 + ξδl)(kL− sl), δl, 0

)
eiω(kL−sl)(1+ηδl)/βc (3.4)

Let’s say that we are taking a data sample from the time −T to T (we will
eventually let T go to infinity, but we need it for now). The k summation will
extend from −K−

l to K+
l , where

K±
l =

⌊
T

T0

1

1 + ηδl
∓ sl
L

⌋
(3.5)

where T0 = 2π/ω0 is the revolution period of the ring. There are K−
l + K+

l + 1
terms in the summation , which for large T is approximately 2T/[T0(1 + ηδl)].
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From the discussion in appendix D, we can compute the incoherent contribu-
tion to 〈|dα(ω)|2〉:

Nq2
∫

Ψ0(J , δ)
∑
kk̄

gα

(
J , θ +

2πν

L
(1 + ξδ)(kL− s), δ, 0

)

gα

(
J , θ +

2πν

L
(1 + ξδ)(k̄L− s), δ, 0

)
eiω(k−k̄)L(1+ηδ)/βcdJ dθ dδ ds (3.6)

3.1.4 Longitudinal Case

When gα = 1, the summation in the above integral can be computed using the
results of appendix E. Using the result that K−

l +K+
l +1 ≈ 2T/[T0(1+ ηδl)], we

get

4π
TNq2

T0

∑
k

∫ ρ̄(x)

1 + η(δ̄ + σδx)
δ

(
ωL[1 + η(δ̄ + σδx)]

βc
− 2πk

)
dx =

2TNq2

T0 |η|σδ sgn(ω)
∑
k

1

k
ρ̄

(
kω0 − ω

ωη
− δ̄

σδ

)
(3.7)

using the definition of ρ̄ in (2.29).

3.1.5 Transverse Case

In this case, gα is given by (2.41), and is the transverse coordinate. The same
computation can be performed, giving

2πNq2σ2
yT

T 2
0 σδ

∑
±

sgn(ωη ∓ ωyξ)
∑
k

1

ηkω0 ∓ ωy(ξ − η)
ρ̄

(
kω0 ± ωy − ω

σδ(ωη ∓ ωyξ)
− δ̄

σδ

)

(3.8)

where y is the direction in which we are measuring the transverse displacement.

3.2 Adding Interactions

The mathematics behind adding wakefield interactions to this picture to obtain
the Schottky spectra at higher currents is difficult, involving the computation of
two-particle correlation functions (the author does not claim to understand this
derivation . . . ). For the details see [Bis80, BL82, Bis83].

The net result is that each term in the above expressions in each case should
be multiplied by the quantity

∣∣∣∣∣1 + i
q2N

γβmqcL
Bααk(ω)Zα(ω)

∣∣∣∣∣
−2

(3.9)
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where the k here corresponds to the k in the above equations. Note that this
quantity is the square of the absolute value of what appears in the denominator of
(2.22). Thus, there is a close relationship between what happens to the Schottky
spectrum at high currents and what happens to the beam transfer function at
high currents. Note that the ± in (2.47) corresponds to the ± appearing in (3.8),
in addition to the k’s corresponding to each other.
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A Wakefield Hamiltonian

The derivation in this appendix is similar to that appearing in [Ber96], but is
slightly more general, and applies to unbunched beams instead of bunched beams.

A.1 Force on a Charged Particle

Begin with the Lorentz force equation

F = q
(
E +

v

c
×B

)
(A.1)

Here F is the force felt by a test charge with charge q and velocity v due to
electric fields E and magnetic fields B. c is the speed of light. Gaussian units
are used throughout. Take the curl of (A.1):

∇× F = q
[
∇×E +

v

c
(∇ ·B)− 1

c
(v ·∇)B

]
(A.2)

Using Maxwell’s equations, this is

∇× F = −q
c

[
∂B

∂t
+ (v ·∇)B

]
= −q

c

dB

dt

∣∣∣∣∣
x=X(x0,p0,t)

v =
∂X

∂t
(A.3)

where the function X(x0,p0, t) gives the trajectory of the test charge in question
with initial conditions X(x0,p0, 0) = x0, and initial momentum p0. This implies
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that∫ t1

t0
(∇× F )x=X(x0,p0,t)dt =

− q

c

[
B
(
X(x0,p0, t1), t1

)
−B

(
X(x0,p0, t0), t0

)]
(A.4)

In particular, if a particle goes from a field-free region to another field-free region,
the integral is zero.

Now, assume that the particle’s trajectory is given by X(x0,p0, t) = x0 +
x1(p0, t). Thus, the particle may undergo a change in velocity, but the velocity
cannot depend on spatial coordinates. Then

(∇× F )x=X(x0,p0,t)
= ∇0 × F

(
X(x0,p0, t), t

)
(A.5)

where ∇0 means to take the derivative with respect to x0. Defining∫ t1

t0
F
(
X(x0,p0, t), t

)
dt = I(x0,p0, t0) (A.6)

then our assumption about X means that ∇x × I = 0 if we move from one
field-free region to another. Thus, we can write I(x,p, t) = −∇xS.

A.2 Fields Created by a Source Distribution

Imagine now that the particles are moving down a tube. The tube is transla-
tionally invariant in one direction, except for a section which occupies a finite
length along the translationally invariant axis which may have some arbitrary
shape (the “object”). The integrations in the previous section go from a point
well away from the object, through the object, to another point well away from
the object. Call the direction of the translationally invariant axis ŝ.

Imagine one particle (labeled 1) passing through an object, followed by an-
other particle (labeled 2). If the object is sufficiently short such that one can
neglect

• the change in velocity of particle 2 as it passes through the object, and

• the difference in times required to pass through the object for the two par-
ticles,

then the momentum kick received by particle 2 can only depend on the difference
in arrival times of particle 1 and particle 2 at some point s inside or very near
the object. We will therefore assume that the ŝ component of the velocity of all
particles is βc. In this case, the s and t dependence of the force on particle 2 due
to particle 1 will be s2 − s1 − βc(t2 − t1).

We characterize our distribution by the moment of each slice at a given s. If
we label the moments with the index α, then the moment at a given point s is∫

gα(z, s)Ψ(z, s, t) d5z (A.7)
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where the vector z refers to x⊥, p⊥, and ps. The ⊥ subscript refers to the
directions perpendicular to ŝ. We define gα(z, s) to have little variation in s over
the length of the object in question. Ψ is the single-particle distribution function,
and is normalized to 1 when integrating over everything except t. Each of these
moments will generate an integrated force (and therefore a momentum kick if
the velocity is constant) generated by an S which is proportional to a function
f̄α(z, s), where s is really just a coordinate referring to the position of the object
in question. The variation of f̄α in s should be small over the length of the object.

Putting all of this together, we can write

S(z, s, t) = q1q2N2
1

βc
f̄α(z, s)

∫
Wα(s− s̄)gα(z̄, s̄)Ψ(z̄, s̄, t) d5z̄ ds̄ (A.8)

Since we’re taking the distribution at time t and are considering the force at
time t, the expression s2 − s1 − βc(t2 − t1) simply turned out to be s − s̄. The
Wα are called wakefields: the argument of the wakefield is really −βc times the
difference in arrival times of the particles at the object (this will be important
later). Various combinations of s, s̄, and t can be used for the arguments of
Ψ. This is probably the most useful for unbunched beams (for bunched beams,
s̄− βct would be better, since if all particles are moving with velocity βcŝ, then
the distribution must only be a function of s − βct, and thus would lead to Ψ
being a slowly varying function of its last argument (t), at least on the scale of
passing through a single object).

A.3 Hamiltonian

The Hamiltonian doesn’t give the integrated force, but the force. However, if the
coordinates change very little with time (except for s, in which case s−βct changes
little with time), then the integrated force will be a gradient of the integrated
Hamiltonian, with s replaced by z+ βct. We approximate this by assuming that
the time (t) dependence of Ψ is negligible, and defining a function wα(z, s) such
that

Wα(z) =
∫
wα(z, s) ds = βc

∫
wα(z, βct) dt (A.9)

where the integral is over the length of the object in question. There are in
general several objects placed in various locations around the ring, and so the
second function of the second argument to wα is to indicate which object is being
looked at. Therefore the term in the Hamiltonian which gives an integrated force
defined by S is

Vα(z, s, t) = q1q2N2f̄α(z, s)
∫
wα(s− s̄, s)gα(z̄, s̄)Ψ(z̄, s̄− βct, t) d5z̄ ds̄ (A.10)
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A.4 Expansion of Hamiltonian

Now, begin with the Hamiltonian

H = c

√√√√[p⊥ − q

c
A⊥(x⊥, s, t)

]2
+

[
ps

1 + x/ρ(s)
− q

c
As(x⊥, s, t)

]2

+ (mqc)2

+ qV (x⊥,p⊥, ps, s, t) (A.11)

Here ρ(s) is the local radius of curvature of the design trajectory for particles
with mass mq and charge q. The ŝ direction is chosen to lie along the design
trajectory, and s is the arc length along that trajectory. This ŝ direction is
assumed to coincide with the ŝ direction defined in section A.2. Converting to s
as the independent variable,

H = −q
c

(
1 +

x

ρ(s)

)
As(x⊥, s, t)−

(
1 +

x

ρ

)
√(

H − V

c

)2

−
(
p⊥ −

q

c
A⊥(x⊥, s, t)

)2

− (mqc)2 (A.12)

The sign of the square root has been chosen such that particles with positive H
have dt/ds > 0. Note that the arguments of V have been dropped for simplicity.
Scaling p⊥ and the Hamiltonian H by p = βγmqc and defining z = −βct and
H = γmqc

2(1 + β2δ) the Hamiltonian can be written as

H = − q

pc

(
1 +

x

ρ(s)

)
As(x⊥, s, t)−

(
1 +

x

ρ(s)

)
√√√√(1 + δ)2 − δ2

γ2
−
(
p⊥ −

q

pc
A⊥(x⊥, s, t)

)2

− 2V

βpc
(1 + β2δ) +

(
V

pc

)2

(A.13)

Expanding the square root and keeping terms only to first order in V ,

H = − q

pc

(
1 +

x

ρ(s)

)
As(x⊥, s, t)

−
(

1 +
x

ρ(s)

)√√√√(1 + δ)2 − δ2

γ2
−
(
p⊥ −

q

pc
A⊥(x⊥, s, t)

)2

+

(
1 +

x

ρ(s)

)
(1 + δ)2 − δ2

γ2
−
(
p⊥ −

q

pc
A⊥(x⊥, s, t)

)2


−1/2

V

βpc
(1 + β2δ)

(A.14)
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Writing out V ,

H = − q

pc

(
1 +

x

ρ(s)

)
As(x⊥, s, t)

−
(

1 +
x

ρ(s)

)√√√√(1 + δ)2 − δ2

γ2
−
(
p⊥ −

q

pc
A⊥(x⊥, s, t)

)2

+
q2N

βpc

(
1 +

x

ρ(s)

)


(1 + δ)2 − δ2

γ2
−
(
p⊥ −

q

pc
A⊥(x⊥, s, t)

)2


−1/2

(1 + β2δ)
∑
α

f̄α(x⊥,p⊥, δ, s)

∫
wα(z − z̄, s)gα(x̄⊥, p̄⊥, δ̄, s)Ψ(x̄⊥, p̄⊥, z̄, δ̄, s) d

2x̄⊥d2p̄⊥dz̄ dδ̄ (A.15)

Note that the arguments of f̄α, gα, and Ψ have been changed freely. Conversion
from one to the other is accomplished by applying the transformation from one
set of coordinates to the other.

At this point, it is important to clarify what is meant by the distribution
function when s is the independent variable. Since our interactions are local to a
given point in the ring s, we really want the particle density as a function of time
at that given point s, and that is how the distribution function Ψ will be defined.
If this is the case, then integrating the distribution over z will in fact give an
infinite result, since the same particles repeatedly come back to that same point
s on subsequent turns. Thus, the range of integration in z̄ in (A.15) is infinite.

Assuming that A⊥ is independent of t, and therefore defining

fα(x⊥,p⊥, δ, s) =


(1 + δ)2 − δ2

γ2
−
(
p⊥ −

q

pc
A⊥(x⊥, s, t)

)2


−1/2

(
1 +

x

ρ(s)

)
(1 + β2δ)f̄α(x⊥,p⊥, δ, s) (A.16)

the last term in the Hamiltonian simply becomes

q2N

βpc

∑
α

fα(x⊥,p⊥, δ, s)
∫
wα(z − z̄, s)gα(x̄⊥, p̄⊥, δ̄, s)

Ψ(x̄⊥, p̄⊥, z̄, δ̄, s) d
2x̄⊥ d2p̄⊥ dz̄ dδ̄ (A.17)

Note that near the origin in phase space, fα ≈ f̄α.

B Single-Particle Hamiltonian for Standard Accelerator
Lattices

An approximate expansion, valid for many accelerators, of the first two terms of
the Hamiltonian (A.15) is derived in this appendix. The derivation assumes that
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A⊥ = 0. Terms in the Hamiltonian are taken out to third order in the canonical
variables. Magnet edge effects are ignored, but they can often be treated through
thin elements which fall into this framework.

Expanding As out to fourth order, the first term in (A.15) becomes

x

ρ(s)
+

1

2

1

ρ2(s)
x2 +

K(s)

2
(y2 − x2)− S(s)

6
(x3 − 3xy2)− O(s)

24
(x4 − 6x2y2 + y4)

(B.1)

In doing this, it has been assumed that the fields in bending magnets were exactly
the value that they need to be to achieve a radius of curvature ρ for a particle
following the ideal orbit. Upright quadrupoles, sextupoles, and octupoles have
been considered, and they are located in straight sections. This is really meant
as an example: the subsequent analysis (and the analysis in this paper) will
require that the first three terms are of the form given, but the analysis can
easily be extended to more general linear/quadratic terms in the Hamiltonian.
The subsequent approximations will apply to higher order terms of a more general
form than the ones given in (B.1).

The second term in (A.15) can be expanded out to second order in the canon-
ical variables, giving

−1− x

ρ(s)
− δ − δx

ρ(s)
+

δ2

2γ2
+
p2
x

2
+
p2
y

2
(B.2)

There are also higher order terms in the expansion of (A.15). For the purposes
of this analysis, it is only necessary to acknowledge their existence, since their
exact form will not be important.

B.1 Transformation to Action-Angle Variables

Next, the Hamiltonian consisting of the sum of (B.1) and (B.2) is converted to
the action-angle variables for the linear Hamiltonian. Using the usual accelerator
physics convention, the transformations from the old variables (x, px, y, py, z, δ)
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to the new variables (θx, Jx, θy, Jy, Z, δ) are (δ doesn’t change)

x = δDx(s) +
√

2Jxβx(s) cos[θx + ∆ψx(s)] (B.3)

px = δD′
x(s)−

√
2Jx
βx(s)

{sin[θx + ∆ψx(s)] + αx(s) cos[θx + ∆ψx(s)]} (B.4)

y =
√

2Jyβy(s) cos[θy + ∆ψy(s)] (B.5)

py = −
√

2Jy
βy(s)

{sin[θy + ∆ψy(s)] + αy(s) cos[θy + ∆ψy(s)]} (B.6)

z = Z +Dx(s)

√
2Jx
βx(s)

{sin[θx + ∆ψx(s)] + αx(s) cos[θx + ∆ψx(s)]} (B.7)

+D′
x(s)

√
2Jxβx(s) cos[θx + ∆ψx(s)] +

∫ s

0

[
η − Dx(s)

ρ(s)
+

1

γ2

]
ds (B.8)

where the betatron functions βx(s), βy(s), αx(s), αy(s) and the dispersion func-
tion Dx(s) are all defined in the usual fashion,

∆ψx(s) =
∫ s

0

ds

βx(s)
− 2πνxs

L
(B.9)

and analogously for ∆ψy(s), and

η =
1

L

∫ L

0

[
Dx(s)

ρ(s)
− 1

γ2

]
ds (B.10)

νx is defined as usual to be the tune of the accelerator. Note that by definition
∆ψx(s) is periodic in s, with period L, where L is the circumference of the ring.

When these transformations are made, the Hamiltonian becomes

−δ − ηδ2

2
+

2πνxJx
L

+
2πνyJy
L

(B.11)

plus some terms which are third order in the original phase space coordinates.
There are several types of terms:

1. Terms which only depend on δ. These terms give a more accurate (higher
order) representation of the purely longitudinal motion. They will be ignored
in this paper.

2. Terms which are proportional to a power of δ and one of
√
Jx or

√
Jy (but not

both). Such terms correspond to a closed orbit distortion which depends on
δ. They are the equivalent of the dispersion, but to higher order in δ. They
should have been eliminated before transforming into action-angle variables.
Their effect will be ignored in this paper.
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3. Terms which are proportional to Jxδ or Jyδ and are independent of θ. These
terms have an s-dependent coefficient which can be made independent of s by
a simple transformation of θ and Z, giving a contribution to the Hamiltonian
of

2πνxξxJxδ

L
+

2πνyξyJyδ

L
(B.12)

The ξx,y are the chromaticities. The transformation of θ and Z will be
ignored in this paper.

4. Terms which are proportional to δ2 and Jx or Jy, but are independent of
θ. They give a contribution to the Hamiltonian similar to the contribution
from the chromaticity terms. Their effects will be ignored in this paper.

5. Terms which are purely a function of J and s. Again, these terms can be
made independent of s via a simple transformation of θ. Once this is done,
they add a term to the Hamiltonian which is of the form

2π

L

(
1

2
ᾱxxJ

2
x + ᾱxyJxJy +

1

2
ᾱyyJ

2
y

)
(B.13)

Again, the transformation of θ will be ignored in this paper.

6. Other nonlinear terms which will depend on θ. In second order, they may
give contributions to the pure-J terms, but otherwise will have no effect on
the Hamiltonian to the order given above. They will introduce coordinate
transformations and contributions to higher order terms in the Hamiltonian
which will be ignored in this paper.

For the purposes of this paper, the Hamiltonian will be taken to be

− δ − ηδ2

2
+

2πνxJx
L

(1 + ξxδ) +
2πνyJy
L

(1 + ξyδ)

+
2π

L

(
1

2
ᾱxxJ

2
x + ᾱxyJxJy +

1

2
ᾱyyJ

2
y

)
(B.14)

and the coordinate transformations from the canonical coordinates used here to
the original canonical coordinates are given by (B.3)–(B.8).

Many of the terms that have been ignored here can be included in this for-
malism straightforwardly. Others would require the use of some of the more
general forms of the formalism, and might require different approximations to
be made than those that are made in this paper. It appears that in most cases,
however, these corrections would be of the same order as the relative size of the
perturbation that they generate. One possible exception will occur when the
chromaticity is extremely small, in which case certain symmetries of the problem
may be broken by the inclusion of these extra terms.
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C Evaluation of Hypergeometric Functions

The hypergeometric functions which appear in this paper can all be evaluated
in the case where µ is an integer or half integer, where µ is the parameter in
the parabolic-like distribution that corresponds to the hypergeometric function
in question. First of all, one should be aware that this is often not the optimal
method for evaluating the hypergeometric function numerically; it often leads
to numerical instability. For large indices, the formulas here tend to be good
for large z, but fail for smaller z. For very small z, one should just use the
series expansion about the origin. For medium sizes of z (near 1), one should use
the transformation formulas in [AS72] to transform to a hypergeometric function
where the argument is either small or large.

We begin with

F
(
1,

1

2
;
3

2
; z2

)
=

1

2z
ln
(

1 + z

1− z

)
(C.1)

F
(
1,

1

2
; 2; z

)
=

2

z
(1−√1− z) (C.2)

F (1, 1; 2; z) = −1

z
ln(1− z) (C.3)

F
(
1, 1;

3

2
; z2

)
=




1

2z

√ z

z − 1
ln




1−
√

z

z − 1

1 +
√ z

z − 1


 z /∈ [0,∞)

1√
z(1− z)

tan−1
√

z

1− z
=

cos−1(1− 2z)

2
√
z(1− z)

0 6 z < 1

(C.4)

The branch cuts for ln and the square root are taken to be the negative real axis.
We then use the recursion relation

F (1, b+m; c+ n; z) =

Γ(b)Γ(c + n)Γ(c− b)

Γ(b+m)Γ(c)Γ(c− b+ n−m)

(z − 1)n−m

zn
F (1, b; c; z)

+
Γ(b)

Γ(b+m)

n−1∑
k=0

Γ(c+ n)Γ(c− b+ n− k − 1)

Γ(c+ n− k − 1)Γ(c− b+ n−m)

(z − 1)k−m

zk+1

− (c+ n− 1)
m−1∑
k=0

Γ(b+ k)Γ(c− b+ n− k − 1)

Γ(b+m)Γ(c− b+ n−m)
(z − 1)k−m (C.5)

The case where c− b+ n−m 6 0 and is an integer is covered by

F (1, c+m; c; z) = (c− 1)
m∑
k=0

Γ(c+m− k − 1)m!

Γ(c+m)(m− k)!
(1− z)−k−1 (C.6)
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which holds for c > 1.
These formulas can be derived from the relations found in [AS72].

D Coherent and Incoherent Terms in Averages

Consider a function f(z). We wish to consider the average of the summation

F =
N−1∑
l=0

f(zl) (D.1)

and its square, where each of the N zl are independently distributed according
to the distribution function ρ(z). First of all, it is straightforward to compute

〈F 〉 = N〈f〉 〈f〉 =
∫
f(z)ρ(z) dz (D.2)

Now, what about 〈|F |2〉? First of all, write the summation for 〈|F |2〉 as

〈|F |2〉 =
N−1∑
l=0

N−1∑
l̄=0

f(zl)f
∗(zl̄) =

N−1∑
l=0

N−1∑
l̄=0
l̄ 6=l

f(zl)f
∗(zl̄) +

N−1∑
l=0

|f(zl)|2 (D.3)

Assuming that each zl is distributed according to ρ(z) and averaging, we find

〈|F |2〉 = N(N − 1)〈f〉2 +N
∫
|f(z)|2 ρ(z) dz (D.4)

The first term term provides no information than 〈F 〉 did; it is essentially (for
large N) 〈F 〉2. However, the second term is different: it gives a different value,
which is proportional to N instead of N2. The first term we will call the “coherent
term” (it comes from all the particles acting in the same way), and the second
term will be called the “incoherent term” (it comes from all the particles acting
independently).

Schottky spectra are the result of the incoherent term. They provide a signal
over a range of frequencies that the coherent term (i.e., the average signal) does
not, and also give access to information that cannot be obtained from the coherent
signal.

E Exponential Summations

The double summation

K+∑
k=−K−

K+∑
k̄=−K−

eiα(k−k̄) (E.1)
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appears in our computation of Schottky spectra. We are generally interested in
what happens to this summation when K+ and K− become large. The summa-
tion can be computed in closed form: it is

sin2 K
+ +K− + 1

2
α

sin2 α

2

(E.2)

This expression is not a particularly useful form. However, note several facts
about the expression:

1. It is periodic in α with period 2π.

2. Its integral from −π to π is 2π(K+ +K− + 1).

3. The peak value of the expression is at α = 0, and is (K+ +K− + 1)2.

4. For large (K++K−+1), the function oscillates rapidly, with an approximate
period of 2π/(K+ +K− + 1)

5. The height of the non-central peaks is csc2(α/2); for a given α, the ratio of
the peak height to the central peak height decreases as 1/(K+ +K− + 1)2

6. For large (K+ +K− + 1), the area under the central peak is approximately
Si(2π)(K+ +K− + 1) ≈ 1.4(K+ +K− + 1).

Thus, we have a function with period 2π, which is strongly peaked near α = 0
and its periodic counterparts, and the area under which is 2π(K+ + K− + 1).
The area under the narrow central peak (it narrows as (K+ +K−+1) →∞) is a
substantial fraction of the total area of the function. Thus, the function behaves
much like a δ-function. Thus, we can write the summation in the limit of large
(K+ +K− + 1) as

2π(K+ +K− + 1)
∞∑

k=−∞
δ(α− 2πk) (E.3)

References

[AS72] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical
Functions. Dover, New York (1972).

[BBH+74] J. Borer, et al. “Non-destructive Diagnostics of Coasting Beams with
Schottky Noise.” In Proceedings of the IXth International Conference
on High Energy Accelerators, pp. 53–56, Stanford, California (1974).
International Union of Pure and Applied Physics, National Science
Foundation, and U.S. Atomic Energy Commission. Report numbers
CONF 740522, UC-28-Accelerators.

30



[Ber96] J. S. Berg. Coherent Modes for Multiple Non-Rigid Bunches in a
Storage Ring. PhD thesis, Stanford University, Stanford, CA (1996).
SLAC report SLAC-R-478.

[BG99] J. S. Berg and J. Gareyte. In A. W. Chao and M. Tigner, editors,
Handbook of Accelerator Physics and Engineering, pp. 576–583, Sin-
gapore (1999). World Scientific.

[Bis80] J. J. Bisognano. “Kinetic Equations for Stochastic Cooling.” In W. S.
Newman, editor, 11th International Conference on High-Energy Accel-
erators, pp. 772–776, Basel (1980). European Organization for Nuclear
Research (CERN), Birkhäuser Verlag.

[Bis83] J. Bisognano. “Stochastic Cooling: Recent Theoretical Directions.”
IEEE Trans. Nucl. Sci., NS-30(4), 2393–2396 (1983).

[BL82] J. Bisognano and C. Leemann. “Stochastic Cooling.” In R. A. Car-
rigan, F. R. Huson, and M. Month, editors, Physics of High Energy
Particle Accelerators (Fermilab Summer School, 1981), number 87 in
AIP Conference Proceedings, pp. 584–655, New York (1982). Ameri-
can Institute of Physics.

[BR96] J. S. Berg and F. Ruggiero. “Landau Damping with Two-Dimensional
Betatron Tune Spread.” CERN-SL-96-71 AP, CERN, Geneva,
Switzerland (1996).

[BR98] J. S. Berg and F. Ruggiero. “Stability Diagrams for Landau Damp-
ing.” In M. Comyn, et al., editors, Proceedings of the 1997 Particle
Accelerator Conference, Vol. 2, pp. 1712–1714, Piscataway, NJ (1998).
IEEE.

[Chi85] Y. H. Chin. “Coherent Synchro-Betatron Resonances Driven by Lo-
calized Wake Fields.” CERN-SPS/85-33, CERN, Geneva, Switzerland
(1985).

[DF76] A. J. Dragt and J. M. Finn. “Lie Series and Invariant Functions
for Analytic Symplectic Maps.” J. Math. Phys., 17(12), 2215–2227
(1976).

[DF83] A. J. Dragt and E. Forest. “Computation of Nonlinear Behavior of
Hamiltonian Systems Using Lie Algebraic Methods.” J. Math. Phys.,
24(12), 2734–2744 (1983).

[FBI89] E. Forest, M. Berz, and J. Irwin. “Normal Form Methods for Com-
plicated Periodic Systems: A Complete Solution Using Differential
Algebra and Lie Operators.” Part. Accel., 24, 91–107 (1989).

[LNS65] L. J. Laslett, V. K. Neil, and A. M. Sessler. “Transverse Resistive
Instabilities of Intense Coasting Beams in Particle Accelerators.” Rev.
Sci. Instr., 36(4), 436–448 (1965).

31
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