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THE SPECTRUM OF PERIODIC POINT PERTURBATIONS

AND THE KREIN RESOLVENT FORMULA

J. BR�UNING and V. A. GEYLER

We study periodic point perturbations, H, of a periodic elliptic operator H0 on
a connected complete non-compact Riemannian manifold X, endowed with an
isometric, e�ective, properly discontinuous, and co-compact action of a discrete
group �. Under some conditions on H0, we prove that the gaps of the spectrum
are labelled in a natural way by elements of the K0-group of a certain C

�-algebra.
In particular, if the group � has the Kadison property then the spectrum has
band structure. The Krein resolvent formula plays a crucial role in proving the
main results.

0. Introduction

The spectral analysis of periodic Schr�odinger operators poses an interesting problem in

physics and mathematics. Among these operators, those with point potential play an im-

portant role in view of the fact that the corresponding spectral problem is explicitly solvable

[1], [2]. Thus, almost all textbooks on condensed matter physics refer to the well-known

Kronig { Penney model [3]. This model was generalized to two and three dimensions in [4]

{ [6] (see also [2] for details and further references).

On the other hand, investigations of periodic elliptic operators (including Schr�odinger

operators) on complete Riemannian manifolds have begun in the last decade. Using K-theory

for C�-algebras, J.Br�uning and T.Sunada have studied the band structure of the spectrum

for such the operators [7], [8], [9]. The results of the cited papers are based on the analysis of

heat kernels. For the case of point perturbations, the heat kernel of the perturbed operator

has a complicated form; therefore, we study the resolvent here. The famous Krein resol-

vent formula [10] provides an adequate tool for obtaining and analyzing the resolvent of a

Schr�odinger operator perturbed by a point potential. As a result we show in this paper that

under certain natural conditions the Krein formula works for the case of point perturbations

of elliptic operators on a manifold, too. With the help of this formula we prove that the

gaps of a periodic point perturbation of such an operator are labelled by the elements of

the K0-group of an appropriate C�-algebra. These results may be generalized to the case of

gauge-periodic point perturbations of larger classes of elliptic operators [11].

In conclusion, we note that the spectral analysis of periodic Schr�odinger operators

on manifolds of non-zero curvature is necessary in understanding many physical phenomena
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like quantum chaos ([12], [13]) and charge transport in non-planar systems [14].

1. Preliminaries

Throughout the paper X denotes a connected complete non-compact Riemannian C1-

manifold of dimension n; � denotes a discrete group which acts onX isometrically, e�ectively,

and properly discontinuously with compact quotient � nX. We shall denote by d(x; y) the

Riemannian distance on X and by dx the mesure on X associated with the Riemannian

metric; of course, dx is a �-invariant measure. It is known (see, e.g., [15]) that there exists

a set F (called the Brillouin zone for �) with the properties:

1) F is an open and connected set with a negligible boundary;

2) F \ F = ; if  6= e;

3) F is compact, the system
�
F

�
2�

is locally �nite, and

[
2�

F = X :

By L we shall denote the standard representation � in L2(X); for  2 �, L is a unitary

operator acting by the rule Lf(x) = f(�1x).

Let �0 : C
1
0 (X)! C10 (X) be a �-invariant formally self-adjoint elliptic operator of

order m, m > n=2. The closure, H0, of �0 in the Hilbert space H = L2(X) is a self-adjoint

operator with domain D(H0) :=Wm
2 (X) [8], [16]. Note that

D(H0) � C(X) (1)

in view of the Sobolev embedding theorem. By spec A we denote, as usual, the spectrum of

a closed operator A and we put �(A) := Cn spec A. For � 2 �(H0); R0(�) := (H0 � �)�1

denotes the resolvent of H0. It follows from (1) that R0(�) is a bi-Carleman operator for

every � 2 �(H0) [17]. Recall that a bounded operator A in L2(X) is called a bi-Carleman

operator if there is a measurable function KA : X �X ! C (the integral kernel of A) such

that for any f 2 L2(X)

Af(x) =
Z
X

KA(x; y)f(y) dy for a.e. x;

and Z
X

jKA(x; y)j
2 dy < +1 for a.e. x;

Z
X

jKA(x; y)j
2 dx < +1 for a.e. y (2)

(see, e.g., [18] for details). We denote by G0(x; y; �) the integral kernel of R0(�) and by

G1(x; y; �1; �2) the iterated kernel

G1(x; y; �1; �2) =
Z
X

G0(x; u; �1)G
0(u; y; �2) du:

In what follows we shall suppose that the principal symbol am of �0 satis�es the Agmon{

Agranovich{Vishik condition:

2



(AAV) There exists a constant C > 0 such that jam(�)+�j � C for all � > 0 and all � 2 T �X

with j�j = 1.

The following result is proved in [16] (see Lemmas 4.5, 4.6, and Theorem 4.7); it allows to

employ the Krein resolvent formula to point perturbations of H0:

Theorem A. (1) There exists ~E 2 R, ~E < 0, such that for E < ~E the kernel G0(x; y; E) is

a C1-function outside the diagonal x = y.

(2) The operator H0 is semibounded from below. Moreover, for every t > 0 there exist

constants E0(t) < 0 and k0(t) > 0 such that for any x; y 2 X, x 6= y, and for E < E0���G0(x; y; E)
��� � k0d(x; y)

m�n exp(�td(x; y));

if m < n, and ���G0(x; y; E)
��� � k0

�
1 + d(x; y)m�nj log(d(x; y))j

�
exp(�td(x; y))

otherwise.

To prove Lemma 1 below we need the statement [16]:

Lemma B. Let B(x; r) = fy 2 X : d(x; y) < rg. There exists a constant CX such that

Vol (B(x; r)) � exp (CX r) for all x 2 X and r > 0.

Lemma 1. The following assertions are valid.

(1) There is a constant bE < 0 such that for any �1; �2 2 �(H0) the function G1(x; y; �1; �2)

is at least separately continuous on X �X if �2 < bE or �1 < bE.

(2) For �xed � 2 �(H0) the function G0(x; y; �) is at least separately continuous on X �X

outside the diagonal x = y.

(3) For every " > 0 and t > 0 there exist constants E1(t; ") < 0 and k1(t; ") > 0 such that

for d(x; y) � " ���G0(x; y; E)
��� � k1 exp(�td(x; y));

whenever E < E1, and ���G1(x; y; E0; E 00)
��� � k1 exp(�td(x; y));

whenever E0; E00 < E1.

(4) Let K be a compact subset of X and x0 be a point of X. Then for every " > 0 and t > 0

there exist constants E2(t; ") < 0 and k2(t; ";K; x0) > 0 such that for E < E2

sup
n���G0(x; y; E)

��� : y 2 Ko � k2 exp(�td(x; x0));

whenever d(x;K) � ".

(5) Let K be a compact subset of X and x0 be a point of X. Then for every t > 0 there exist

constants E3(t) < 0, and k3(t;K; x0) > 0 such that for E < E324 Z
K

���G0(x; y; E)
���2 dy

351=2 � k3 exp(�td(x;x0));
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whenever d(x;K) � ".

Proof. Using Theorem A, Lemma B, and the fact that G0(x; y; �) is a bi-Carleman kernel

for every � 2 �(H0), it is not hard to prove that there is a constant E1 < 0 such that for

any �1; �2 2 �(H0) we have the following: if �2 < E1, then the function G1(x; y; �1; �2) is

continuous with respect to y for �xed x, and if �1 < E1, then this function is continuous

with respect to x for �xed y. To complete the proof of the assertion (1) it is su�cient to

apply the identity

G1(x; y; �1; �2) = G1(y; x; ��1; ��2):

The assertion (2) is a consequence of (1) and the Hilbert resolvent identity. The �rst in-

equality in (3) immediately follows from Theorem A; the second one is a simple corollary of

the �rst inequality and Lemma B. The proof of the statements (4) and (5) is trivial in virtue

of the �rst inequality in (3).

In the remainder of this section, we present some necessary facts from M.G.Krein's

theory of self-adjoint extensions (see [10] for more details).

Let H0 be a self-adjoint operator in a Hilbert space H, S a symmetric operator

which is a restriction of H0, and let N� = Ker (S� � �), where � 2 �(H0), be the de�ciency

subspace of �S. Fix a Hilbert space G with dim G = dim N�. A mapping � 7! B(�) from

�(H0) to the space L(G;H) of all bounded operators from G to H is called a Krein �-�eld

of the pair (H0; S) if the following conditions are satis�ed:

(�1) B(�) is a linear topological isomorphism of G onto N�;

(�2) with

U(�; z) := (H0 � �)(H0 � z)�1 (3)

we have

B(z) = U(�; z)B(�): (4)

If we choose an arbitrary linear topological isomorphism B(z0) : G ! N�0 , we can uniquely

determine a �-�eld B by B(z) = U(z0; z)B(z0). A mapping Q : �(H0)! L(G;G) is said to

be a Krein Q-function if

Q(�)�Q(z)� = (� � �z)B(z)�B(�) (5)

for each z; � 2 �(H0). It follows from Eqs. (3){(5) that Q(z) is a holomorphic operator-

valued function of �. This function is uniquely determined by the property (5) up to a

self-adjoint summand C 2 L(G;G). If C in L(G;G) is given, we can put

Q(z) = C � iy0B(z0)
�B(z0) + (z � �z0)B(z0)

�B(z); (6)

where z0 is a �xed element of �(H0) and y0 = Im z0. Recall that a self-adjoint extension H

of S is called disjoint from H0 if D(H)\D(H0) = D(S). The following theorem is the main

result of the Krein theory of self-adjoint extensions (see [10] for the proof).

Theorem C. Given an arbitrary self-adjoint (not necessarily bounded ) operator A in G, the

formula

RA(z) = R0(z)�B(z) [Q(z) +A]�1B(�z)� (7)
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determines the resolvent of a self-adjoint extension, HA, of S that is disjoint from H0.

Moreover, the correspondence A 7! HA estabilishes a bijection between the set of all self-

adjoint extensions of S disjoint from H0 and the set of all self-adjoint operators in G.

Below we need the following property of the operators U(�; z):

Proposition D. The mapping U(�; z) is a linear topological isomorphism of the space N�

onto Nz given by U(�; z) = I + (z � �)R0(z).

2. Periodic point perturbations of H0

Let us �x a fundamental domain F and some �nite subset K of F , and let � be the �-orbit

of K: � =
S
2� K. The set � may be viewed as the analog of a crystal in Euclidean

space. It follows from the properties of the domain F that each point � 2 � has a unique

representation of the form � = � where  2 �, � 2 K. Now we de�ne a point perturbation

of H0 supported by �: Formally, this is a self-adjoint operator H of the form

H = H0 +
X
2�
�2K

"���(x); (8)

where �y is the Dirac �-function supported at y 2 X and "� are "coupling constants". To

assign an operator meaning to the formal expression (8), we use the so-called "restriction{

extension procedure" [1], [2]. Thus, we consider the set

D(S) = ff 2 D(H0) : f(�) = 0; � 2 �g; (9)

which is well de�ned since D(H0) � C(X). Let S be the restriction of H0 to D(S); evidently,

S is a symmetric operator in H. A self-adjoint extension H of S disjoint from H0 is then

said to be a point perturbation of H0 supported by �.

Fix a point perturbation H of H0. Using the Krein resolvent formula (7) we con-

struct an explicit form of the resolvent R(�) of H for which we need some results from [19].

These results are obtained for the case H = L2(
), 
 a domain in Rn, but it is easy to check

that they are also valid for the case H = L2(M) where M is an arbitrary locally compact

space together with a Radon measure.

In what follows we shall denote by I0 the semi-axis (�1; ~E) , with ~E the constant

from Theorem A. Let � 2 I0; for every a 2 X we denote by ga(�) the function X 3

x 7! G0(x; a; �); if z 2 �(H0) is arbitrary, then we put ga(z) = U(�; z)ga(�). In view of

Proposition D, this de�nition of ga(z) does not depend on the choice of � in I0.

Lemma 2. For some z 2 I0 the matrix (hg�(z)jg�(z)i)�;�2� determines a bounded operator

in the standard basis of the space l2(�).

Proof. It follows from Lemma B that there are constants c� > 0 and ~c� > 0 such that for

all � 2 � and r 2 R+ we have

#f� 2 � : d(�; �) � rg � c� exp (~c� r);

where #Y is the number of elements in a �nite set Y . Denote for simplicity hg�(z)jg�(z)i by

W (�; �). According to Schur's test [20], the operator W with the matrixW (�; �) is bounded
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on the space l2(�) if for some c0 > 0

sup
�2�

X
�2�

jW (�; �)j � c0 and sup
�2�

X
�2�

jW (�; �)j � c0; (10)

and in this case we have jjW jj � c0. To �nd such a constant c0 it is su�cient to use Lemma

1(3) and the following assertion which is proved in [21]:

Lemma E. Let ' : �! C be a function such that for some � 2 �

j'(�)j � c exp (�(1 + �) ~c� d(�; �)) ;

where c and � are positive constants. ThenX
�2�

j'(�)j � c ~c� �
�1:

For each � 2 K we choose a function '� 2 C
1
0 (X) such that '�(�) = 1, supp'� �

F , and supp'� \ supp'�0 = ; if � 6= �0. For every � 2 � we put '� = L'�, if � = �. It

is readily seen that the family f'� : � 2 �g lies in D(H0) and possesses the properties:

(1) '�(�) = 1 (� 2 �);

(2) supp'� \ supp'�0 = ; if � 6= �0;

(3) sup fjjH0'�jj+ jj'�jj : � 2 �g <1.

Taking into account Lemma 2, we can apply Theorem 3 and Proposition 3 from [19] and get

the following result:

Proposition 1. For every z 2 �(H0) the family fg�(z) : � 2 �g is a Riesz basis in Nz.

This means that for each family (��)�2� from l2(�) the family (�� g�(z))�2� is summable in

H and the mapping

B(z) : l2(�) 3 (��) 7!
X
�2�

�� g�(z) 2 H (11)

is a linear topological isomorphism from l2(�) onto Nz.

Now we put G := l2(�); using (11) and Proposition D it is easily shown that B(z)

is a Krein �-�eld.

Our next purpose is to construct the Krein Q-function for the pair (H0; S). Fix a

point z0 2 R such that z0 < bE (cf. Lemma 1(1)), then for all z 2 �(H0) and all a 2 X

the expression G0(a; a ; z)� G0(a; a ; z0) is well-de�ned. Indeed, from the Hilbert resolvent

identity we get

G0(a; a ; z)�G0(a; a ; z0) = (z � z0)G
1(a; a ; z; z0): (12)

Now, using Theorem 4 and Proposition 4 from [19] we can determine the Krein Q-function

by the in�nite matrix (Q��(z))�;�2� if

Q��(z) :=

(
G0(�; �; z); if � 6= �;

G0(�; �; z) �G0(�; �; z0); if � = �.
(13)

The results thus obtained are summarized in the following theorem.
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Theorem 1. Let HA be the point perturbation of H0 determined by a self-adjoint operator

A in the space l2(�). Then for every � 2 �(H0) \ �(HA) and f 2  L2(X) we have

RA(�)f = R0(�)f �
X
�2�

0@X
�2�

[Q(�) +A]
�1
(�; �)hg�jfi

1A g�(�): (14)

We are interested in �-periodic point perturbations of H0 only. Proposition 2 below

provides a necessary and su�cient condition for HA to be a �-invariant operator. Before

stating this proposition we note that there is a natural unitary representation ~L of the group

� in l2(�): ~L'(�) = '(�1�), ' 2 l2(�). It is clear that for each z 2 �(H0) the operator

Q(z) is ~L-invariant, that is, its matrix satis�es the condition Q�+;�+(z) = Q��(z) for all

 2 �, �; � 2 �. In particular, the diagonal elements Q��(z) depend only on K since we

have � = � for some  2 � and � 2 K.

Proposition 2. The operator HA is �-periodic if and only if the operator A is invariant

with respect to ~L.

We omit the easy proof of this proposition.

From now on, we consider only �-periodic point perturbations, HA, of H
0. From

the point of view of physical applications, the most important operators HA are those where

A has a diagonal matrix with respect to the standard basis of l2(�) [4], [22]; only these

operators appear as limits of Hamiltonians with short-range potentials [4], [23]. On the

other hand, even in the case of a bounded ~L-invariant operator A with a non-diagonal

matrix, the spectrum of the periodic point perturbation HA for the Laplacian H0 = ��

may contain a singular component which is a Cantor set [24]. For this reason, we restrict

ourselves to the case when the following conditions are ful�lled:

(D) The operator A has a diagonal matrix A�� = ������; �; � 2 �;

(Q) limE!1 jQ��(E)j =1 for all � 2 K.

Yu. G. Shondin has observed (for the case of �nite point perturbations) that the conditions

(D) and (Q) eliminate some pathological properties of HA [25]. Namely, under these con-

ditions the operator HA is "form-local" in the following sense: for any ' and  from the

form-domain Q(HA) of HA the relation supp' \ supp = ; implies h' jHA i = 0.

From now on, we shall suppose thath the condidtions (D) and (Q) are satis�ed.

The following theorem is the main result of this section.

Theorem 2. For every t > 0 there are constants E4(t) < 0 and k4(t) > 0 such that for

every E 2 R, E < E4, the operator Q(E) + A has a bounded inverse with matrix obeying

the condition ���[Q(z) +A]
�1

��

��� � k4 exp (�td(�; �)) :

Proof Let t > 0 be given. Denote by D(E) the operator in l2(�) with matrix D��(E) =

(Q��(E) +A��) ���, and set S(E) = Q(E) + A � D(E). Let CE = inffjD��(E)j : � 2

�g; according to the condition (Q), CE ! 1 as E ! �1. Let s = max(t; 2~c�). By

Lemma 1 there are E4 < 0 and c > 0 such that jS��(E)j � c exp (�2sd(�; �)), whenever
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E < E4. We can suppose jE4j is so large that for E < E4 we have ~c� cC
�1
E � 1=2 and

kD(E)�1k+ kD(E)�1S(E)k < 1. Then

[Q(E) +A]
�1

=
X
j�0

�
�D(E)�1S(E)

�j
:

We claim that for all j � 0

j
�
D(E)�1S(E)

�j
��
j � (~c� cC

�1
E )j exp (�sd(�; �)) ;

implying the theorem.

For j = 0 we have nothing to prove. If the assertion holds for some j � 0, we

estimate with Lemma E

j(D(E)�1S(E))j+1
�� j � C�1E

X
�2�

jS��(E)
�
D(E)�1S(E)

�j
��
j

� cC�1E (~c� cC
�1
E )j

X
�2�

exp (�2sd(�; �)) exp (�sd(�; �))

� cC�1E (~c� cC
�1
E )j exp (�sd(�; �))

X
�2�

exp (�2~c� d(�; �))

� (~c� cC
�1
E )j+1 exp (�sd(�; �)) :

Corollary. The operator HA is semi-bounded from below.

3. Spectral structure of HA.

In this section we denote by K the set of all compact operators in the space F = L2(F ). We

put C�red (�;K) := C�red(�)
K, where C
�
red(�) is the reduced group C�-algebra of � [7], [8].

We shall identify L2(X) with the space l2(�;F) by means of the correspondence

� : L2(X) 3 f 7! �f 2 l2(�;F);

�f() = rF (Lf) = rF (f � 
�1);

with inverse

��1� =
X
2�

L�eF (�());

here rF is the restriction to F and eF the extension by 0. With ~R the right regular repre-

sentation of � in l2(�) we set R := ~R 
 I, where I is the identity.

Lemma 3. The mapping � is an interwining operator for the representations L and R.

Proof. This follows by direct calculation.

This lemma implies that we can identify the space of all �-invariant operators in

L(H) with the spaceW �(�;F) of all bounded R-invariant operators B : l2(�;F)! l2(�;F),

and that we can view C�red (�;K) as a subalgebra of W
�(�;F). For B 2 W �(�;F) we de�ne

the Fourier coe�cient bB() at  2 � to be the bounded operator on F given by

bB()v = (B�v1)(); (15)
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where

�v1() =

�
v; if  = e,

0 otherwise.

Recall that the canonical trace, Tr
�
, on C�red (�;K) is given by

Tr
�
B = Tr bB(e):

We need the following lemma [8]:

Lemma F. If bB() 2 K for every  2 � andX
2�

k bB()k <1;

then B 2 C�red (�;K).

Our main results are consequences of the following theorem.

Theorem 3. The resolvent, RA(�), of the operator HA belongs to C�red (�;K) for every

� 2 �(HA).

Proof. Since C�red (�;K) is closed in L(H) and RA(�) is an analytic operator function

on �(HA), it su�ces to prove that RA(�) 2 C�red (�;K) when � runs over some semi-axis

(�1; �0). It is proved in [8] that exp (�tH0) 2 C�red (�;K) for all t > 0; hence using

the Laplace transform we get that R0(E) 2 C�red (�;K) for every E < 0. Put V (E) :=

R0(E) � RA(E); it remains to show that V (E) 2 C�red (�;K) for all E in some interval

(�1; �0). We abbreviate

M(�; �; �) := [Q(�) +A]�1�� : (16a)

According to Theorems 1 and 2 we can �nd constants cE < 0 and c0 > 0 such that for all

E < cE
jM(�; �;E)j � c0 exp (�~c0 d(�; �)) ; (16b)

and for every f 2 L2(X) and � 2 �(HA)

V (�)f =
X
�2�

0@X
�2�

M(�; �; �)hg�(��)jfi

1A g�(�) : (17)

Further, by Lemma 1 we can suppose that the following assertion is true: For any compact

set C � X, any point � 2 K, and any E < cE there is a constant k(C; �) such that24Z
C

jg�(E)(x)j
2 dx

351=2 � k exp (�~c0 d(�; �)) : (18)

Then we can choose ~c0 in such a way that ~c0 > 3~c� where ~c� is the constant from the proof

of Lemma 2.

To see that V (�) is in C�red(�;K); for Re � < �0; it is enough to show that

dV (�)() 2 K;  2 �; (19a)
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and X
2�

k dV (�)()k <1; (19b)

by Lemma F. We compute with (15) and (17)

dV (�)() = X
�;�2�

M(�; �; �) < g�(��);�
�1(��1 ) > rF (g�(�) � 

�1): (20)

Using the explicit form of ��1 we obtain

j < g�(��);�
�1(��1 ) > j = j < g�(��); eF (�) > j

= j
Z
F

G0(x; �; ��)�(x)dxj

� k exp(� ~c0 d(�; k0))k�kL2(F ) (21a)

Moreover, from (18) it follows that

krF (g�(�) � 
�1)kL2(F ) =

24Z
F

jG0(�1x; �; �)j2dx

351=2

� K exp(� ~c0 d(�; k0)): (21b)

We observe next that

d(�; �) + d(�; �0) + d(�; �0) �
1

3
(d(�; �0) + d(�; �0) + d(�1�0; �0)): (22)

Since ~c0 > 3 ~c�, it follows from (21a,b), (16b), (22), and Lemma E that the sum in (20) is

norm convergent, uniformly in Re � < �0. Since all summands are operators of rank 1 we

obtain (19a); in view of (22) we can sum over  2 � to verify (19b), by another application

of Lemma E. The proof is complete.

Corollary 1. Let E1 ; E2 2 R n spec HA, and E1 � E2. Then the spectral projector P[E1;E2]

of HA belongs to C�red (�;K).

Proof. Indeed, there exists a function ' in C10 (R) such that P[E1;E2] = '(RA(E)) for some

E < E1 .

Fix now a number E0 2 R such that E0 < inf spec HA and consider the function

N(E) =

�
Tr

�
P[E0;E]; E � E0;

0; E < E 0:

It is clear that this function is independent of the choice of E 0. Moreover, N(E) is constant

on each gap of the spectrum of HA such that the values of N(E) label in a natural way the

gaps of HA [26].

Corollary 2 (Gap Labelling Theorem). The values of N(E) on gaps of the spectrum of HA

form a countable set of real numbers Tr� (K0C
�
red(�)) (here K0B denotes the K0-group of a

C�-algebra B).

10



Recall that � is said to have the Kadison property if there exists a constant cK > 0

such that Tr
�
P � cK for every non-zero orthogonal projector from C�red (�;K).

Corollary 3. If � has the Kadison property, then the spectrum of HA has band structure.
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