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Abstract

We consider �nite-di�erence Hamiltonians given by Jacobi matrices with self-similar

spectra of the Cantor type and prove upper bounds on the di�usion exponents which show

that the quantum motion in these models is anomalous di�usive. For Julia matrices, this

bound is expressed only in terms of the generalized dimensions of the spectral measures.

1 Introduction

A quantum motion is called anomalous whenever it is neither ballistic nor regular di�usive nor

localized, that is, the di�usion exponents �� de�ned by

Z T

0

dt

T
h (t)j j ~Xj�j (t)i

�
T"1 T ��� , � 6= 0 ,

may take arbitrary values in the interval [0; 1] (here ~X is the position operator and  some

localized state in Hilbert space). There is compelling numerical evidence that the motion in

almost periodic structures is anomalous [11, 19] and intermittent [15, 13] in the sense that

� 7! �� is a strictly increasing function. This is possibly at the origin of the strange transport

properties observed experimentally in quasicrystals. The scheme of explanation is based on the

anomalous Drude formula [14, 17]: the direct conductivity �== behaves as

�==(�)
�
�"1 � 2�2�1 ,

where � is the relaxation time due to impurity and electron-phonon scattering. It is hence par-

ticularly interesting to calculate the di�usion exponent �2 from the quasiperiodic Hamiltonian.
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Anomalous transport in almost periodic structures is due to delicate quantum interference

phenomena. On the spectral level, they lead to a singular continuous local density of states

(LDOS) at least in low dimension (two early works are [3, 20], but there are many others), whe-

reas in high dimension, spectral measures are likely to be absolutely continuous even if transport

is anomalous. The �rst results linking spectral and transport properties were established by

I. Guarneri [7] and re�ned by others [2, 12, 17]: the exponents ��, � > 0, are larger than or

equal to the Hausdor� dimension of the LDOS devided by the dimension of physical space.

Later on, links between di�usion exponents and multifractal dimensions of the density of states

(DOS) [15] and the LDOS [13] were derived and numerically veri�ed for some one-dimensional

systems.

Here we prove upper bounds on �� for a restricted class of one-dimensional Hamiltonians

given by Jacobi matrices with self-similar spectra. This toy model was suggested and investiga-

ted by I. Guarneri and G. Mantica [8, 13] in order to study links between spectral and transport

properties. Rigorous proofs of upper bounds on the spreading of wavepackets in these systems

were proven by I. Guarneri and one of the authors [10]. However, these results did not allow

to deduce bounds on positive moments of the position operator. The present work continues

and completes this study and is actually based on one of its central results.

Our upper bound on the di�usion exponents is expressed in terms of three measures sup-

ported on the spectrum: the LDOS, the DOS and the maximal entropy measure. For spectral

measures supported on self-similar sets with non-trivial thermodynamics, the latter controls

the length uctuations of the bands approximating the spectrum; these uctuations appear as

one reason for intermittency.

On the other hand, the interplay between the position operator and the Hamiltonian is

the second reason for intermittency (see [13] where a Hamiltonian having a spectrum with at

thermodynamics was shown to exhibit intermittency). For the analysis of this interplay, we

make use of a crucial bound from [10] known only for Jacobi matrices with self-similar spectra.

For these Hamiltonians the asymptotic properties of the generalized eigenfunctions are governed

by a Herbert-Jones-Thouless formula. However, this bound is in general far from optimal and,

in order to obtain tight upper bounds, signi�cant improvements are necessary.

Julia matrices are an exception in this respect due to an exact renormalization property

making the links between position operator and Hamiltonian particularly simple. Consequently,

in this case our analysis of the thermodynamics as outlined above does lead to a tight upper

bound on di�usion exponents in terms of the generalized dimensions D(q) of the LDOS:

Theorem For real Julia sets, �� � D(1� �) as long as 0 < � � �c for a certain �c > 2.

Appart from this favorable example, our work illustrates that the links between spectral

and transport properties is a very intricate one. There is hence need for further numerical and

theoretical investigations.

Acknowledgments: We received support from the SFB 288 (Di�erentialgeometrie und Quan-

tenphysik) and the TMR network FMRX-CT 96-0001 (PDE and Applications to Quantum Me-

chanics). The permanent address of J.-M. Barbaroux is: UMR 6629 CNRS, Dept. de Math.,

Univ. de Nantes, 2 rue de la Houssini�ere, B.P. 92208, F-44322 Nantes Cedex 3, France.
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2 Models and results

2.1 Self-similar sets and measures

The self-similar fractal measures considered in this work are constructed by non-linear, disjoint

iterated function systems, sometimes also called cookie cutters or Markov maps. The construc-

tion is as follows. Let I11 < I12 < : : : < I1L be a �nite sequence of pairwise disjoint closed

intervals all contained in a closed interval I0. Let S be a smooth real function such that, for all

l = 1; : : : ; L, the restriction Sl of S to I1l is bijective from I1l to I0 with smooth inverse S�1l (in

particular, we assume the derivative of S to be bounded away from 0 and 1 on the intervals

I1l ). We call codes the one-sided sequences of symbols taken from f1; : : : ; Lg and denote the

set of codes of length N by �N
L and the set of codes of in�nite length by �L. For all N 2 N,

S�N(I0) consists of LN closed, disjoint intervals IN� = S�1�1
� : : :�S�1�N

(I0), � = (�1 : : : �N ) 2 �N
L ,

which we call the intervals of the Nth generation. We further assume that there exist positive

constants a < 1 and c so that, for any N 2 N, all intervals of the Nth generation satisfy

jIN� j � c aN where jIj denotes the length of the interval I.

Now J =
T
N�0 S

�N(I0) is a fractal set which is invariant under S, i.e. S(J) = J . The

dynamical system (J; S) is conjugated to the shift on �L by the coding map E 2 J 7! �(E) 2

�L. Given a shift-invariant, ergodic measure on �L, the pointwise dimensions

d�(E) = lim
�!0

log(�([E � �; E + �]))

log(�)
(1)

of its pullback measure � on J exist �-almost surely and are �-almost surely equal to the

information or Hausdor� dimension dimH(�) of � [10]. The latter is furthermore equal to the

quotient of the dynamical entropy E(�) and the Lyapunov exponent �(�) of the dynamical

system (J; S; �) [10].

Equilibrium measures introduced now form a special class of invariant and ergodic measures

on J . The pressure P (b) at \inverse temperature" b and h�olderian \interaction" log(jS 0(:)j) is

de�ned by [5, 16]

P (b) = sup
�2M(J)

�
E(�)� b

Z
d�(E) log(jS 0(E)j)

�
,

where E(�) is the measure-theoretic entropy of S with respect to � and M(J) is the set of

S-invariant measures on J . The pressure P (b) is an analytic, convex and decreasing function of

b [16]. The maximum of the functional on the right hand side is attained by a unique invariant

and ergodic measure �b, called the equilibrium measure of b log(jS 0(:)j) [5]. Let us point out

three interesting special cases: �0 is the measure of maximal entropy, notably the balanced

Bernoulli measure; �1 is the SRB measure; �nally, �dimH(J) is equivalent to the dimH(J)-

Hausdor� measure on J . Let us further note that, for a linear iterated function system (Sl
linear with slope �e�l , l = 1; : : : ; L), the equilibrium measure �b is the Bernoulli measure with

probabilities [18]

pl =
e�b�lPL

l0=1 e
�b�l0

, l = 1; : : : ; L .

A multifractal property of �, that is �ner characteristic than just the Hausdor� dimension

dimH(�), is given by its singularity spectrum

3



f�(�) = dimH (fE 2 J j d�(E) = �g) ,

where d�(E) = � means that the limit in (1) exists and is equal to � and, by convention,

the Hausdor� dimension of an empty set is equal to �1. For equilibrium measures � on J ,

it can be shown that f� is a concave function (see, for example, [4]). Its Legendre transform

�� allows to de�ne the generalized dimensions D�(q), also called Renyi or Hentschel-Procaccia

dimensions, by

D�(q) = lim
q0!q

��(q
0)

q0 � 1
, ��(q) = inf

�2R
(�q � f�(�)) .

2.2 Jacobi matrices

Once the measure � on J is �xed, we construct the Hamiltonian as the Jacobi matrix of �.

Let Pn, n � 0, denote the orthogonal and normalized polynomials associated to �. They

form a Hilbert basis B = (Pn)n2N in L2(R; �) and satisfy a three term recurrence relation

EPn(E) = tn+1Pn+1(E) + vnPn(E) + tnPn�1(E), n � 0, where vn 2 R and tn � 0 are bounded

sequences, and P�1 = 0. Therefore the isomorphism of L2(R; �) onto `2(N) associated with

the basis B carries the operator of multiplication by E in L2(R; �) into the self-adjoint �nite

di�erence operator H de�ned on `2(N) by:

Hjni = tn+1jn+ 1i+ vnjni+ tnjn� 1i , n � 1 , (2)

and Hj0i = t1j1i+ v0j0i. Then � is the spectral measure of H associated to j0i, also called its

LDOS.

The DOS N of H is the unique weak limit point of the sequence of pure-point measures

(
P

E;Pn(E)=0 �E=n)n2N [21, 10]. It coincides with the Frostman (electrostatic) equilibrium mea-

sure on J . Finally the capacity of J can be calculated as cap(J) = exp(limn!1

Pn
j=1 log(tj)=n)

[21, 10]. The Green's function of J de�ned by

gJ(z) =

Z
dN (E) log(jz � Ej)� log(cap(J))

governs the asymptotic properties of the orthogonal polynomials by means of a Herbert-Jones-

Thouless type formula [21, 10]. Both N and cap(J) and hence gJ do not depend on the choice

of �, but only on its support J .

2.3 Di�usion exponents

The propagation of wave packets initially localized on the state j0i is characterized by the

growth exponents

�+� = lim sup
T!1

log(M�(T ))

log(T �)
, ��� = lim inf

T!1

log(M�(T ))

log(T �)
, (3)

of the time-averaged moments of the position operator

M�(T ) =
X
n�0

n�
Z T

0

dt

T
jhnje�{tH j0ij2 , � 6= 0 .
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2.4 Results and comments

In order to state our main result, we need to introduce a constant depending only on the DOS.

Let Ec and Rc = jI0j=2 be respectively the center of the spectrum and its radius, and � the

size of the smallest gap at the �rst generation. If S is an analytic map, then we set

� = inf
R>Rc

maxz2�R gJ(S(z))

log(R)� log(Rc)
, (4)

where �R is the circle of radius R around Ec. If all branches Sl, l = 1; : : : ; L, have an analytic

continuation Ŝl given by a polynomial of degree Dl, then we pose

� =
maxl=1:::L supE2J gJ(Ŝl(E)) +D arcsinh

�
�
4Rc

�
arcsinh

�
�
4Rc

� , (5)

where D = maxlDl.

Theorem 1 Let H be the Jacobi matrix of an equilibrium measure �b on a self-similar fractal

J with L branches constructed with an analytic or piecewise polynomial map S. Let � be the

corresponding constant given in (4) or (5) and let us set

�c =
P (b)� log(L) (��0)

�1(�2� b)

log(�)
.

Then, for � 2 (0; �c],

�+� �
log(L)� P (b) + � log(�)

� log(L)
D�0

 
P (b)� � log(�)

log(L)

!
�
b

�
, (6)

and, for � � �c,

�+� � 1�
�c � 2

�
.

Remark 1 The bound depends on the LDOS through the parameter b, on the maximal entropy

measure �0 through its generalized dimensions D�0 and on the DOS through the constant �.

Note that, in the limit � ! 1, our upper bound converges to the a priori ballistic bound

�+� � 1. In the limit � ! 0, we recover the bound obtained in ref. [10]. We know of no

theoretical work about negative moments (� < 0). We remark, however, that one can show

�� � D�(2)=� for large negative � using results from [12, 2, 17].

The above result is particularly interesting when applied to the case of Julia matrices which

exhibit an exact renormalization property in physical space, so that all intermittency is due to

the thermodynamics of the support of the spectral measure.

Theorem 2 Let H be a Julia matrix, that is, S is a polynomial map and � = �0 is the balanced

measure of maximal entropy. Set �c = 1� (��0)
�1(�2). Then

�+� �

8><
>:
D�0(1� �) , 0 < � � �c ,

1� �c�2
�

, � � �c .

(7)

5



Remark 2 Numerical and theoretical analysis using GM-machinery [13] indicates that the

equality �� = D�(1 � �) may hold for all � > 0. Whether the equality actually holds for all

� or �� ! 1 as � ! 1 (as is the case in our upper bound) is an interesting question. Two

facts, both veri�ed for real Julia sets generated by S(E) = E2 � � with � > 2, indicate that

our upper bound is probably not tight for � > �c. First of all, �c converges to 2 from above as

�! 2 (while numerical results give the equality �� = D�(1��) for much larger value of � if �

is close to 2 [13]); second of all, the curve de�ned by the upper bound (7) has a discontinuous

derivative at �c. We discuss the problems arising for large � with more technical details in

Remark 7 of Section 3.1. Let us �nally note that, for quadratic Julia sets, �c � log(�)=2 for

large �.

As already pointed out in the introduction, a second reason for intermittency is due to the

interplay between Hamiltonian and position operator. An extreme example of this is given by

spectra supported on linear Cantor sets for which the thermodynamics is at and cannot be

at the origin of intermittency, but for which the quantum motion is nevertheless intermittent

[13]. Our proof does not allow to exhibit and analyse these �ne properties, however, we obtain

a sub-ballistic bound on dynamics.

Theorem 3 Let J be a linear Cantor set, that is, S has two linear branches S1 and S2 with

slope equal to �e�. Let us set

� =

 
arcsinh

 
e� � 2

4

!!�1 �Z
dN (E) log(e� � E)� log(cap(J))

�
+ 1 . (8)

Then

�+� �

8>><
>>:

log(�)

�
, 0 < � � 2�

log(�)
,

1 + 2
�
� 2�

� log(�)
, � � 2�

log(�)
.

(9)

Remark 3 It was shown in ref. [10] that � as given in (8) behaves as log(�) in the limit

�!1. Therefore the bound (9) is strictly better than the ballistic bound for su�ciently large

� and Theorem 3 shows that the transport is anomalous in these models. Note that the bound

(9) does not depend on the measure �, but only on the DOS. This is, however, an artefact of

our proof.

3 Proof of upper bounds

3.1 Resolving the spectrum at di�erent scales

The main result of this section, notably that Proposition 1 holds given Hypothesis I and II, can

be directly transposed to other Hamiltonians and other exponentially localized initial states;

needed is only the structure of a position operator asigning a number to each element of a given

Hilbert basis. For sake of simplicity, we formulate nevertheless everything only for the model

described in Sections 2.1 and 2.2.

6



The following hypothesis allow to separate two reasons for intermittency.

Hypothesis I Let ��(:; �) : R! [0;1] be a convex function such that, for all � � �(�),

�

 (
E 2 J

������ � �
log(jIN�(E)j)

N

)!
� ae�N��(�;�) , (10)

for some constant a � 0. We further suppose that there is 0 < �min � �(�) such that

��(:; �) : [�min;�(�)]! [0;1) is a C1 and strictly convex bijection and that ��(�; �) =1 for

� < �min.

Hypothesis II For � > 0, let �(�) > 0 and c(�) <1 be such that for all n and N verifying

n � �(�)N ,

the following bound holds:

X
�2�N

L

jh�IN� jnij
2 � c(�)n�� , (11)

where j�IN� i = �IN� (H)j0i, �I denoting the characteristic function of the interval I.

Remark 4 In the next section, the function ��(:; �) will be determined to be the Legendre

transform of the generalized Lyapunov exponents. In Section 3.3, we furthermore show that

��(:; �) is given in terms of the scaling function of the maximal entropy measure whenever � is an

equilibrium measure. At least in this situation, all the above hypothesis on ��(:; �) are satis�ed.

A closer inspection of the proof below shows that weaker results can be obtained under weaker

hypothesis (no di�erentiability, for example). Let us note right away that ��(�(�); �) = 0 and

that both ��(:; �) and (��)0(:; �) are bijections from (�min;�(�)] to their respective images;

further ��(:; �) is discontinuous at �min.

Remark 5 Hypothesis II is in a more general form than we can actually prove it. The results

from Section 3.2 of ref. [10] show that, for the choice � given as in Section 2.4, the bound (11)

holds for all � > 0. Thus � is independent of � in this situation. To obtain a smaller, but

�-dependent � is a tough task for which only numerical results exist [13]. As we cannot prove

such a hypothesis for the moment, we restrict ourselves to the case of an �-independent � in

Proposition 1 below, because it simpli�es considerably the proof. However, we cannot obtain

any result on intermittency due to Hypothesis II in this way (cf. Theorem 3 on linear Cantor

sets).

The following proposition is obtained by combining the technique \resolving the spectrum"

[10, Proposition 1] and the argument in Section 3.4 of the PhD thesis of one of the authors [1].

Proposition 1 We suppose Hypothesis I and II to be veri�ed for a given � independent of �.

Let �R 2 (�min;�(�)] be the solution of (��)0(�R; �) = �2 if it exists and �R = �(�) otherwise.

Let us further set

�c =
��(�R; �) + 2�R

log (�)
, (12)

and let z� 2 [�min;�(�)] be the solution of

7



� log (�) = ��(z�; �)� z�(�
�)0(z�; �) , (13)

if it exists, and z� = �(�) otherwise. Then, for 0 < � � �c,

�+� � �� �
� log (�)� ��(z�; �)

�z�
, (14)

while, for � � �c,

�+� � �� � 1�
�c � 2

�
. (15)

Proof. Let 0 � � < 1, � > 0 and � > 0 be such that (1��)=� 2 N. We introduce the monoton

sequence nk(T ) = �T �+k�, k � 0, as well as the presence probabilities in the rings limited by

the radii nk�1(T ) and nk(T ):

Bk(T ) =
X

nk�1(T )<n�nk(T )

Z T

0

dt

T
jhnje�{Htj0ij2 .

Then the time-averaged moments of the position operator can be bounded as follows:

M�(T ) � ��T �� +

(1��)=�X
k=1

nk(T )
�Bk(T ) +

X
n�bT

n�
Z T

0

dt

T
jhnje�{Htj0ij2 . (16)

We �rst note that a ballistic bound as given in [9] implies that the last summand is smaller

than a constant for any T > 0 whenever � is su�ciently large. More precisely, let X ,  > 0,

be the Banach space of `2(N)-vectors  such that k k = supn�0 jh jnij exp(n) < 1. As H

is a bounded operator on X, we have

X
n�bT

n�
Z T

0

dt

T
jhnje�{Htj0ij2 �

X
n�bT

n�
Z T

0

dt

T
e�2n+2tkHk �

(�T )[�]

4TkHk
e�2�T+2TkHk ,

where [�] is the smallest integer larger than �. Now the latter expression is uniformly bounded

in T for any � > kHk=.

In order to bound the second summand in (16), we proceed as in [10, Proposition 1] for

each Bk(T ) separately. So for each k � 1, let us suppose N and T to be linked by some relation

chosen later on (see equation (20) below) and let us set, for given �c(k) � �(�),

j N;k(t)i =
X

�2JN (�c(k))

e�{E
N
� tj�IN� i ,

where EN
� is some point in IN� and JN(�) is the set of � 2 �N

L satisfying � log((jIN� j)=N � �.

Let us further divide the interval [�c(k);�(�)] into Q = (�(�)��c(k))=� 2 N intervals of equal

length �. Then the vector j N;k(t)i approximates the time evolution of j0i in Hilbert space

norm:

kj N;k(t)i � e�{Htj0ik2 =
X

�2JN (�c(k))

Z
IN�

d�(E) je{Et � e{E
N
� tj2 +

X
�2JN (�c(k))c

�(IN� )

8



�

0
@Q�1X

j=1

X
�2JN (�c(k)+j�)cnJN (�c(k)+(j�1)�)c

+
X

�2JN (�(�)��)

1
A�(IN� ) t2 max

E2IN�

jE � EN
� j

2

+ �(JN(�c(k))
c)

�
Q�1X
j=1

ae�N��(�c(k)+j�;�)e�2N(�c(k)+(j�1)�)t2 + e�N(�(�)��)t2 + ae�N��(�c(k);�) , (17)

where we have used the bound (10). For a given r � T=(2�), let us �rst bound Bk(T ) by

2

Z T

0

dt

T
kj N;k(t)i � e�{Htj0ik2 + 2

X
nk�1(T )�n�nk(T )

X
�;�02JN (�c(k))

hnj�IN� ih�IN�0
jni
Z 2�r

0

dt

T
e{(E

N
� �E

N
�0
)t .

Now, let �max be the minimal � with the property jIN� j � e��N for all � 2 �L and N 2 N.

For �xed N , we can therefore choose the EN
� 's all to be elements of a lattice with spacing

1=r = e��maxN so that only the diagonal terms � = �0 remain in the above sum (at this point,

improvements are possible, but not useful if � is independent of �). Using (17) we thus obtain

Bk(T ) �
Q�1X
j=1

2aT 2

3
e�N��(�c(k)+j�;�)e�2N(�c(k)+(j�1)�) +

2T 2

3
e�2N(�(�)��)

(18)

+ 2ae�N��(�c(k);�) +
4�e�maxN

T

X
nk�1(T )�n�nk(T )

X
�2JN (�c(k))

jhnj�IN� ij
2 .

Putting this and nk(T ) = �T �+k� into (16), we obtain for some constant c depending on

a; �; �; �;�max;� and :

M�(T ) � cT �� + cT ��
(1��)=�X
k=1

T k��

0
@ QX
j=1

T 2e�N��(�c(k)+j�;�)e�2N(�c(k)+(j�1)�)

(19)

+ e�N��(�c(k);�) +
4�e�maxN

T

X
nk�1(T )�n�nk(T )

X
�2JN (�c(k))

jhnj�IN� ij
2

1
A .

Now, for every �xed k � 1, we choose N and T to be related by

�N = T �+k��� , (20)

so that the last term in the parenthesis in (19) is uniformly bounded in T by Hypothesis II.

We then want to choose � in such a way that the �rst and second term in (19) and thus M�(T )

are bounded by cT ��. This imposes the two conditions

(k�� + 2) log (�) � (�+ k�� �) (��(�c(k) + j�; �) + 2(�c(k) + (j � 1)�)) , (21)

9



k�� log (�) � (�+ k�)��(�c(k); �) , (22)

which have to hold for all j = 1; : : : ; Q = (�(�) � �c(k))=� and all k = 1; : : : ; (1 � �)=�, the

choice of each �c(k) 2 [0;�(�)] still being free.

The problem is now to determine the minimal � such that these inequalities hold for ap-

propriate choices of �c(k). For this purpose, we study their continuum limit �; � ! 0. Setting

x = k�, �c(x) = �c(k) and � = �c(k) + j�, the following inequalities

(x� + 2) log (�) � (�+ x)(��(�; �) + 2�) , (23)

x� log (�) � (� + x)��(�c(x); �) , (24)

have to hold for � 2 [�c(x);�(�)] and x 2 (0; 1� �].

We �rst choose �c(x) to be the biggest � such that (24) is satis�ed:

�c(x) = sup

�
� � �(�)

������(�) � log (�)
x�

� + x

�
. (25)

Using the hypothesis on ��(:; �), it can be veri�ed that �c(x) is a decreasing function in x. On

the other hand, because the minimal value of the function � 7! ��(�; �) + 2� in [�min;�(�)] is

taken at �R and this function is increasing on [�R;�(�)], it follows that (23) is always satis�ed

for � 2 [�c(x);�(�)] if

� + x �
(2 + x�) log (�)

(��(:; �) + 2 id)(maxf�R; �c(x)g)
. (26)

In order to treat the two di�erent values of the maximum in (26) separately, we introduce

x� � inffx � 0 j�c(x) � �Rg =
���(�R; �)

� log (�)� ��(�R; �)
.

For x 2 [x�; 1 � �], the maximum is equal to �R. For � � �c, the inequality (26) is then

most di�cult to satisfy for the smallest possible x, that is x = x�, whereas, for � � �c, this

is the case for x = 1� �. After a short computation, one therefore obtains that (26) holds for

x 2 [x�; 1� �] only if

� �

8>><
>>:

� log(�)���(�R;�)

��R
,

��(�R;�)

(1��) log(�)
� � � �c ,

1� ��(�R;�)+2�R�2 log(�)

� log(�)
, � � �c ,

(27)

while for small �'s no condition is imposed on � because x� > 1� �.

Next we study (26) for x 2 [0; x�). Using the de�nition of �c(x), it follows that (26) holds

if

�+ x >
(2 + x�) log (�)

log (�) x�
�+x

+ 2�c(x)
, �c(x) >

log (�)

�+ x
.

Using the fact that ��(:; �) is decreasing in [0;�(�)] and again the de�nition of �c(x), it is thus

su�cient that

10



x�
log (�)

�+ x
< ��

 
log (�)

� + x

!
(28)

holds for x 2 [0; x�). Let us set z = log(�)=(�+ x), then (28) is equivalent to

� log (�)� ��z < ��(z; �) , z 2

"
log (�)

�+ x�
;
log (�)

�

#
. (29)

The right hand side is convex in z, the left hand side decreasing in �. The minimal � = ��
such that (29) holds for z 2 [0;�(�)] or (28) for all x 2 R can be determined by equalizing left

and right hand side as well as their derivatives in x. For a given � > 0, this shows that

�� =
� log (�)� ��(z�; �)

�z�
, x� =

��(z�; �)

�z�
,

where z� is determined by (13) and x� is the corresponding value of x at which (28) is most

di�cult to verify. We note that z0 = �(�) and z�c = �R, and further that � 7! z� is well

de�ned and decreasing due to the convexity of ��(:; �). If x� � x� which is equivalent to

� � �c and z� � �R, we thus have upon taking into account (27):

� > max

(
� log (�)� ��(z�; �)

�z�
;
� log (�)� ��(�R; �)

��R

)
.

Now, for � = �c, the two expressions coincide. Furthermore, if gl(�) and gr(�) denote the two

expressions as a function of �, then g0l(�) = ��(z�; �)=(z��
2) and g0r(�) = ��(�R; �)=(�R�

2),

so that g0l(�) � g0r(�); therefore the maximum is equal to gl(�), which is precisely (14).

For x� � x� , � � �c, the inequality (28) is satis�ed for all x 2 [0; x�) if it is satis�ed for

x�, which implies that, using (25),

� �
� log (�)� ��(�R; �)

��R

.

This bound coincides with the bound (27) at � = �c, but for � > �c it is less restrictive so that

(27) gives (15). 2

Remark 6 Using (12), it is straightforward to verify

2�R

log(�)
� �c �

2�(�)

log(�)
.

For real Julia sets, this allows to deduce the behavior given in Remark 2.

Remark 7 For big �, the main contribution toM�(T ) comes from the part of the wave packet

far from the origin. In order to have a better than ballistic bound for arbitrarily large �

(�� < 1), one has to show that the presence probability Bk(T ) in the growing rings decreases

faster than any power in time for all rings (k = 1; : : : ; 1� �=�). Our bound on Bk(T ) is given

as the sum of an error term and a main term which comes from the approximate wave function

(given by the last term in (19)). Both terms depend on the generation index N designing the

order of approximation. As discussed in Remark 5, we can obtain such an almost exponential

decay for the main term whenever � is chosen by (4) or (5). As the link (20) between N , T

and k is thus independent of �, the error term imposes �� ! 1 as � ! 1. More precisely,

11



the factor T (1��)� corresponding to the largest ring (k = (1 � �)=�) can be compensated by

the factors in the parenthesis in (19) only if � is close to 1; the term in the parenthesis with

the slowest decrease is determined by the minimum of the function � 7! ��(�; �) + 2� at �R;

this gives directly the bound (15). Hence, the only way to obtain a better than ballistic bound

for large � is to improve the bound (11) on the main term, leading to an �-dependent relation

between T and N .

Proof of Theorem 3. For a linear Cantor set with one contraction factor e��, there are no

uctuations around the Lyapunov exponent. Then ��(�; �) =1 for all � � �(�) = �. Hence

�c = 2�= log(�) and �� = log(�)=� for all � � �c. Since � as given in (5) is equal to (8) (see

[10]), the theorem follows directly from Proposition 1.

Note that for linear Cantor sets �c(x) = �(�) = �R for all x, and that x� = 0 for all � > 0.

Therefore the proof of Proposition 1 would already be concluded by (27). 2

3.2 Large deviation bound for Lyapunov exponents

In this section, we determine the rate function ��(:; �), for which the large deviation bound

(10) holds. As this is the easier upper one of the two bounds in the G�artner-Ellis theorem [6],

we briey reproduce how to use Chebychev's inequality in order to obtain it.

Proposition 2 The bound (10) holds with the Legendre transform

��(�; �) = sup
q2R

(q�� �(q; �)) , � 2 R , (30)

of the generalized Lyapunov exponents of � de�ned by [18]

�(q; �) = lim sup
N!1

1

N
log

�Z
d�(E) jIN�(E)j

q

�
. (31)

Proof. We �rst note that �(q; �) is a convex function in q because the function appearing in

(31) before taking the superior limit is a convex function by H�older's inequality and because the

pointwise superior limit of convex functions is again a convex function. Furthermore �(1; �) =

�(�) and �(0; �) = 0. The latter implies that ��(�; �) � 0 for all � 2 R. By Jensen's

inequality, �(q; �) � q�(�) which implies ��(�(�); �) � 0, hence ��(�(�); �) = 0.

We next consider �N(E) = � log(jIN�(E)j)=N as random variable in the probability space

(J; �). By Chebychev's inequality, we have for any � � �(�) and q � 0:

�(f�N � �g) � e�q�N
Z
d�(E) j(S�N)0(E)jq � ae�N(q���(q;�)) ,

for some constant a. Taking the supremum over all q � 0 in the exponent leads to the function

��(:; �), because, for positive q, one has q���(q; �) � 0 as long as � � �(�). Hence we obtain,

for all � � �(�), the desired bound (10) 2

Remark 8 Let us introduce the random variable �N(E) = log(j(S�N)0(E)j)=N . As �N =

�N +O(1=N) (see, for example, eq. (33) in [10]), the generalized Lyapunov exponent can also

be calculated as
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�(q; �) = lim sup
N!1

1

N
log

�Z
d�(E) j(S�N)0(E)jq

�
.

Remark 9 If the limit in (31) exists, then the G�artner-Ellis theorem also provides a lower

bound �(f�N � �g) � be�N��(�;�) for some constant b so that ��(:; �) as given in (30) is

optimal in (10). This is the case for equilibrium measures discussed in the next section [16].

Remark 10 Let us set

�max = sup
E2J

lim sup
N!1

�N(E) , �min = inf
E2J

lim sup
N!1

�N(E) .

Then �(:; �) is asymptotically a�ne:

�(q; �)
�

q#�1 �minq , �(q; �)
�
q"1 �maxq .

This implies that ��(�; �) =1 if � < �min or � > �max.

It is straightforward to see that �max = log(maxE2J jS
0(E)j), but �min is more di�cult to

determine. For example, for quadratic Julia sets, it can be shown that �min = log(jS 0(E�)j)

where E� is the negative �xed point of S.

3.3 Case of equilibrium measures

Here we calculate the generalized Lyapunov exponents and its Legendre transform for the

one-parameter family of equilibrium measures constructed in Section 2.1. As it will turn out,

the latter is determined by the singularity spectrum of the maximal entropy measure. The

argument presented here combines results from [4] and [18].

Proposition 3 ��(:; �b) is convex, analytic in [�min;�max] and

��(�; �b) = ��f�0

 
log(L)

�

!
+ �b + P (b) . (32)

Proof. For the equilibrium measure �b, the generalized Lyapunov exponents can be calculated

from the pressure by the formula [18]

�(q; �b) = P (b� q)� P (b) . (33)

In order to calculate the Legendre transform, let us introduce the Lyapunov spectrum

`(�) = dimH

��
E 2 J

���� lim
N!1

�N(E) = �

��
.

Note that, for � =2 [�min;�max], `(�) = �1 because the Hausdor� dimension of an empty set

is set to �1. Now [4, Theorems 1 and 2]

j�j`(�) = inf
b2R

(b� + P (b)) . (34)

Hence we obtain from (33) and (34) that
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��(�; �b) = �j�j(`(�) + b) + P (b) .

As the Lyapunov spectrum is linked to the singularity spectrum f�0 of the maximal entropy

measure �0 by `(�) = f�0(log(L)=�), the proof is concluded. 2

Proof of Theorem 1. First of all, Proposition 3 and the de�nition of ��0 allow to calculate �c

and then �c. Similarly, for the calculation of ��, one obtains from (13) that

f 0�0

 
log(L)

z�

!
=

�� log (�) + P (b)

log(L)
, �� =

��� log(�)+P (b)

log(L)

log(L)

z�
+ f�0

�
log(L)

z�

�
� b

�
.

By de�nition of the multifractal dimensions, this implies directly the result. 2

Proof of Theorem 2. For Julia sets, log(�) = log(L) as follows directly from (4) [10], and for

the maximal entropy measure, b = 0 and P (0) = E(�0) = log(L). Therefore Theorem 2 follows

directly from Theorem 1. 2
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