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1 Introduction

In this paper we are concerned with the existence and regularity of solutions of the degenerate

nonlinear elliptic systems known as H-systems. For a given real valued function H de�ned on

(a subset of) Rn+1 , the associated H-system on a subdomain of Rn (we will generally take the

domain to be B, the unit ball) is given by

Dxi(jDujn�2Dxiu) =
p
nn(H bu)ux1 � � � � � uxn (1.1)

for a map u from B to Rn+1 (obviously for (1.1) to make sense classically we look for u 2
C2(B;Rn+1); as we discuss in Section 2, it also makes sense to look for a weak solution

u 2 W 1;n(B;Rn+1) to (1.1) under suitable restrictions on H). Here we use the summation

convention, and the cross product w1 � � � � �wn : Rn+1 � � � � � Rn+1 ! R
n+1 is de�ned by the

property that w �w1�� � ��wn = detW for all vectors w 2 Rn+1 , whereW is the (n+1)�(n+1)

matrix whose �rst row is (w1; � � � ; wn+1) and whose jth row is (w1
j�1; � � � ; wn+1j�1 ) for 2 � j � n+1.

Analytically, it is natural to consider boundary value problems associated to (1.1), for

example Dirichlet boundary conditions

uj@B = ' (1.2)

for a suitably regular prescribed '. We denote the Dirichlet problem associated with H and '

(viz. (1.1), (1.2)) by D(H;').
One of the main reasons for considering (1.1) is that, if u ful�lls certain additional conditions,

then it represents a hypersurface in Rn+1 whose mean curvature at the point u(x), for x 2 B, is
given by H bu(x).

Speci�cally a map u :B ! R
n+1 is called conformal if

uxi � uxj = �2(x)�ij on B (1.3)

for some real-valued function �. In the case n = 2, the map u satis�es a Plateau boundary

condition (for �) if

uj@B is a homeomorphism from @B to � (1.4)

for a given recti�able Jordan curve � in R3 . A solution u to (1.1), (1.3), (1.4) solves the Plateau

problem for H and �, which we will denote by P(H;�); the solution solves P(H;�) classically if
u 2 C0(B;R3) \ C2(B;R3 ), and has mean curvature H bu(x) at every regular point u(x). The

problem P(H;�) is thus a generalization of the classical Plateau problem for minimal surfaces

(i.e. the case H � 0) �rst solved by Douglas and by Rad�o in the early 1930's: we refer the
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reader to the monograph [DHKW] for details and literature concerning this case, and assume

that H does not vanish identically in the rest of this discussion.

The �rst existence results were obtained by Heinz [He], and further existence results were

obtained by many authors, including Werner [Wr], Hildebrandt [Hi1], [Hi2], Wente [W], Gulliver

and Spruck [GS1], [GS2] and Ste�en [St1], [St2]. In particular we note the so-called Wente-type

existence theorems, such as [W, Theorem 6.2] (in the case of constant H) and [St1, Theorem

6.2] (for H not a priori constant, and under more general conditions), where smallness of H in a

suitable sense (namely when compared to an appropriate power of the minimal area of a surface

spanning �) guarantees a solution of P(H;�). Similar results for the Dirichlet problem D(H;')
are given in [St1, Theorem 6.2].

In higher dimensions the formulation of the Plateau problem P(H;�) depends crucially upon
the chosen generalization of the boundary condition (1.4), and in particular on the boundary �.

In the setting of geometric measure theory one can take � to be an integer multiplicity,

recti�able current of dimension n + 1, and the Plateau problem P(H;�) is to �nd an n-

dimensional integer multiplicity recti�able current T with @T = � such that the weak version

of (1.1) is satis�ed for T , i.e.Z
M

( divM Y +H Y � �T ) d�T = 0 (1.5)

for all test vector�elds Y 2 C1
c (R

n+1 ;Rn+1) with spt(Y ) \ spt � = ?; here �T is n-dimensional

Hausdor� measure weighted by the multiplicity function of T , �T is the unit normal vector �eld

on T , and M is the supporting set of T in Rn+1 (cf. [Si, Section 16.5]). Existence results, again

in terms of Wente-type theorems, were proven by Duzaar and Fuchs [DF1], [DF3] and the �rst

author [Du2].

The general strategy in both settings (the 2-dimensional parametric setting and the higher

dimensional geometric measure theoretic setting) is similar. The �rst step is to construct a

suitable energy whose critical points are (at least formally) the desired solutions of the Plateau

problem P(H;�). The next step is to show that the minimum of this energy is in fact achieved,

and that it is achieved by a surface or a current in the desired class. This energy is composed of

two terms, the �rst of which is the (n-)Dirichlet integral, the second of which is an appropriately

weighted (depending on H) volume term. The volume term is not lower semicontinuous with

respect to weak convergence in any space which is appropriate to these settings, so it is necessary

to control the volume in terms of the Dirichlet energy term. This is done by applying appropriate

isoperimetric inequalities.

This same broad strategy is followed in the current paper to obtain existence results for the

Dirichlet problem D(H;') in higher dimensions. In Section 3 we give a variational formulation

of the problem in the space W 1;n(B;Rn+1); the aim is to realize the solutions of D(H;')
as minimizers of an appropriate subclass of W 1;n(B;Rn+1). Since weak W 1;n convergence

does not preserve homology, we are unable to directly adapt the methods of [DS3] to our

situation (in the setting of geometric measure theory, these authors obtained existence results

for solutions of the Plateau problem with the image being contained in Riemannian manifold of

arbitrary dimension). This motivates the de�nitions of spherical currents and of homologically

n-aspherical domains (De�nition 3.1), which allows a reasonable de�nition of the H-volume

enclosed by two maps in W 1;n(B;A) for A � R
n+1 (De�nition 3.4), and hence of the energy

functional to be minimized.
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In order to control the H-volume by the Dirichlet integral, we need an estimate of how

much of the volume and surface area can be lost under passage to the weak limit in our chosen

subclass. This is accomplished in Lemma 4.1. Such `bubbling phenomena' are an important

feature of many nonlinear elliptic and parabolic problems, in particular in the area of harmonic

maps: see for example [SU], and recent papers concerning the heat-ow for harmonic maps, such

as [Q] and [DT].

Once this is accomplished, we need to adapt the notions of isoperimetric conditions from

[St1] and later works to our situation. Having done this, in Section 5 we are able to prove

existence results under various assumptions on H and on the support of a given extension of

our Dirichlet boundary data. Our results include as a special case (see Corollary 5.3) previous

results for constant H obtained by Duzaar and Fuchs [DF2] and Mou and Yang [MY]; in [MY]

the authors also obtain existence results for unstable solutions of higher-dimensional H-systems

for suitably restricted, constant H.

In Section 6 we consider the regularity of the solutions whose existence is guaranteed by

the theorems of Section 5. In the geometric measure theory setting for the Plateau problem

P(H;�) discussed above, optimal regularity results were obtained by the �rst author [Du2] and

by Duzaar and Ste�en [DS1], [DS2]. The authors established that the (energy minimizing)

solutions of P(H;�) are classical hypersurfaces smooth up to the boundary for n � 6 and

have a singular set which is closed, disjoint from the support of the boundary and of Hausdor�

dimension at most n� 7 for n � 7. Due to our setting, we are able to obtain more satisfactory

results (Theorem 6.1); in particular, our solutions to D(H;') are H�older continuous, and are

C1;� under reasonable additional smoothness assumptions on H.

We close this introduction with a few remarks on notation. We will denote p-dimensional

Lebesgue measure by Lp. The symbol �p is used to to denote Lp(Bp), where Bp is the unit ball

in Rp , and we denote by p the optimal isoperimetric constant in Rp , i.e. the smallest constant

such that (cf. [Fe, 4.5.9 (31)])

M(Q) � pM(@Q)
p

p�1 (1.6)

holds for all integer multiplicity recti�able p-currents in Rp (note that p = p
�p

p�1�
�1

p�1
p ). We will

denote the standard volume form on Rn+1 by 
.

2 The variational problem

We begin by giving a variational formulation of the H-system (1.1). We wish to consider, for

u 2W 1;n(B;Rn+1), an energy of the form

EH(u) := D(u) + nVH(u) (2.1)

with D(u) = 1p
nn

R
B
jDujn dx and VH a functional which will be precisely speci�ed later, and

which will be seen to be a signed volume weighted by H, in an appropriate sense. For the

moment, the only requirement we make of VH is that the following homotopy formula is valid:

VH(ut)�VH(u) =

Z
B

Z t

0

(H bU)h
 bU;Ut ^ Ux1 ^ � � � ^ Uxni dt dx (2.2)

for variations U(t; x) = ut(x) of u(x) = u0(x).
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A variation U is termed su�ciently regular in Rn+1 if ut 2 W 1;n(B;Rn+1) for su�ciently

small t, the initial velocity �eld � = d
ds

��
s=0

us belongs to W
1;n(B;Rn+1) \ L1(B;Rn+1), and

di�erentiation under the integral with respect to t is valid at t = 0 forD(ut) andVH(ut)�VH(u).

Lemma 2.1 (�rst variation) For su�ciently regular variations ut inW
1;n(B;Rn+1) with initial

velocity �eld � in W 1;n(B;Rn+1) \ L1 we have

d

dt

����
t=0

EH(ut)

= n

Z
B

�
1p
nn
jDujn�2Du �D� + (H bu)� � ux1 � ux2 � � � � � uxn

�
dx:

Proof: Formal di�erentiation of D(ut) yields the integrand np
nn
jDujn�2Du � D�, and formal

di�erentiation of (2.2) gives the integrand (H bu)h
 bu; � ^ ux1 ^ � � � ^ uxni = (H bu)� � ux1 �
� � � � uxn . �

The integral �EH(u; �) is termed the �rst variation of the energy EH in the direction �.

As a direct consequence we have

Corollary 2.2 A map u 2 W 1;n(B;Rn+1) is a weak solution of the H-surface equation if and

only if �E(u; �) = 0 for all vector �elds � 2W 1;n
0 (B;Rn+1 ) \ L1. �

This means that the weak H-surface equation, i.e.

Dxi(jDujn�2Dxiu) =
p
nn(H bu)ux1 � � � � � uxn in B ; (2.3)

is precisely the Euler equation associated to the energy functional EH .

An important class of variations for our purposes are those of the form

ut(x) = �Y (t�(x); u(x)); (2.4)

for Y 2 C1
c (R

n+1 ;Rn+1 ) a smooth vector �eld in Rn+1 , �Y the ow associated to Y and � a

su�ciently smooth function de�ned on B (generally � 2 C1(B;R)). The initial �eld is then

�(Y bu) (cf. [Du1, Section 2], [DS3, Lemma 1.3], [DS4, Section 2]).

The following variational equality and inequality follow in direct analogy to the proof of

[DS4, Prop. 2.3 (ii)].

Lemma 2.3 (i) Assume that u 2W 1;n(B;Rn+1 ) is EH-minimizing with respect to the variation

ut given by (2.4) for each Y 2 C1
c (R

n+1 ;Rn+1) and each � 2 C1
c (B;R). Then u is a solution

to the weak H-surface equation (2.3).

(ii) Let A � R
n+1 be the closure of a domain with C2 boundary. Suppose further that u is

EH-minimizing for one-sided variations ut, 0 � t � 1, for � � 0 and Y (a) = 0 or Y (a)

directed strictly inwards at each a 2 @A. Then u satis�es the inequality

�EH(x; �) = n

Z
B

�
1p
n
n jDujn�2Du �D� + (H bu)� � ux1 � � � � � uxn

�
dx � 0 (2.5)

for all vector �elds � 2W 1;n
0 (B;Rn+1)\L1(B;Rn+1) with � �(e� bu) � 0 almost everywhere

on u�1V for some neighbourhood V of @A in R
n+1 und some C1-extension e� of the

(inwardly pointing) unit normal vector �eld � on @A to Rn+1 . �
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Proposition 2.4 Let A � R
n+1 be the closure of a domain with C2-boundary, � be the

(inwardly pointing) unit normal on @A, and K@A(a) be the minimum of the principal curvatures

of @A at the point a (with respect to �). Let u 2 W 1;n(B;A) satisfy the inequality (2.5). Then

we have:

(i) There exist a nonnegative Radon measure � on B which is absolutely continuous with

respect to Ln and which is concentrated on the coincidence set u�1@A, such that:

�EH(u; �) =

Z
u�1@A

� � (� bu) d� (2.6)

for each � 2W 1;n
0 (B;Rn+1) \ L1(B;Rn+1);

(ii) If jHj � K@A on @A, we have � = 0; more generally

� � Ln np
nn
jDujn

�
jH buj � K@A

bu
�
+

on u�1@A; (2.7)

(iii) If jH(a)j < K@A(a) for some a 2 @A and if uj@B omits some neighbourhood of a, then

there exists a neighbourhood V of a in Rn+1 such that u(B) \ V = ?.

Proof: We write d(p) = dist(p; @A) for p 2 R
n+1 , and extend the (inwardly pointing) unit

normal vector �eld � to a C1-vector �eld, again denoted by �, such that � coincides with grad d

on a neighbourhood of @A.

We �rstly consider the case that A is compact. In this case, � = �(� bu) is admissable in

(2.5) if 0 � � 2 C1
c (B;R). Applying the Riesz representation theorem we deduce the existence

of a nonnegative Radon measure � on B such that

�EH(u; �(� bu)) =

Z
B

� d� (2.8)

holds for all � 2 C1
c (B;R).

We now choose # 2 C1(R;R) nonincreasing with # � 1 on (�1; 12 ], # � 0 on (1;1) and

de�ne #"(t) = #( t
"
) for " > 0. We consider �" = �(#" bd bu)(� bu) with � � 0 as before. Then

� = �" on the preimage under u of a neighbourhood of @A, so that � � �" and �" � � are both

admissable in the variational inequality. This means

�EH(u; �") = �EH(u; �) � 0: (2.9)

For " su�ciently small we estimate

uxi � (�")xi � (#" bd bu)[�xiuxi � (� bu) + �uxi � ((D�) bu)uxi ]:

Applying this in (2.5), noting that uxi � (� bu) = 0 almost everywhere on u�1@A and letting "

approach 0 we have

0 � 1
n
�EH(u; �) �

Z
u�1@A

�
1p
nn
jDujn�2uxi � ((D�) buuxi)

+(H bu)(� bu) � ux1 � � � � � uxn

�
� dx:
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Since uxi � ((D�) buuxi) = �b@A bu(uxi ; uxi) almost everywhere on u�1@A, where b@A denotes

the second fundamental form of @A in Rn+1 relative to the outwardly pointing normal on @A,

we have

1

n
�EH(u; �) �

Z
u�1@A

1p
nn
jDujn�2

�
jH buj jDuj2 �

nX
i=1

b@A bu(uxi ; uxi)

�
� dx

�
Z
u�1@A

1p
nn
jDujn

�
jH buj � K@A

bu
�
� dx:

Combining this with (2.9) und (2.8) showsZ
B

� d� � np
nn

Z
u�1@A

jDujn
�
jH buj � K@A

bu
�
� dx;

which yields the claimed estimate on the Radon measure �, i.e.

� � Ln np
nn
jDujn

�
jH buj � K@A

bu
�
+

on u�1@A:

This completes the proof of (ii).

To show (i) we begin by noting that (ii) immediately yields the absolute continuity of �

with respect to Ln, and further that �(B n u�1@A) = 0. It is easy to see by approximation

that (2.8) holds for all � 2 W
1;n
0 (B;R) \ L1(B;Rn+1). In the case of a general vector �eld

� 2 W
1;n
0 (B;Rn+1) \ L1(B;Rn+1 ), we decompose � = �? + �>, where �? = �(� bu) with

� = � � (� bu) 2W 1;n
0 (B;Rn+1) \ L1(B;Rn+1). We apply (2.8) to conclude

�EH(u; �
?) = �EH(u; (� � � bu)� bu) =

Z
u�1@A

� � (� bu) d�: (2.10)

Further we have that �> � (� bu) = 0 almost everywhere on the preimage of a neighbourhood

of @A under u, i.e. �> and ��> are both admissable in (2.5), and hence �EH(u; �
>) = 0.

Combining this with (2.10), we have shown (i).

In the case of arbitrary A, one replaces � bu in the above discussion by ( k bu)(� bu) with

 k 2 C1
c (R

n+1 ; [0; 1]), such that the  k's tend to the identity on Rn+1 . One then argues directly

analogously to the case n = 2 ([DS4, Proposition 2.4]) to show that the associated Radon

measures �k approach a limit measure � which satis�es (i) and (ii).

In the same way (iii) can be proven by direct analogy with the case n = 2: we refer the

reader to [DS4, Proposition 2.4]. �

Remark 2.5 If we assume that u is a conformal solution of the variational inequality, (i.e.

(1.3) holds), then K@A can be replaced by the mean curvature H@A in the assumptions.

3 The volume functional

Given u 2 W 1;n(B;Rn+1) we can de�ne the associated n-current Ju in Rn+1 via integration

of n-forms over u, i.e.

Ju(�) =

Z
B

u#� =

Z
B

h� bu; ux1 ^ � � � ^ uxni dx for � 2 Dn(Rn+1); (3.1)
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here Dk(Rn+1) denotes the space of smooth, compactly supported k-forms on R
n+1 . It is

straightforward to see that Ju is an n-current of �nite mass (where the mass of a k-current

T on Rn+1 is de�ned by M(T ) := supfT (�) :� 2 Dk(Rn+1); jj�jj1 � 1g), since

M(Ju) �
Z
B

jux1 ^ � � � ^ uxn j dx �
1p
nn

Z
B

jDujn dx = D(u): (3.2)

Using a Lusin-type approximation argument for mappings in W 1;n (cf. [EG, 6.6.3]) we can

argue similarly to the case n = 2 (cf. [DS4, Section 3]) to see that Ju is a (locally) recti�able

n-current in Rn+1 . If v is another surface in W 1;n(B;Rn+1 ), then (Ju� Jv)(�) is determined by

integration of u#� � v#� over G = fx 2 B : u(x) 6= v(x)g, as Du = Dv Ln-almost everywhere

on B nG. Thus we can re�ne (3.2) to

M(Ju � Jv) � DG(u) +DG(v); if u = v on B nG; (3.3)

where

DU (u) =
1p
nn

Z
U

jDujn dx (3.4)

for Ln-measurable U � B.

In general the boundary @T of a k-current T , k � 1, is de�ned by @T (�) = T (d�) for

� 2 Dk�1(Rn+1). For u; v 2 W 1;n(B;Rn+1 ) with u � v 2 W
1;n
0 (B;Rn+1) we calculate directly

that Ju � Jv is a closed n-current, i.e. @(Ju � Jv) = 0. First we see that for u; v 2 C2(B;Rn+1 )

with u = v on @B we have

@Ju(�) = Ju(d�) =

Z
B

u# d� =

Z
B

d(u#�)

=

Z
@B

u#� =

Z
@B

v#� = @Jv(�):

In the general case we approximate u by ui 2 C2(B;Rn+1) and v�u by wi 2 C1kpt(B;Rn+1), the
approximations being in the W 1;n-norm. We see that ui + wi approaches v in W 1;n, and since

ui = ui+wi on @B we have @(Jui�Jui+wi) = 0. Letting i tend to in�nity we see @(Ju�Jv) = 0,

which is the desired conclusion.

In the following we take A to be a closed subset of Rn+1 { the obstacle { and u0 2W 1;n(B;A)

to be a �xed reference surface. We let

S(u0; A) = fu 2W 1;n(B;A) : u� u0 2W 1;n
0 (B;Rn+1)g (3.5)

denote the class of admissable surfaces. The idea behind the geometric de�nition of the H-

volume VH(u; v) which is enclosed by two surfaces u; v 2 S(u0; A) is to consider an (n + 1)-

current Q in Rn+1 with @Q = Ju � Jv, and to integrate H
 over Q. Such currents have a

relatively simple structure; they are representable by an L1(Rn+1 ;Z)-function iQ , such that for

all  2 Dn+1(Rn+1) there holds

Q() =

Z
Rn+1

iQ:

One can consider iQ to be a set with integer multiplicities and �nite absolute volume; in this

context the condition @Q = Ju � Jv means that u and v paramaterize the boundary of this set

with multiplicities in the dual sense of Stokes' theorem, i.e.Z
Rn+1

iQ d� =

Z
B

u#� �
Z
B

v#� for all � 2 Dn(Rn+1):

7



Since @Q is �nite we can conclude that iQ is a BV -function on Rn+1 , which is a strong motivation

for de�ning the H-volume by

VH(u; v) =

Z
Rn+1

iQH
: (3.6)

In order to make this a well-de�ned functional, we need to clarify the questions of existence

and uniqueness for Q. One could try to �nesse the question of existence by considering the

variational problem restricted to those u 2 S(u0; A) for which Ju � Ju0 is homologically trivial

in A, i.e. Ju � Ju0 is the boundary of an (n+ 1)-current Q with support in A. However simple

examples show that such a homological property is not a priori preserved under passage to a

weak limit: see [DS4, Section 1]. It is thus reasonable to impose the restriction that Ju � Jv
be homologically trivial in A for all u; v 2 S(u0; A); this amounts to the condition that certain

n-currents are boundaries in A, as made precise in the following de�nition.

De�nition 3.1 An n-current T on Rn+1 with support in A is called:

(i) spherical in A when it can be written in the form T = f#[[S
n]] for a map f 2W 1;n(Sn; A),

i.e.

T (�) =

Z
Sn
f#� for � 2 Dn(Rn+1); and

(ii) homologically trivial in A when it is the boundary of of a recti�able (n + 1)-current

with support in A.

If (ii) holds for every spherical n-current with support in A, we say that A is homologically

n-aspherical in Rn+1 . �

If T = f#[[S
n]] is homologically trivial in A, then there is an (n + 1)-current Q in Rn+1

with @Q = T , M(Q) < 1 and sptQ � A. By the constancy theorem [Fe, 4.1.7, 4.1.31] we

have that Q is uniquely determined up to real multiples of [[Rn+1 ]], i.e. Q is unique. Further

it follows from the general theory of recti�able currents [Fe, Chapter 4] that we can take Q

to be an integer multiplicity recti�able current. The following lemma shows that, under mild

regularity assumptions on A, every spherical n-current T in A can be approximated by smooth

maps from Sn to A, and that if the approximating maps are all homologically trivial (when

viewed as spherical n-currents), then so is T .

Lemma 3.2 Let A be a uniform Lipschitz (respectively C1) neighbourhood retract in Rn+1 and

let f 2W 1;n(Sn; A).

(i) Given " > 0 there exists g 2 W 1;n(Sn; A) such that kg � fkW 1;n < ", g = f outside a

subset of Sn of measure less than ", and g is Lipschitz continuous (respectively C1).

(ii) For given s and r with 0 < s � 1, 0 < r <1 let M(f#[[S
n]]) < s, and let g#[[S

n]] be the

boundary of a recti�able (n+ 1)-current with mass not greater than r and with support in

A for all Lipschitz continuous (respectively C1) g : Sn ! A with M(g#[[S
n]]) < s. Then

f#[[S
n]] is homologically trivial in A.

8



Proof: (i) By following the proof of [EG, Theorem 6.6.3, Step 2] we can �nd, for a given

� > 0, Lipschitz maps g� : Sn ! R
n+1 , such that kg� � fkW 1;n ! 0 as � ! 1 and g� = f

outside a set E� � Sn with �njE�j ! 0 as � ! 1. Further from Step 4 of the same proof we

see that Lip(g�) � C� for C depending only on n. An elementary calculation shows that, for

jE�j < jSnj, no ball of radius � n

q
jE�j
jSnj can be enclosed in E�. Hence given w 2 E� we can �nd

w0 2 Sn n E� with g�(w
0) = f(w0), and jw � w0j � � n

q
jE�j
jSnj . We thus have

jg�(w)� g�(w
0)j � C�� n

s
jE�j
jSnj :

Since lim
�!1

�njE�j = 0 we see that, for � su�ciently large, g�(S
n) is contained in a uniform

neighbourhood V�(A) which admits a Lipschitz retraction � : V�(A)! A. We set g = � bg� for

such �. Then g 2 Lip(Sn; A), g = f on Sn n E� and

kg � fkW 1;n;Sn � kgkW 1;n;E�
+ kfkW 1;n;E�

:

The last term vanishes as �!1 (due to absolute continuity of the integral, and since jE�j ! 0).

Further we have (again, as �!1),

kDgknLn;E� � (Lip g)njE�j � (Lip�)nCn�njE�j ! 0 and

kgkLn;E� � k� bg� � � bfkLn;E� + kfkLn;E�
� (Lip�)nkg� � fkLn;E� + kfkLn;E�;

which also converges to 0 as � tends to 1. Hence for � su�ciently large we have jE�j < " and

also kg � fkW 1;n;Sn < ", which completes the proof in the Lipschitz case.

In the C1-case we can argue completely analogously to the situation for n = 2 ([DS4, Lemma

3.2]).

(ii) Consider f 2 W 1;n(Sn; A) with M(f#[[S
n]]) < s. Then given " = 1

k
, there exist

Lipschitz maps gk : Sn ! A with gk = f on Sn n Ek, jEkj < 1
k
and kf � gkkW 1;n;Sn < 1

k
.

The strong convergence of gk to f means, in particular, that M(gk#[[S
n]]) ! M(f#[[S

n]]) as

k ! 1, i.e. M(gk#[[S
n]]) < s for k su�ciently large. The assumptions then guarantee the

existence of recti�able (n + 1)-currents Qk with support in A, mass not greater than r and

@Qk = gk#[[S
n]]. The BV -compactness theorem (see e.g. [EG, Theorem 5.2.4]) then ensures

(after passage to a subsequence) the existence of a recti�able (n + 1)-current Q such that

Qk ! Q (weakly). The lower semicontinuity of M then implies M(Q) � r, and thus further

@Q = lim
k!1

@Qk = lim
k!1

gk#[[S
n]] = f#[[S

n]] (the last step due to the strong convergence of gk to

f). �

Corollary 3.3 For all u; v 2 W 1;n(B;A) with u � v 2 W
1;n
0 (B;Rn+1), Ju � Jv is a spherical

n-current.

Proof: We compose u with stereographic projection from the south pole of Sn and v with that

from the north pole, in order to obtain a map f 2W 1;n(Sn; A) with f#[[S
n]] = Ju � Jv. �

De�nition 3.4 Let u; v 2W 1;n(B;A) with u�v 2W 1;n
0 (B;Rn+1). If Ju�Jv is homologically

trivial in A we de�ne the H-volume enclosed by u and v by

VH(u; v) = Iu;v(H
) =

Z
Rn+1

iu;vH
:
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Here Iu;v is the (unique) recti�able (n+1)-current Q in Rn+1 which is associated to the n-current

T = Ju�Jv, i.e. sptQ � A, M(Q) <1 and @Q = T , and iu;v denotes the multiplicity function

of Iu;v. �

We now need to show that the H-volume has the properties which we require in order to

be able to apply the results of Section 2 concerning our variational equalities and inequalities.

This is accomplished in the following lemma.

Lemma 3.5 Let u; v 2W 1;n(B;A) be as in De�nition 3.4, so that VH(u; v) is de�ned.

(i) Assume that A�Rn+1 has a uniform Lipschitz neighbourhood retraction �, eu2W 1;n(B;A),

u � eu 2 W
1;n
0 (B;Rn+1 ) and ku � eukL1 is smaller than a certain positive constant which

only depends on A. Then VH(eu; v) and VH(eu; u) are also well-de�ned, and satisfy

VH(eu; u) +VH(u; v) = VH(eu; v)
jVH(eu; u)j � sup

Rn+1

jHj ku� eukL1(Lip�)n+1[DG(u) +DG(eu)];
where G = fx 2 B : eu(x) 6= u(x)g.

(ii) Let �Yt be the ow of a vector �eld Y 2 C1
c (R

n+1 ;Rn+1) with �Yt (A) � A for small t > 0,

0 � � 2 C1
c (B;R) and ut(x) = U(t; x), where U(s; x) = �Y (s�(x); u(x)). Then VH(ut; v)

and VH(ut; u) are de�ned for su�ciently small t > 0, and we have

VH(ut; v)�VH(u; v) = VH(ut; u)

=

Z
B

Z t

0

(H bU)h
 bU;Us ^ Ux1 ^ � � � ^ Uxni ds dx:

Proof: (i) Using the a�ne homotopy U(s; x) = (1� s)u(x) + seu(x) we can de�ne the (n+1)-

current Q in Rn+1 by

Q() =

Z
B

Z 1

0

h bU;Us ^ Ux1 ^ � � � ^ Uxni ds dx (3.7)

for  2 Dn+1(Rn+1 ). The homotopy formula [Fe, 4.1.9] and the constraint u�eu 2W 1;n
0 (B;Rn+1 )

then imply @Q = J~u � Ju. From (3.7) we see

M(Q) = ku� eukL1 1

2
[DG(u) +DG(eu)]:

For ku� eukL1 su�ciently small, �#Q is thus an integer multiplicity recti�able (n+ 1)-current

with support in A, boundary @(�#Q) = �#@Q = J~u � Ju and mass

M(�#Q) � (Lip�)n+1M(Q); (3.8)

which allows us to conclude �#Q = I~u;u, and I~u;v = I~u;u + Iu;v. This means that the H-volume

satis�es the identity

VH(eu; v) �VH(u; v) = �#Q(H
) = VH(eu; u):
10



The conclusions of (i) now follow from (3.7) and (3.8) after approximating H
 by smooth

 2 Dn+1(Rn+1 ) with jj � jHj.
The proof of part (ii) involves only minor modi�cations of the case n = 2; we omit the

details, and refer the reader to [DS4, Lemma 3.6 (ii)]. �

Part (ii) of the above lemma shows that the homotopy formula (2.2) is valid for the variations

considered in (ii) for the H-volume as de�ned by VH(u) = VH(u; u0), where u0 2 W 1;n(B;A)

is a �xed reference surface, and u and u0 satisfy the conditions of De�nition 3.4. Thus all the

conclusions of Section 2 are valid for the H-volume as de�ned in (3.6).

4 A general regularity theorem

In this section we apply the direct method of the calculus of variations to prove a general

existence theorem for weak solutions of the Dirichlet problem D(H;u0). We minimize the energy

functional EH(u) = D(u) + nVH(u; u0) in a suitable subclass of S(u0; A).
The n-Dirichlet integral D(�) is lower semicontinuous in the topology of weak convergence for

S(u0; A) inW 1;n(B;Rn+1); however the H-volume VH( � ; u0) is not. This is because a sequence
fuig in S(u0; A) converging weakly to u may involve a large part of the volume and the surface

area of ui being parametrized over a small subset of B in such a manner that the Ln-measure

converges to zero as i ! 1. Geometrically this can be viewed as the bubbling o� of a certain

amount of the volume and the surface area in the limit. This bubbling phenomenon also means

that the homology type will not be a priori preserved in the weak limit.

The following lemma (cf. [DS4, Lemma 4.1] in the 2{dimensional case) gives an analytical

description of the bubbling.

Lemma 4.1 Suppose that ui + u weakly in W 1;n(B;Rm ) and uij@B ! uj@B uniformly in

L1(@B;Rm ). Then given " > 0 there exist R > 0, a measurable set G, G � B and mapseui 2W 1;n(B;Rm ), such that after passage to a subsequence:

(i) eui = u on B nG with Ln(G) < ";

(ii) euij@B = uj@B;
(iii) eui(x) = ui(x) if jui(x)j � R or jui(x)� u(x)j � 1;

(iv) lim
i!1

keui � uikL1(B;Rm) = 0;

(v) eui + u weakly in W 1;n(B;Rm ) as i!1;

(vi) lim sup
i!1

[DG(eui) +DG(u)] � "+ lim inf
i!1

[D(ui)�D(u)];

(vii) if the ui assume values in a closed subset A of Rm which admits neighbourhood retractions

which have Lipschitz constant arbitrarily close to 1 on neighbourhoods of compact subsets,

then the ~xn can be chosen to have also values in A.

Proof: Using Rellich's theorem and Egoro�'s theorem in turn we can �nd R > 3, 1
2 � �n # 0

and G � B measurable with Ln(G) < " und DG(u) < "0 ("0 will be determined later) such that

after passage to a subsequence, we have kuj@BkL1 � 1
3
R, supBnG juj � 1

3
R, supBnG jui � uj � �i
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and kuij@B � uj@BkL1 � �i. We choose � 2 C1(R) with � = 1 on (�1; 1
3
R], � = 0 on [2

3
R;1),

0 � ��0 � 4
R
on R, and de�ne #i by #i(t) = 1 for t � �i, #i(t) =

�
1
t
� 1

��
( 1
�i
� 1) for �i � t � 1

and #i(t) = 0 for t � 1.

We further de�ne

eui = ui + (� bjuj) (#i bjui � uj) (u� ui); (4.1)

note that #i bjui � uj and � bjuj both take the value 1 on @B. Parts (i) und (ii) then follow

directly, due to our choice of G; � and #i.

We note that if jui(x)j � R, then jui(x)�u(x)j � R
3 > 1 or ju(x)j � 2

3R. For jui(x)�u(x)j �
R
3
> 1, the de�nition of #i ensures #i(jui(x)� u(x)j) = 0. If ju(x)j � 2

3
R we have �(ju(x)j) = 0.

These combine to show (iii). Since 0 � � � 1 and supt�0 #i(t)t � �i ! 0 as i!1, we have also

established (iv).

In order to show (vi) we di�erentiate (4.1) to obtain

Deui = Dui + (� bjuj)D [(#i bjui � uj)(u� ui)]

+(�0 bjuj)
�
u

juj �Du
�
(#i bjui � uj)(u� ui); (4.2)

(with the interpretation u
juj �Du = 0 for u = 0). Using the identity t#0i(t) + #i(t) = � �i

1��i for
t > �i we have

Deui = (1� � bjuj)Dui + (� bjuj)Du
+(�0 bjuj)

�
u

juj �Du
�
(u� ui) if ju� uij � �i; (4.3)

and

Deui =
h
1� (� bjuj)(#i bjui � uj)

i
P?Dui +

�
1 + (� bjuj) �i

1� �i

�
PDui

+(� bjuj)(#i bjui � uj)P?Du� (� bjuj) �i

1 � �i
PDu

+(�0 bjuj)
�
u

juj �Du
�
(#i bjui � uj)(u� ui) if ju� uij > �i ;

(4.4)

where P denotes the �eld of rank 1 orthogonal projections

P : Rm 3 � ! jui � uj�2((ui � u) � �)(ui � u)

(with P? = id� P ). For almost all x 2 G with jui(x)� u(x)j � �i we therefore have, via (4.3)

jDeuij � jDuij+ jDuj+ 4

R
�ijDuj;

and via (4.4) for jui(x)� u(x)j > �i we have

jDeuij �
�
jP?Duij2 + 1

(1� �i)2
jPDuij2

� 1
2

+ jP?Duj+ �i

1� �i
jPDuj+ 4

R
�ijDuj;

i.e. we have (almost everywhere on G)

jDeuij � 1

1� �i
jDuij+ 2jDuj:
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After applying Young's inequality we have, for � > 0,

DG(eui) �
�

1

(1� �i)n
+ �

�
DG(ui) +

4n

�
DG(u); (4.5)

letting i!1 and noting �i ! 0, this becomes

lim sup
i!1

[DG(eui) +DG(u)]

� (1 + �) lim sup
i!1

[DG(ui)�DG(u)] +

�
2 +

4n

�

�
DG(u)

� (1 + �) lim sup
i!1

[D(ui)�D(u)] +

�
2 +

4n

�

�
DG(u); (4.6)

in the last inequality, we use the fact that lim sup
i!1

DBnG(ui) � DBnG(u) (note ui + u in

W 1;n(B;Rm)).

We now �x � > 0, such that � supiD(ui) � 1
2", and then "0 such that DG(u) < "0 and�

2 + 4n

�

�
"0 < 1

2
". Part (vi) then follows from (4.6) after passing to a subsequence such that we

can replace lim sup by lim inf in (4.6).

From (vi)we have supiDG(eui) <1. Furthermore (cf. (i)) eui = u on B nG, i.e. supiD(eui) <
1. Combining this with the weak convergence of ui to u and with part (vi), this shows (v).

To see (vii) we apply the above construction with 1
2" in place of ". Then eui(x) = ui(x) 2 A if

jui(x)j � R. Further by (iv) we have keui � uikL1(B;Rm) = �i ! 0 as i!1, so eui(x) lies either
in A or in a uniform �i-tubular neighbourhood of fa 2 A : jaj � Rg, which we denote by U�i .

Given this, we can �nd a Lipschitz neighbourhood rectraction � : V ! A such that U�i � V and

Lip(�jU�i ) is arbitrarily close to 1, for i su�ciently large. Then (i){(vi) also follow if we replaceeu by � beui. �

We can interpret lim infi!1[D(ui) �D(u)] as the n-Dirichlet integral of the bubble which

separates under the passage to the weak limit ui + u. In order to establish lower semicontinuity

for the energy functional EH(u) = D(u) + nVH(u; u0) with respect to weak convergence

in S(u0; A) we need to control the H{volume jump lim supi!1 n jVH(ui; u0)�VH(u; u0)j .
This will be accomplished by passing from ui to eui and by using a suitable isoperimetric

condition, which will be de�ned below. We �rst recall the standard de�nition of an (unrestricted)

isoperimetric condition (cf. [St1, (3.7)], [DS3, De�nition 3.1]).

De�nition 4.2 (1) Consider 0 < s � 1, 0 � c <1 and A � R
n+1 .

(i) An (unrestricted) isoperimetric condition of type c, s is valid for H and A if

njhQ;H
ij = n

����
Z
A

iQH


���� � cM(@Q) (4.7)

for all integer multiplicity recti�able Rn+1 -currents Q with sptQ � A, and M(@Q) � s; here iQ
is the multiplicity function of Q.

(2) Suppose that every spherical n-current T with support in A and M(T ) � s is uniquely

homologically trivial in A, i.e. there exists an integer multiplicity recti�able (n+1)-current with
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sptQ � A, M(Q) < 1 and @Q = T . Further assume 0 � c < 1. We say that H satis�es a

spherical isoperimetric condition of type c, s on A, if we have

njhQ;H
ij = n

����
Z
A

iQH


���� � cM(T ) (4.8)

for all T; Q as above.

Remark 4.3 (1) If A = R
n+1 (or, more generally, A is homologically n-aspherical), then an

unrestricted isoperimetric inequality of type c, s implies a spherical isoperimetric condition of

type c, s.

(2) If H satis�es a spherical isoperimetric condition of type c; s on A we can conclude from

Lemma 3.3 (ii) and De�nition 3.4 that theH-volumeVH(u; v) is de�ned for all u; v 2W 1;n(B;A)

with u� v 2W 1;n
0 (B;Rn+1), and further that we have the estimate

njVH(u; v)j � cM(Ju � Jv) (4.9)

In the following theoren we apply this isoperimetric condition to obtain existence results.

Theorem 4.4 Let A be a closed subset of Rn+1 which admits neighbourhood retractions which

have Lipschitz constant arbitrarily close to 1 on neighbourhoods of compact subsets, let H : A!
R be a bounded, continuous function which satis�es a spherical isoperimetric condition of type

c; s, and let u0 2W 1;n(B;A) be a �xed reference surface for which the inequality (1+�)D(u0) � s

holds for some 1 < � � 1. Further let S(u0; A;�) denote the class of all surfaces eu 2 S(u0; A)
with D(eu) � �D(u0). Then we have:

(i) If � <1 and c � 1, or � =1 and c < 1, then the variational problem

EH(eu) = D(eu) + nVH(eu; u0)! min in S(u0; A;�) (4.10)

has a solution.

(ii) If

c � � � 1

� + 1
respectively c < 1 if � =1; (4.11)

then the variational problem (4.10) has a solution v with D(v) < �D(u0); if we have strict

inequality in (4.11), or if u0 is itself not a solution to (4.10), then D(u) < �D(u0) for

every solution u to (4.10).

(iii) If A is the closure of a C2-Domain in Rn+1 and

jHj � K@A pointwise on @A; (4.12)

then every minimum u of (4.10) with D(u) < �D(u0) is a weak solution of the Dirichlet

problem D(H;u0) in A. If in addition jH(a)j < K@A(a) in a given point a 2 @A and u0j@B
omits some neighbourhood of a, then there exists a neighbourhood V of a in Rn+1 such

that u(B) \ V = ?.
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Proof: (i) From (3.3) we have, for eu 2 S(u0; A;�)
M(J~u � Ju0) � D(eu) +D(u0) � (� + 1)D(u0) � s; (4.13)

so that VH(eu; u0) is de�ned for all eu 2 S(u0; A;�). Using (4.9) and (4.13) we have

EH(eu) � D(eu)� njVH(eu; u0)j � (1� c)D(eu)� cD(u0); (4.14)

i.e. EH is bounded from below on S(u0; A;�). We now choose a minimizing sequence (ui)i2N
for (4.10) and note that (4.14) implies that supiD(ui) < 1 if � = 1 and c < 1; for �nite

� this follows directly from the de�nition of S(u0; A;�). After passing to a subsequence we

can assume that ui converges to a map u 2 S(u0; A;�) weakly in W 1;n und pointwise almost

everywhere. For given " > 0 we apply Lemma 4.1 and obtain, after passage to a subsequence,

surfaces eui 2 S(u0; A) with lim
i!1

keui � uikL1(B;Rn+1) = 0. From Lemma 3.5, (i) we thus have

that VH(eui; u0) and VH(eui; ui) are well-de�ned, and furthermore

VH(eui; u0)�VH(ui; u0) = VH(eui; ui)! 0 bei i!1: (4.15)

(The proof of Lemma 3.5, (i) shows that we do not need need to assume that A admits uniform

Lipschitz neighbourhood retractions, since in the current situation, from Lemma 4.1, (iii) we

have eui(x) = ui(x) for jui(x)j � R.)

Choosing " < 1
2
D(u) we obtain via (3.3) and Lemma 4.1, (vi)

M(J~ui � Ju) � DG(eui) +DG(u) � 2"+D(ui)�D(u) < �D(u0) � s:

(4.16)

for i su�ciently large (for G � B given by Lemma 4.1). Thus we conclude from the spherical

isoperimetric condition (note c � 1), Remark 4.3 and (4.16) the inequality

njVH(eui; u)j � cM(J~ui � Ju) � 2"+D(ui)�D(u) (4.17)

for i su�ciently large.

We next wish to show

VH(eui; u0) = VH(eui; u) +VH(u; u0): (4.18)

To see this, note that (4.17) guarantees the existence of VH(eui; u), that (4.15) ensures that

VH(eui; u0) is well-de�ned, and that the existence of VH(u; u0) is guaranteed by the fact that

u 2 S(u0; A;�). Therefore we have the existence of recti�able (n+ 1)-currents I~ui;u, I~ui;u0 and

Iu;u0 with support in A, all o� which are uniquely determined by their boundaries J~ui � Ju,

J~ui � Ju0 and Ju � Ju0 . Thus we have

I~ui;u0 = I~ui;u + Iu;u0 ;

since the currents on both sides have the same boundary. This shows (4.18).

Using (4.15), (4.18) und (4.17) we have, for i su�ciently large,

EH(ui) = D(ui) + nVH(ui; u0)

= EH(u)�D(u) +D(ui) + nVH(ui; u0)� nVH(u; u0)

= EH(u) +D(ui)�D(u) + nVH(eui; u)� nVH(eui; ui)
� EH(u)� 2"� nVH(eui; ui)
� EH(u)� 3":
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This shows that u minimizes the H-energy in the class S(u0; A;�).
To see (ii), we note that EH(u) � EH(u0) for solutions of (4.10). Hence we have

D(u) = EH(u)� nVH(u; u0)

� EH(u0)� nVH(u; u0)

= D(u0)� nVH(u; u0)

� D(u0) + c[D(u) +D(u0)]

� [1 + c(1 + �)]D(u0)

� �D(u0);

where we have used in turn (3.3), the fact that VH(u0; u0) = 0, the isoperimetric condition, and

(4.11). The strict inequality D(u) < �D(u0) occurs in the following situations: when � = 1;

or c < �+1
��1 if � < 1; or in the case that u0 is not a solution of (4.10), i.e. E(u) < E(u0). On

the other hand, if u0 solves (4.10), then D(u0) < �D(u0), since � > 1.

Part (iii) follows from Lemma 3.5, part (ii) and the results from Section 2. �

Remark 4.5 (1) In the case A 6= R
n+1 it is not in fact necessary to assume that the integer

multiplicity recti�able (n+1)-currents I~u;u0 occuring in the proof of Theorem 4.4 have support

in A. As long as we have that H is bounded and Ln+1-measurable on some closed set ~A � A,

we can weaken De�nition 4.2(ii) by allowing sptQ � ~A (i.e. we only need to require that T is

uniquely homologically trivial in ~A).

(2) A natural choice of reference surface u0 is a minimizer of the n-Dirichlet integral relative

to given boundary data, i.e. D(u0) � D(eu) for all eu 2 S(u0; A). The existence of such a

minimizer is guaranteed, for example, if we consider Dirichlet boundary data  2 C0(@B;A)

which admits an extension inW 1;n(B;A). The above proof then goes through if we use S(;A) =�eu 2W 1;n(B;A) : euj@B = 
	 6= ? in place of S(u0; A), and S(;A;�) = feu 2 S(;A) : D(eu) �

�D(u0)g, where u0 minimizes the n Dirichlet-integral in S(;A), in place of S(u0; A;�).

5 Geometric conditions su�cient for existence

In this section we combine the results of [DS3] concerning isoperimetric inequalities with Theorem 4.4

to obtain conditions on the Dirichlet boundary data ' 2 C0(@B;A) and on the prescribed mean

curvature H which are su�cient to ensure the existence of a (weak) solution of the Dirichlet

problem D(H;'). The �rst result is a Wente-type theorem. We consider Dirichlet boundary

data ' 2 C0(@B;A) which admits a W 1;n(B;A)-extension, and we denote by u0 2 W 1;n(B;A)

the D-minimizing map with u0j@B = ' and set d' = D(u0).

Theorem 5.1 Let A be the closure of a C2-domain in R
n+1 such that the minimum of the

principal curvatures K@A (viewed with regard to the inward pointing normal) is positive at every

point a 2 @A. Further consider Dirichlet boundary data ' 2 C0(@B;A) as above and H : A! R

bounded and continuous satisfying

sup
A

jHj � n

r
�n+1

2d'
(5.1)
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and

jH(a)j � K@A(a) for a 2 @A: (5.2)

Then there exits a weak solution u 2W 1;n(B;A) to the Dirichlet problem D(H;'), i.e.
Dxi(jDujn�2Dxiu) = H bu � ux1 � � � � � uxn in B;

uj@B = ' on @B:

Proof: We extend H via H � 0 on R
n+1 n A to a bounded, measurable function. The

isoperimetric inequality (1.6), applied to a closed recti�able n-current T with support in A and

mass not greater than s and the unique recti�able (n+ 1)-current Q satisfying @Q = T (recall

the results of Section 3) implies

njhQ;H
ij � n sup
A

jHj �M(Q) � nn+1 sup
A

jHjs 1nM(T ); (5.3)

i.e. H satis�es an isoperimetric condition of type nn+1 supA jHjs
1
n ; s on R

n+1 . Thus the

conditions of Theorem 4.4, (i) (keeping in mind Remark 4.5, (i)) are therefore satis�ed with

� = s
d'
� 1, if s > 2d' and nn+1 supA jHjs

1
n � 1. If we further require

nn+1 sup
A

jHjs 1n � � � 1

� + 1
=
s� 2d'

s
;

then we can apply (ii) of Theorem 4.4. Noting that the maximum of the function s 7! s�2d'
s1+

1
n

on

(2d';1) occurs for s = 2(n+ 1)d', we obtain the su�cient condition

sup
A

jHj � 1

nn+1

2(n+ 1)d' � 2d'

[2(n+ 1)d']
1+ 1

n

= n

r
�n+1

2d'
:

The remaining conclusions follow from Theorem 4.4, (iii). �

We can exploit the fact that the functions iu;u0 and iQ introduced in Section 3 are actually

in BV (Rn+1 ;Z), and hence in L1+
1
n (Rn+1 ;Z), to give a di�erent set of su�cient conditions; cf.

[St1, Theorem 6.1], [St2, Theorem 3.3].

Theorem 5.2 Let A and ' be as in Theorem 5.1. Further let H : A ! R be a bounded

continuous function satisfyingZ
A

jHjn+1 dx <
�
1 +

1

n

�n+1
�n+1 (5.4)

and

jH(a)j � K@A(a) for a 2 @A:
Then there exits a weak solution u 2W 1;n(B;A) to the Dirichlet problem D(H;').
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Proof: As in the proof of Theorem 5.1 we extend H via H � 0 on Rn+1 n A to a bounded,

measurable function on Rn+1 . We use H�older's inequality and [Fe, 4.5.9 (31)] in order to obtain,

for a closed, recti�able n-current T with support in A and its associated (n + 1)-current Q

satisfying @Q = T and multiplicity function iQ:

njhQ;H
ij = n

����
Z
Rn+1

iQH


����
� n

�Z
Rn+1

jiQj
n+1
n dx

� n
n+1

�Z
Rn+1

jHjn+1dx
� 1

n+1

=
n

n+ 1
�
� 1
n+1

n+1

�Z
A

jHjn+1dx
� 1

n+1

M(T );

i.e. H satis�es an isoperimetric condition of type c; 1 for c = n
n+1�

� 1
n+1

n+1

�R
A
jHjn+1dx�. Hence

the conditions of Theorem 4.4 (with s = � =1) are therefore satis�ed if c < 1; this is precisely

(5.4). �

The following corollary is immediate:

Corollary 5.3 Let A, K@A and ' be as above, and let H be a bounded, continuous function on

A for which (5.2) and

sup
A

jHj <
�
1 +

1

n

�
n+1

r
�n+1

Ln+1(A) (5.5)

hold. Then there exits a weak solution u 2W 1;n(B;A) to the Dirichlet problem D(H;').

In the case A = BR(a) � R
n+1 conditions (5.5) and (5.2) simplify to

sup
BR(a)

jHj < n+ 1

n

1

R
; jH(a)j � 1

R
for a 2 @BR(a);

i.e. Corollary 5.3 contains the results of [DF2, Satz 2.1] as a special case (cf. [MY, Theorem 4]),

in the case of constant H.

Theorem 5.4 Let A and ' be as in Theorem 5.1, and let H : A ! R be bounded and

continuous, and satisfy

sup
t>0

�
tn+1

�n+1
Ln+1fa 2 A : jH(a)j � tg

� 1
n+1

=: c < 1 (5.6)

in addition to (5.2). Then there exits a weak solution u 2 W 1;n(B;A) to the Dirichlet problem

D(H;').

Proof: We extend H as before. Following the arguments of the proof of [St2, Proposition 5.1]

and noting (5.5) we obtain an isoperimetric condition of type c; 1 with c < 1, i.e. for every

recti�able n-current T with @T = 0 and sptT � A and the unique recti�able n + 1-current Q

satisfying @Q = T we have

njhQ;H
ij � c �M(T ):

Thus the conditions of Theorem 4.4 (with s = � =1, c < 1 and eA = R
n+1 ) are satis�ed. �
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6 Regularity of Solutions

In this section we discuss the regularity of solutions to (4.10). We will call a domain G � R
n+1

locally convex up to Lipschitz transformations if G = int(G) and if, for every point

a0 2 @G, we can �nd a neighbourhood U of a0 and a bi-Lipschitz mapping f from the component

of a0 in U \G to some closed convex set. The domain G is called uniformly locally convex

up to Lipschitz transformations if there is a constant � independent of a0, 0 < � � 1, such

that U und f can be chosen to satisfy

U � B�(a0); Lip(f) � ��1; Lip(f�1) � ��1 (6.1)

(cf.[St1, Remark 3.9], and the comments thereafter).

Theorem 6.1 Let A; H and u0 satisfy the conditions of Theorem 4.4, with associated parameters

�; s and c. Further let A be the closure of a domain which is uniformly locally convex up

to Lipschitz transformations. Then every solution u of (4.10) is H�older-continuous inside B;

further u 2 C0(B;Rn+1) if uj@B 2 C0(@B;Rn+1).

Proof: Our goal is to prove that the inequality

DB�(x0)(u) � DBr(x0)(u)
��
r

�n�
(6.2)

holds for all x0 2 B and 0 < � � r < minfr0; 1 � jx0jg. We can then apply Morrey's Dirichlet

growth theorem [M, 3.5.2] to conclude the local H�older continuity of u with exponent �.

To show (6.2) we begin by �xing x0 2 B und set u(r; !) = u(x0 + r!) = ur(!) for ! 2 Sn�1
and 0 � r � 1� jx0j. The function

�(r) := DBr(x0)(u) =
1p
nn

Z r

0

Z
Sn�1

"����@u@�
����
2

+
1

�2
jd!uj2

#n
2

�n�1 d! d� (6.3)

is absolutely continuous on [0; 1 � jx0j], and for almost all r in this interval we have

	(r) :=
1p
nn

Z
Sn�1

jd!u(r; �)jn d! � r�0(r): (6.4)

From now on we will only consider r such that (6.4) holds. Sobolev's embedding theorem

then ensures

osc
Sn�1

u(r; �) = sup
!;!02Sn�1

ju(r; !) � u(r; !0)j � c(n) n
p
	(r): (6.5)

Our aim is to obtain an estimate for 	(r). Denoting by 0 < � � 1 the constant from (6.1),

we consider the cases 	(r) �
�

�
2c(n)

�n
and 	(r) <

�
�

2c(n)

�n
separately. In the former case we

have, using �(r) � D(u),

�(r) �
�
2c(n)

�

�n
	(r)D(u) �

�
2c(n)

�

�n
�D(u0)r�

0(r): (6.6)

In the latter case we have from (6.5) the inequality osc
Sn�1

ur <
�
2 , i.e. we can �nd a1 with

a1 2 ur(S
n�1) = u(@Br(x0)) � B�

2

(a1) \ A. If B�
2

(a1) is not contained in A then we can �nd
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a0 2 @A with fta0+ (1� t)a1 : 0 � t � 1g � B�
2

(a1)\B�(a0), and with f as in (6.1) we de�ne

h 2 W 1;n(Br(x0);R
n+1) to be the DBr(x0)-minimizing map with boundary values f buj@Br(x0),

and further de�ne w = f�1 bh 2 W 1;n(Br(x0);R
n+1). These are well-de�ned, since u(@Br(x0))

s contained in the component of a0 in A \ B�(a0), and hence h(@Br(x0)) = f bu(@Br(x0)) in

the convex set Im(f), so that h(Br(x0)) � Im(f). For w we have

w 2W 1;n(Br(x0); A); ujBr(x0) �w 2W 1;n
0 (Br(x0);R

n+1); (6.7)

and

DBr(x0)(w) � ��nDBr(x0)(h) � ��nDBr(x0)(f
bu) � ��2nDBr(x0)(u): (6.8)

(here we have extended f to a map of all of A with the same Lipschitz constant Kirszbraun's

theorem [Fe, 2.10.43]). If B�
2

(a1) � A, we simply de�ne w := h to be the DBr(x0)-minimizing

map with boundary data uj@Br(x0); in this case, too, we have (6.7) and (6.8).

The next step is to show the existence of r0 > 0 such that the inequality

DBr(x0)(u) �M0DBr(x0)(w) (6.9)

holds for all Br(x0) � B with r � r0, for a constant M0 independent of r und x0. M0. We now

de�ne

eu =
(

u on B n Br(x0);

w on Br(x0);
(6.10)

and note that eu 2 W 1;n(B;A) and eu � u0 2 W
1;n
0 (B;Rn+1). If D(eu) > �D(u0) then we have

from (6.10), since D(u) � �D(u0),

DBr(x0)(u) < DBr(x0)(eu) = DBr(x0)(w);

and hence we have (6.9) with M0 = 1. On the other hand if D(eu) � �D(u0) we can take eu as

a comparison surface for problem (4.11), which leads to EH(u) � EH(eu), or equivalently, from
(6.10),

DBr(x0)(u) � DBr(x0)(w) + n[VH(eu; u0)�VH(u; u0)]: (6.11)

We now consider the spherical n-current J~u � Ju. From (3.4), (6.10) and (6.8) we have

M(J~u � Ju) � DBr(x0)(w) +DBr(x0)(u) � (��2n + 1)DBr(x0)(u): (6.12)

Since DBr(x0)(u) becomes arbitrarily small as Ln(Br(x0)) converges to zero, we can �nd positive

r1 depending only on s such that M(J~u� Ju) � s is for r � r1 (note that � depends only on A,

and not on the parameters s; � and c). This guarantees the existence of an integer recti�able

(n+1)-current I~u;u with support in A and boundary J~u�Ju. Denoting by I~u;u0 ; Iu;u0 the integer
recti�able (n+1)-currents with support in A with boundary J~u� Ju0 , Ju� Ju0 respectively, we
have I~u;u = I~u;u0 � Iu;u0 . This shows VH(eu; u) = VH(eu; u0)�VH(u; u0), and hence from (6.11)

we have

DBr(x0)(u) � DBr(x0)(w) + nVH(eu; u); (6.13)

if 0 < r � r1.
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Since H satis�es a spherical isoperimetric condition of type c; s we can use (4.9) and (6.12)

to estimate njVH(eu; u)j as follows:
njVH(eu; u)j � cM(J~u � Ju) � c[DBr(x0)(w) +DBr(x0)(u)]: (6.14)

From (6.14) and (6.13) we have, if c < 1:

DBr(x0)(u) �
1 + c

1� c
DBr(x0)(w);

and hence (6.9), with M0 =
1+c
1�c .

In the case c = 1 we use the isoperimetric inequality (1.6) and (6.12) to bound jVH(eu; u)j
from above:

jVH(eu; u)j � kHkL1M(I~u;u) � n+1kHkL1M(J~u � Ju)
1+ 1

n

� n+1kHkL1(��2n + 1)1+
1
n (DBr(x0)(u))

1
n DBr(x0)(u):

Thus given " > 0 we can determine r0, 0 < r0 � r1 such that njVH(eu; u)j � "DBr(x0)(u). From

(6.13) we thus have

DBr(x0)(u) �
1

1� "
DBr(x0)(w); (6.15)

i.e. (6.9) is also valid in this case (in fact for M0 arbitrarily close to 1, in that we can choose r0
as small as we please).

We next de�ne p := �R
Sn�1

f bu(r; !) d! and

v(�; !) :=

(
p for ! 2 Sn�1; 0 � � < r

2 ;

(2� 2�
r
)p+

�
2�
r
� 1

�
f bu(r; !) for ! 2 Sn�1; r2 � � � r:

Using Poincar�e's inequality we haveZ r

r
2

�n�1
Z
Sn�1

����@v@�(�; !)
����
n

d! d� =
2n � 1

n

Z
Sn�1

jf bu(r; !)� pjn d!

� c(n)

Z
Sn�1

jd!(f bu)(r; !)jn d! � c(n)��n
Z
Sn�1

jd!u(r; !)jn d!:

For the tangential component we obtainZ r

r
2

1

�

Z
Sn�1

jdv(�; !)jn d! d� � ��n log 2
Z
Sn�1

jd!u(r; !)jn d!:

Combining this with (6.4) we have

DBr(x0)(v) � c(n)��n
Z
Sn�1

jdu(r; !)jn d! � c(n)��nr�0(r):

The DBr(x0)(�)-minimality of h yields

DBr(x0)(h) � DBr(x0)(v) � c(n)��nr�0(r);
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and combining this with (6.9) and the de�nition of w (recall that w is either h or f�1 bh,

depending on whether or not B�
2

(a) � A), we have

�(r) = DBr(x0)(u) �M0DBr(x0)(w)

� M0�
�nDBr(x0)(h) �M0c(n)�

�2nr�0(r): (6.16)

Setting M1 := max
n�

2c(n)
�

�n
; c(n)M0�

�2n
o
we have from (6.6) and (6.16)

�(r) �M1r�
0(r) for almost all 0 < r � minfr0; 1� jx0jg;

and hence, with � := (nM1)
�1

�(�) �
��
r

�n�
�(r) for 0 < � � r � minfr0; 1� jx0jg;

this yields (6.2) and hence, by the comments above, completes the proof of interior regularity.

If uj@B 2 C0(@B;Rn+1) we can generalize [HK, Lemma 3] directly to the current setting to

obtain u 2 C0(B;Rn+1). �

Higher regularity for solutions of the Dirichlet problem D(H;'), e.g. C1;� for Lipschitz

continuous H, follows from the arguments of [HL, Section 3].
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