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Existence and Regularity for higher dimensional H-systems
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1 Introduction

In this paper we are concerned with the existence and regularity of solutions of the degenerate
nonlinear elliptic systems known as H-systems. For a given real valued function H defined on
(a subset of) R**!, the associated H-system on a subdomain of R* (we will generally take the
domain to be B, the unit ball) is given by
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Dy, (|Du|" 2Dyu) = V' (H ou)ug, X -+ X Uy, (1.1)

for a map u from B to R**! (obviously for (1.1) to make sense classically we look for u €
C?(B,R"*!); as we discuss in Section 2, it also makes sense to look for a weak solution
u € W (B,R*""1) to (1.1) under suitable restrictions on H). Here we use the summation
convention, and the cross product wy x -+ x wy, : R**1 @ ... @ R**! — R**! is defined by the
property that w-wy X - - - X w, = det W for all vectors w € R**! where W is the (n+1) x (n+1)
matrix whose first row is (w!, - -+, w"*!) and whose jth row is (wjl-fl, e ,w;”jll) for2 <j <n+l.

Analytically, it is natural to consider boundary value problems associated to (1.1), for
example Dirichlet boundary conditions

for a suitably regular prescribed ¢. We denote the Dirichlet problem associated with H and ¢
(viz. (1.1), (1.2)) by D(H, ).

One of the main reasons for considering (1.1) is that, if u fulfills certain additional conditions,
then it represents a hypersurface in R"*! whose mean curvature at the point u(z), for z € B, is
given by H ou(z).

Specifically a map u:B — R**! is called conformal if

Uy, * Ug; = A (z)d;; on B (1.3)

for some real-valued function A. In the case n = 2, the map u satisfies a Plateau boundary
condition (for T') if

u|yp is a homeomorphism from 0B to I’ (1.4)

for a given rectifiable Jordan curve I' in R®. A solution u to (1.1), (1.3), (1.4) solves the Plateau
problem for H and I', which we will denote by P(H,T); the solution solves P(H,I') classically if
u € C°(B,R3) N C?(B,R3), and has mean curvature H ou(x) at every regular point u(z). The
problem P(H,T') is thus a generalization of the classical Plateau problem for minimal surfaces
(i.e. the case H = 0) first solved by Douglas and by Radé in the early 1930’s: we refer the
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reader to the monograph [DHKW] for details and literature concerning this case, and assume
that H does not vanish identically in the rest of this discussion.

The first existence results were obtained by Heinz [He], and further existence results were
obtained by many authors, including Werner [Wr|, Hildebrandt [Hil], [Hi2], Wente [W], Gulliver
and Spruck [GS1], [GS2] and Steffen [St1], [St2]. In particular we note the so-called Wente-type
existence theorems, such as [W, Theorem 6.2] (in the case of constant H) and [St1, Theorem
6.2] (for H not a priori constant, and under more general conditions), where smallness of H in a
suitable sense (namely when compared to an appropriate power of the minimal area of a surface
spanning I') guarantees a solution of P(H,T"). Similar results for the Dirichlet problem D(H, ¢)
are given in [St1, Theorem 6.2].

In higher dimensions the formulation of the Plateau problem P(H,T') depends crucially upon
the chosen generalization of the boundary condition (1.4), and in particular on the boundary T.

In the setting of geometric measure theory one can take I' to be an integer multiplicity,
rectifiable current of dimension n + 1, and the Plateau problem P(H,T') is to find an n-
dimensional integer multiplicity rectifiable current T" with 0T = I such that the weak version
of (1.1) is satisfied for T, i.e.

/M(diVMY-i-HY-VT)d,uT:O (15)

for all test vectorfields Y € CH(R* ™! R**1) with spt(Y) Nspt [ = @; here pr is n-dimensional
Hausdorff measure weighted by the multiplicity function of T', v is the unit normal vector field
on T, and M is the supporting set of T in R**! (cf. [Si, Section 16.5]). Existence results, again
in terms of Wente-type theorems, were proven by Duzaar and Fuchs [DF1], [DF3] and the first
author [Du2].

The general strategy in both settings (the 2-dimensional parametric setting and the higher
dimensional geometric measure theoretic setting) is similar. The first step is to construct a
suitable energy whose critical points are (at least formally) the desired solutions of the Plateau
problem P(H,T'). The next step is to show that the minimum of this energy is in fact achieved,
and that it is achieved by a surface or a current in the desired class. This energy is composed of
two terms, the first of which is the (n-)Dirichlet integral, the second of which is an appropriately
weighted (depending on H) volume term. The volume term is not lower semicontinuous with
respect to weak convergence in any space which is appropriate to these settings, so it is necessary
to control the volume in terms of the Dirichlet energy term. This is done by applying appropriate
isoperimetric inequalities.

This same broad strategy is followed in the current paper to obtain existence results for the
Dirichlet problem D(H, ) in higher dimensions. In Section 3 we give a variational formulation
of the problem in the space WH"(B,R"!); the aim is to realize the solutions of D(H, )
as minimizers of an appropriate subclass of W™ (B, R**!). Since weak W™ convergence
does not preserve homology, we are unable to directly adapt the methods of [DS3] to our
situation (in the setting of geometric measure theory, these authors obtained existence results
for solutions of the Plateau problem with the image being contained in Riemannian manifold of
arbitrary dimension). This motivates the definitions of spherical currents and of homologically
n-aspherical domains (Definition 3.1), which allows a reasonable definition of the H-volume
enclosed by two maps in W'"(B, A) for A C R"*! (Definition 3.4), and hence of the energy
functional to be minimized.



In order to control the H-volume by the Dirichlet integral, we need an estimate of how
much of the volume and surface area can be lost under passage to the weak limit in our chosen
subclass. This is accomplished in Lemma 4.1. Such ‘bubbling phenomena’ are an important
feature of many nonlinear elliptic and parabolic problems, in particular in the area of harmonic
maps: see for example [SU], and recent papers concerning the heat-flow for harmonic maps, such
as [Q] and [DT].

Once this is accomplished, we need to adapt the notions of isoperimetric conditions from
[St1] and later works to our situation. Having done this, in Section 5 we are able to prove
existence results under various assumptions on H and on the support of a given extension of
our Dirichlet boundary data. Our results include as a special case (see Corollary 5.3) previous
results for constant H obtained by Duzaar and Fuchs [DF2] and Mou and Yang [MY]; in [MY]
the authors also obtain existence results for unstable solutions of higher-dimensional H-systems
for suitably restricted, constant H.

In Section 6 we consider the regularity of the solutions whose existence is guaranteed by
the theorems of Section 5. In the geometric measure theory setting for the Plateau problem
P(H,T') discussed above, optimal regularity results were obtained by the first author [Du2] and
by Duzaar and Steffen [DS1], [DS2]. The authors established that the (energy minimizing)
solutions of P(H,T') are classical hypersurfaces smooth up to the boundary for n < 6 and
have a singular set which is closed, disjoint from the support of the boundary and of Hausdorff
dimension at most n — 7 for n > 7. Due to our setting, we are able to obtain more satisfactory
results (Theorem 6.1); in particular, our solutions to D(H, ) are Holder continuous, and are
C1® under reasonable additional smoothness assumptions on H.

We close this introduction with a few remarks on notation. We will denote p-dimensional
Lebesgue measure by £P. The symbol ¢, is used to to denote L£P(BP), where BP is the unit ball
in R?, and we denote by -, the optimal isoperimetric constant in R?, i.e. the smallest constant
such that (cf. [Fe, 4.5.9 (31)])

_p_
M(Q) < 7M(9Q)7-1 (1.6)
p =L
holds for all integer multiplicity rectifiable p-currents in R (note that -y, = pPTpl ap™"). We will
denote the standard volume form on R**! by €.

2 The variational problem

We begin by giving a variational formulation of the H-system (1.1). We wish to consider, for
u € WH?(B,R**1), an energy of the form

En(u) :=D(u) + nVg(u) (2.1)

with D(u) = \/% [5 |Du|™ dz and Vg a functional which will be precisely specified later, and

which will be seen to be a signed volume weighted by H, in an appropriate sense. For the
moment, the only requirement we make of Vg is that the following homotopy formula is valid:

Viu(u) — Vi(u) = /B/Ot(HoU)(QoU, U AUg, A~ AUy, ) dt da (2.2)

for variations U (t,z) = wi(x) of u(x) = ug(x).



A variation U is termed sufficiently regular in R"*! if u, € WL (B, R"*1) for sufficiently
small ¢, the initial velocity field ( = £ .o Us belongs to Wh(B,R**') 0 L>°(B,R"*"), and
differentiation under the integral with respect to ¢ is valid at ¢ = 0 for D(u;) and Vg (us)—V g (u).

Lemma 2.1 (first variation) For sufficiently reqular variations us in W1 (B, R* 1) with initial
velocity field ¢ in WH(B,R**1) N L>® we have
d

% EH (ut)

t=0

1 N
N n/B |:\/’n"|Du|n ZDU'DC—F (HOU)C CUgpy X Ugy X0 X Uy, dr.

Proof: Formal differentiation of D(u;) yields the integrand \/7:7|Du|”’2Du - D¢, and formal
differentiation of (2.2) gives the integrand (Hou){Qou,( Aug, A+ Aug,) = (Hou)( - uy, X

X Uy N

The integral § Ey (u; () is termed the first variation of the energy Ey in the direction (.
As a direct consequence we have

Corollary 2.2 A map u € WH(B,R"!) is a weak solution of the H-surface equation if and
only if § E(u; ) =0 for all vector fields ¢ € W(}’"(B,R”H) N L. [

This means that the weak H-surface equation, i.e.
Dy.(|Du|"2Dy.u) = Vn(H ou)ug, X --- X uy, in B, (2.3)

is precisely the Euler equation associated to the energy functional E.
An important class of variations for our purposes are those of the form

u(z) = ¥ (tn(z), u(z)), (2.4)

for Y € CHR" R"1!) a smooth vector field in R**!, ®Y the flow associated to Y and 7 a
sufficiently smooth function defined on B (generally n € C'(B,R)). The initial field is then
n(Y ou) (cf. [Dul, Section 2], [DS3, Lemma 1.3], [DS4, Section 2]).

The following variational equality and inequality follow in direct analogy to the proof of
[DS4, Prop. 2.3 (ii)].

Lemma 2.3 (i) Assume thatu € WS (B, R"* 1) is E-minimizing with respect to the variation
uy given by (2.4) for each Y € CLH(R™ 1 R" 1) and eachn € CL(B,R). Then u is a solution
to the weak H-surface equation (2.3).

(ii) Let A C R"t! be the closure of a domain with C? boundary. Suppose further that u is
E-minimizing for one-sided variations ug, 0 <t K 1, forn > 0 and Y(a) = 0 or Y(a)
directed strictly inwards at each a € OA. Then u satisfies the inequality

dEn(z;() zn/B [ﬁ|Du|"2Du-DC+(Hou)§-um X oo X g, |de >0 (2.5)

for all vector fields ¢ € Wy™ (B, RV )N L®(B, R 1) with ¢ - (Fou) > 0 almost everywhere
on u~'V for some neighbourhood V of 0A in R**' und some C'-extension U of the
(inwardly pointing) unit normal vector field v on A to R, [ |



Proposition 2.4 Let A C R be the closure of a domain with C?-boundary, v be the
(inwardly pointing) unit normal on 0A, and Kya(a) be the minimum of the principal curvatures
of OA at the point a (with respect to v). Let u € WV (B, A) satisfy the inequality (2.5). Then
we have:

(i) There exist a nonnegative Radon measure X\ on B which is absolutely continuous with
respect to L™ and which is concentrated on the coincidence set u=10A, such that:

SEp(u;¢) = / ¢+ (vou)d\ (2.6)

u—19A
for each ¢ € Wol’n(B,]R""'l) N L>®(B,R*1);

(ii) If |H| < Kga on 0A, we have A = 0; more generally

A< E"I_L|Du|”<|Hou| — Koa ou) on u l0A; (2.7)
+

n’l’L

(iii) If |H(a)| < Kga(a) for some a € OA and if u|lspp omits some neighbourhood of a, then
there exists a neighbourhood V' of a in R*™! such that u(B)NV = @.

Proof: We write d(p) = dist(p,dA) for p € R*!, and extend the (inwardly pointing) unit
normal vector field v to a C'-vector field, again denoted by v, such that v coincides with grad d
on a neighbourhood of 0A.

We firstly consider the case that A is compact. In this case, ( = n(rvou) is admissable in
(2.5) if 0 < n € C}(B,R). Applying the Riesz representation theorem we deduce the existence
of a nonnegative Radon measure A on B such that

(5EH(u,n(uou)):/Bnd>\ (2.8)

holds for all n € C1(B,R).

We now choose 9 € C*(R,R) nonincreasing with 4 = 1 on (—o0, 3], ¥ = 0 on (1,00) and
define 9. (t) = 9(%) for e > 0. We consider {; = n(J: odou)(vou) with n > 0 as before. Then
¢ = (. on the preimage under u of a neighbourhood of 0A, so that { — (. and (. — ( are both
admissable in the variational inequality. This means

0 Ep(u;¢e) = 0By (u;¢) > 0. (2.9)
For ¢ sufficiently small we estimate
Ui+ (Ce)ay < (Ve odou)[ne; g, - (Vou) + nug, - (Dv) ou)ug,].

Applying this in (2.5), noting that wu,, - (vou) = 0 almost everywhere on u~'9A and letting ¢
approach 0 we have

0< +6Bg(u;¢) < /

1
14 [ Dul* us, - (Dv)ouuy,)
.

V™

+(Hou)(vou) - ug, X -+ X ug, |nde.



Since ug, - ((Dv)ouuy,) = —bgaou(uy,,uy,) almost everywhere on v 19A, where bys denotes
the second fundamental form of A in R**! relative to the outwardly pointing normal on 9A,
we have

IN

1 - n
/ = |Du|" 2 [|Hou| |Dul? — ZbaA ou(umi,uxi)]ndac
u—1l9A VT i=1

1
< —Du"(Hou —lCaAou)ndm.
[ =lpur(reu

Combining this with (2.9) und (2.8) shows

n
ndx < —/ Du”(Hou —ICaAou>r]d$,
/ = [ ur(Heu

which yields the claimed estimate on the Radon measure A, i.e.

n

A< E”\_L|Du|"<|Hou| —Koa ou) on u l0A.
nr +
This completes the proof of (ii).

To show (i) we begin by noting that (ii) immediately yields the absolute continuity of A
with respect to £, and further that A(B \ u '9A) = 0. It is easy to see by approximation
that (2.8) holds for all n € W, ™(B,R) N L°(B,R**"'). In the case of a general vector field
¢ € W[}’"(B,]R"“) N L®(B,R**!), we decompose ¢ = ¢+ 4+ (T, where (* = n(vou) with
n=C( (vou) € Wol’n(B,R”H) N L>®(B,R"!). We apply (2.8) to conclude

SEy(u;¢t) = 0By(u, (€ vou)vou) = / ¢ (vou)dA. (2.10)
u~l9A

Further we have that ¢ - (vou) = 0 almost everywhere on the preimage of a neighbourhood
of A under u, i.e. ¢' and —(' are both admissable in (2.5), and hence §Eg(u;¢") = 0.
Combining this with (2.10), we have shown (i).

In the case of arbitrary A, one replaces vowu in the above discussion by (¢ ou)(rvou) with
Y € CLR™ 1[0, 1]), such that the 1;’s tend to the identity on R"T!. One then argues directly
analogously to the case n = 2 ([DS4, Proposition 2.4]) to show that the associated Radon
measures A\, approach a limit measure A which satisfies (i) and (ii).

In the same way (iii) can be proven by direct analogy with the case n = 2: we refer the
reader to [DS4, Proposition 2.4]. ]

Remark 2.5 If we assume that w is a conformal solution of the variational inequality, (i.e.
(1.3) holds), then Ky4 can be replaced by the mean curvature Hy, in the assumptions.

3 The volume functional

Given u € WH(B,R"*1) we can define the associated n-current J, in R**! via integration
of n-forms over u, i.e.

Ju(B) :/Bu#ﬂ:/B(ﬂou,uIl A~ ANug, )ydz for BED”(R"H); (3.1)



here DF(R"*!) denotes the space of smooth, compactly supported k-forms on R**1. Tt is
straightforward to see that .J, is an n-current of finite mass (where the mass of a k-current
T on R**! is defined by M(T') := sup{T(8):8 € D*(R"*1), [|8||oc < 1}), since

1
M(J, §/ Ugy Ao Ay, dwg—/ Du|" dz = D(u). 3.2
(Ju) B| : | N B| | (u) (3.2)

Using a Lusin-type approximation argument for mappings in W (cf. [EG, 6.6.3]) we can
argue similarly to the case n = 2 (cf. [DS4, Section 3]) to see that J, is a (locally) rectifiable
n-current in R**!. If v is another surface in W" (B, R**1) then (J, — J,,)(8) is determined by
integration of u# 3 — v# B over G = {x € B : u(z) # v(z)}, as Du = Dv L"-almost everywhere
on B\ G. Thus we can refine (3.2) to

M(J, — Jy) <Dg(u) + Dg(v), if u=v on B\G, (3.3)

where

Dy (1) = \/%/U|Du|"dx (3.4)

for £L™"-measurable U C B.

In general the boundary 0T of a k-current T, £ > 1, is defined by 0T («) = T'(do) for
a € DF LR, For u, v € WL(B,R*") with u — v € W, (B, R*") we calculate directly
that J, — J, is a closed n-current, i.e. d(J, — J,) = 0. First we see that for u, v € C%(B,R*"!)
with v = v on 0B we have

OJy(a) = Ju(da):/Bu#da:/Bd(u#a)

= / u#a:/ v a = dJ,(a).
0B 0B

In the general case we approximate u by u; € C%(B,R"*!) and v —u by w; € Cipt (B, R™*1), the
approximations being in the W1 ™-norm. We see that u; + w; approaches v in W", and since
u; = u; +w; on OB we have 0(Jy,, — Ju,+w;) = 0. Letting 4 tend to infinity we see 9(J, —J,) =0,
which is the desired conclusion.

In the following we take A to be a closed subset of R**! — the obstacle — and ug € WH(B, A)
to be a fixed reference surface. We let

S(ug, A) = {u € W (B, A) : u—uy € Wy (B, R" 1)} (3.5)

denote the class of admissable surfaces. The idea behind the geometric definition of the H-
volume Vg (u,v) which is enclosed by two surfaces u, v € S(up, A) is to consider an (n + 1)-
current @ in R**! with 0Q = J, — J,, and to integrate H over (). Such currents have a
relatively simple structure; they are representable by an L'(R"*!, Z)-function i@ , such that for
all y € D"FL(R™*1) there holds

Qy) = /Rn+1 QY-

One can consider ig to be a set with integer multiplicities and finite absolute volume; in this
context the condition 0Q) = J, — J, means that v and v paramaterize the boundary of this set
with multiplicities in the dual sense of Stokes’ theorem, i.e.

/Rn+1 iQdB:/Bu#ﬂ—/Bv#ﬂ for all g€ D"(R"1).

7



Since 9Q is finite we can conclude that i¢ is a BV -function on R"*1, which is a strong motivation
for defining the H-volume by

Vi (u,0) = / iQ HOQ. (3.6)
Rn+l

In order to make this a well-defined functional, we need to clarify the questions of existence
and uniqueness for (). One could try to finesse the question of existence by considering the
variational problem restricted to those u € S(ug, A) for which J,, — Jy, is homologically trivial
in A, ie. Jy, — Jy, is the boundary of an (n + 1)-current () with support in A. However simple
examples show that such a homological property is not a priori preserved under passage to a
weak limit: see [DS4, Section 1]. It is thus reasonable to impose the restriction that J, — J,
be homologically trivial in A for all u, v € S(ugp, A); this amounts to the condition that certain
n-currents are boundaries in A, as made precise in the following definition.

Definition 3.1 An n-current 7' on R**! with support in A is called:

(i) spherical in A when it can be written in the form 7' = fx[S"] for a map f € WH(S", A),
ie.

TB) = | f#B for g€ D*(R");and
Sn

(ii) homologically trivial in A when it is the boundary of of a rectifiable (n + 1)-current
with support in A.

If (ii) holds for every spherical n-current with support in A, we say that A is homologically
n-aspherical in R, [ ]

If T = fu[S"] is homologically trivial in A, then there is an (n + 1)-current @ in R*T!
with 0Q = T, M(Q) < oo and sptQ C A. By the constancy theorem [Fe, 4.1.7, 4.1.31] we
have that @ is uniquely determined up to real multiples of [R**1], i.e. @Q is unique. Further
it follows from the general theory of rectifiable currents [Fe, Chapter 4] that we can take @
to be an integer multiplicity rectifiable current. The following lemma shows that, under mild
regularity assumptions on A, every spherical n-current T in A can be approximated by smooth
maps from S™ to A, and that if the approximating maps are all homologically trivial (when
viewed as spherical n-currents), then so is 7T'.

Lemma 3.2 Let A be a uniform Lipschitz (respectively C') neighbourhood retract in R"*' and
let f € Whn(S™, A).

(i) Given € > 0 there exists g € WH™(S™, A) such that ||g — fllwin < €, g = f outside a
subset of S™ of measure less than €, and g is Lipschitz continuous (respectively C1).

(it) For given s and r with 0 < s < oo, 0 <r < oo let M(fx[S™]) < s, and let g4[S™] be the
boundary of a rectifiable (n + 1)-current with mass not greater than r and with support in
A for all Lipschitz continuous (respectively C') g : S™ — A with M(g4[S"]) < s. Then
f#[S™] is homologically trivial in A.



Proof: (i) By following the proof of [EG, Theorem 6.6.3, Step 2] we can find, for a given
A > 0, Lipschitz maps gy : S™ — R*! such that ||gx — f|lwin — 0 as A — oo and gy = f
outside a set E)\ C S™ with \"|E)| — 0 as A — oo. Further from Step 4 of the same proof we
see that Lip(gy) < CX for C depending only on n. An elementary calculation shows that, for

|Ex| < |S™|, no ball of radius 7 {/ % can be enclosed in E). Hence given w € E) we can find

w' € 8™\ E, with g)(w') = f(w'), and |w —w'| < 7§ “gﬁ“ We thus have

o 1Al
|Sm|”

lga(w) — gx(w')| < CArm

Since )\lim A"|E\| =0 we see that, for X sufficiently large, ¢\(S™) is contained in a uniform
—00
neighbourhood V,(A) which admits a Lipschitz retraction m : V,(A) — A. We set g = mog, for
such A\. Then ¢ € Lip(S™, A), g = f on S\ E) and
lg = fllwrn sn < lgllwrn gy, + 1 llwrn gy -

The last term vanishes as A — 0o (due to absolute continuity of the integral, and since |Ey| — 0).
Further we have (again, as A — 00),

1Dglzn,m, < (Lipg)"[Ex| < (Lipm)"C"A"Ex[ — 0 and
lgllir.ey < llmegr —mo fllzrmy + 1 fllzr 2y
< (Lip7)"ligx = Fllzr By + 1 f e £y

which also converges to 0 as A tends to co. Hence for A sufficiently large we have |E)| < € and
also ||g — fllw1.n gn <&, which completes the proof in the Lipschitz case.

In the C'-case we can argue completely analogously to the situation for n = 2 ([DS4, Lemma
3.2)).

(ii) Consider f € Whn(S™ A) with M(fx[S"]) < s. Then given ¢ = 7, there exist
Lipschitz maps gx : S™ — A with g = f on S"\ Eg, |Ex| < % and || f — grllwin gn < %
The strong convergence of g; to f means, in particular, that M(gpx[S"]) — M(fx[S"]) as
k — oo, i.e. M(grx[S"]) < s for k sufficiently large. The assumptions then guarantee the
existence of rectifiable (n + 1)-currents @, with support in A, mass not greater than r and
0Qr = gr#[S"]. The BV-compactness theorem (see e.g. [EG, Theorem 5.2.4]) then ensures
(after passage to a subsequence) the existence of a rectifiable (n + 1)-current @ such that
Qr — Q (weakly). The lower semicontinuity of M then implies M(Q) < r, and thus further
0Q = kh%rgO 0Qr = kh%rgO 9k [S"] = f4[S™] (the last step due to the strong convergence of g, to

f)- N

Corollary 3.3 For all u, v € W™ (B, A) with u — v € W&’"(B,R”‘H), Ju — Jy is a spherical
n-current.

Proof: We compose u with stereographic projection from the south pole of S™ and v with that
from the north pole, in order to obtain a map f € WbH(S™, A) with fx[S"] = J,, — Jy. [

Definition 3.4 Let u, v € WH"(B, A) withu—v € W&’"(B,R”‘H). If J,, — J, is homologically
trivial in A we define the H-volume enclosed by u and v by

VH(ua’U) = Iu,’u(HQ) = / iua'UHQ'

Rn+l



Here I, is the (unique) rectifiable (n+1)-current Q in R"*! which is associated to the n-current
T =Jy,—Jy, ie spt@Q C A, M(Q) < oo and 0Q =T, and i,,, denotes the multiplicity function
of I y. [ ]

We now need to show that the H-volume has the properties which we require in order to
be able to apply the results of Section 2 concerning our variational equalities and inequalities.
This is accomplished in the following lemma.

Lemma 3.5 Let u, v € WH™(B, A) be as in Definition 3.4, so that Vi (u,v) is defined.

(i) Assume that ACR™ ! has a uniform Lipschitz neighbourhood retraction w, ueW 1" (B, A),
u—u € Wol’n(B,]R""'l) and ||u — ul|p~ is smaller than a certain positive constant which
only depends on A. Then Vg (u,v) and Vg (u,u) are also well-defined, and satisfy

Vu(u,u) + Vg(u,v) = Vg(a,v)

Vi (u,u)] < sup |H||lu — @[z (Lip 7)™ D (u) + De(a)],

where G ={z € B : u(x) # u(x)}.

(ii) Let ®) be the flow of a vector field Y € CLR" 1 R 1) with &) (A) C A for small t > 0,
0 <n€ CHB,R) and uy(x) = U(t, ), where U(s,z) = ® (sn(z),u(z)). Then Vg (us,v)
and Vg (ug,u) are defined for sufficiently small t > 0, and we have

Vi (ug,v) — Vi (u,v) = Vi (ug,u
// (HoU)(QoU,Us AU, A--- AUy, ) ds da.

Proof: (i) Using the affine homotopy U(s,z) = (1 — s)u(x) + su(z) we can define the (n + 1)-
current  in R**! by

1
Z//(70U,Us/\Um1/\---/\U%)dsdz (3.7)
B Jo

for v € D"t1(R™1). The homotopy formula [Fe, 4.1.9] and the constraint u—a € W, ™(B, R*t1)
then imply 0Q = J; — J,,. From (3.7) we see

M(Q) = lu — il 5[De(u) + Do (@]

For ||u — @]z~ sufficiently small, 7@ is thus an integer multiplicity rectifiable (n + 1)-current
with support in A, boundary d(mxQ) = 740Q = Jz — J,, and mass

M(r4Q) < (Lip7)" "' M(Q), (3.8)

which allows us to conclude 74 Q = Iy, and I, = Iy + Iy ,. This means that the H-volume
satisfies the identity

VH(ﬂ,v) —VH(U,Q)) = W#Q(HQ) = VH(ﬂ, u)
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The conclusions of (i) now follow from (3.7) and (3.8) after approximating H} by smooth
v € DR L) with || < |H].

The proof of part (ii) involves only minor modifications of the case n = 2; we omit the
details, and refer the reader to [DS4, Lemma 3.6 (ii)]. ]

Part (ii) of the above lemma shows that the homotopy formula (2.2) is valid for the variations
considered in (ii) for the H-volume as defined by Vy(u) = V(u,ug), where ug € WH"(B, A)
is a fixed reference surface, and u and wug satisfy the conditions of Definition 3.4. Thus all the
conclusions of Section 2 are valid for the H-volume as defined in (3.6).

4 A general regularity theorem

In this section we apply the direct method of the calculus of variations to prove a general
existence theorem for weak solutions of the Dirichlet problem D(H, ug). We minimize the energy
functional Eg(u) = D(u) + n'V g (u,up) in a suitable subclass of S(ug, A).

The n-Dirichlet integral D(-) is lower semicontinuous in the topology of weak convergence for
S(up, A) in Wh?(B, R**1); however the H-volume V (-, ug) is not. This is because a sequence
{u;} in S(ug, A) converging weakly to u may involve a large part of the volume and the surface
area of u; being parametrized over a small subset of B in such a manner that the £"”-measure
converges to zero as ¢ — 0o0. Geometrically this can be viewed as the bubbling off of a certain
amount of the volume and the surface area in the limit. This bubbling phenomenon also means
that the homology type will not be a priori preserved in the weak limit.

The following lemma (cf. [DS4, Lemma 4.1] in the 2-dimensional case) gives an analytical
description of the bubbling.

Lemma 4.1 Suppose that u; — u weakly in WY(B,R™) and u;|lyp — ulyp uniformly in
L>*(0B,R™). Then given € > 0 there exist R > 0, a measurable set G, G C B and maps
u; € Wh(B,R™), such that after passage to a subsequence:

(i) w; =u on B\ G with L"(G) < ¢;

(1) Uilgp = ulyp;
(iii) ui(z) = ui(x) if |ui(z)| > R or Juj(z) —u(z)| > 1;
(iv) lim [[d@; — w;l| oo (g gm) = 0;

(v) U; — u weakly in WH*(B,R™) as i — oo;

(vi) limsup [D¢(t;) + De(u)] < e + liminf [D(w;) — D(u)];
i—00 100
(vii) if the u; assume values in a closed subset A of R™ which admits neighbourhood retractions
which have Lipschitz constant arbitrarily close to 1 on neighbourhoods of compact subsets,
then the T, can be chosen to have also values in A.

Proof: Using Rellich’s theorem and Egoroft’s theorem in turn we can find R > 3, % >0, 10
and G C B measurable with £L"(G) < e und Dg(u) < €' (¢/ will be determined later) such that

after passage to a subsequence, we have || uyz/l;« < 3R, supp\ ¢ |u| < iR, supp\¢ |ui —ul <9

11



and || ui|yp — ulgpll o < i We choose n € C1(R) withn =10

n (—oo, 3R], n =0 on [2R,c0),
0 < —n' < % on R, and define 9; by 9;(t) = 1 for t < &, 9;(t) = (; = 1)/ (5 — 1)

for9; <t<1
and 9;(t) =0 for ¢t > 1.
We further define
Ui = wi + (o [ul) (95 o u; — ul) (u— up); (4.1)

note that ¥;o|u; — u| and ne|u| both take the value 1 on 0B. Parts (i) und (ii) then follow
directly, due to our choice of G, 1 and 9;.

We note that if |u;(z)| > R, then |u;(x) —u(z)| > % > 1or |u(z)| > 3R. For |u;(z)—u(z)| >
£ > 1, the definition of ¥; ensures 9;(|u;(z) — u(z)|) = 0. If [u(z)| > 2R we have n(|u(z)|) = 0.
These combine to show (iii). Since 0 <7 < 1 and sup;sq9;(t)t < J; — 0 as i — oo, we have also
established (iv). -

In order to show (vi) we differentiate (4.1) to obtain

Du; = Duj+ (nelul)D[(9io|u; —ul)(u — u;)]

o o Jul) (|Z—| - Du) (910 s — ul) (1 — us), (42)

with the interpretation % - Du = 0 for u = 0). Using the identity t9%(t) + 9;(t) =
[u] i
t > 0; we have

Du; = (1—mnolu|)Du; + (ne|u|)Du
+( o)) <|Z_|-Du> (w—wi) if Ju—w] <6 (4.3)
and
D = L= (relul) 0ol — )| PEDw + Lt yelul) 25 | PO,
+Holul) (5o s — ul) P Du = (o ful) = PDu
i olul) (- D) 91 —ul) ) i Ju ] > 5,

(4.4)
where P denotes the field of rank 1 orthogonal projections
P :R™ 3¢ |u; —ul 2((ui —u) - €)(u; — u)
(with P+ =id — P). For almost all z € G with |u;(z) — u(z)| < 6; we therefore have, via (4.3)
~ 4
|Du;| < |Du;| + |Du| + R5i|Du|,

and via (4.4) for |u;(z) — u(x)| > ¢; we have

N

~ 1
|Du;| < |PLDui|2+—(1_5.)2|PDui|2 + |
(2

i.e. we have (almost everywhere on G)
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After applying Young’s inequality we have, for A > 0,

n

D () < (ﬁ T A) Des(u) + 5 Do (u): (45)

letting ¢ — oo and noting d; — 0, this becomes

lim sup [D¢(u;) + D (u)]

< (14X lirgsup [Da(ui) — Dg(u)] + <2 + %) D¢ (u)
< (1+X) ligri)igp [D(u;) — D(u)] + <2 + %) D¢(u); (4.6)

in the last inequality, we use the fact that limsupDp\g(u;) > Dp\g(u) (note u; — wu in

1—00
Wwhr(B,R™)).

We now fix A > 0, such that Asup; D(u;) < e, and then €' such that Dg(u) < € and
(24 45) ¢ < Le. Part (vi) then follows from (4.6) after passing to a subsequence such that we
can replace limsup by liminf in (4.6).

From (vi)we have sup; Dg(u;) < oco. Furthermore (cf. (i)) u; = uw on B\ G, i.e. sup; D(u;) <
oo. Combining this with the weak convergence of u; to w and with part (vi), this shows (v).
To see (vii) we apply the above construction with %6 in place of e. Then u;(z) = u;(x) € A if
lui(x)| > R. Further by (iv) we have |[u; — u;||poo(prm) = d; — 0 as i — oo, so u;(z) lies either
in A or in a uniform d;-tubular neighbourhood of {a € A : |a| < R}, which we denote by Us,.
Given this, we can find a Lipschitz neighbourhood rectraction 7 : V' — A such that Us, C V' and
Lip(7r|U6i) is arbitrarily close to 1, for i sufficiently large. Then (i)—(vi) also follow if we replace

u by mou,;. [

We can interpret liminf; ,.[D(u;) — D(u)] as the n-Dirichlet integral of the bubble which
separates under the passage to the weak limit u; — u. In order to establish lower semicontinuity
for the energy functional Ey(u) = D(u) + nVg(u,ug) with respect to weak convergence
in S(up, A) we need to control the H—volume jump limsup; ,.on|Vg(u;,ug) — Vi(u,ug)| .
This will be accomplished by passing from u; to w; and by using a suitable isoperimetric
condition, which will be defined below. We first recall the standard definition of an (unrestricted)
isoperimetric condition (cf. [St1, (3.7)], [DS3, Definition 3.1]).

Definition 4.2 (1) Consider 0 < s < 00, 0 < ¢ < oo and A C R**1,

(i) An (unrestricted) isoperimetric condition of type ¢, s is valid for H and A if

n|{Q, HQ)| =n

/AiQHQ‘ < ¢ M(9Q) (4.7)

for all integer multiplicity rectifiable R**!-currents @ with spt @ C A, and M(9Q) < s; here ig
is the multiplicity function of Q.

(2) Suppose that every spherical n-current 7' with support in A and M(T') < s is uniquely
homologically trivial in A, i.e. there exists an integer multiplicity rectifiable (n+ 1)-current with
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spt @ C A, M(Q) < oo and 9Q = T. Further assume 0 < ¢ < co. We say that H satisfies a
spherical isoperimetric condition of type ¢, s on A, if we have

n|{Q, HQ)| =n

/ z'QHQ‘ < cM(T) (4.8)
A
for all T, ) as above.

Remark 4.3 (1) If A = R**! (or, more generally, A is homologically n-aspherical), then an
unrestricted isoperimetric inequality of type ¢, s implies a spherical isoperimetric condition of
type ¢, s.

(2) If H satisfies a spherical isoperimetric condition of type ¢,s on A we can conclude from
Lemma 3.3 (ii) and Definition 3.4 that the H-volume V g (u,v) is defined for all u,v € W1™(B, A)
withu —v € WOI’"(B, R**1), and further that we have the estimate

n|Vg(u,v)| <ecM(Jy, — Jy) (4.9)
In the following theoren we apply this isoperimetric condition to obtain existence results.

Theorem 4.4 Let A be a closed subset of R* which admits neighbourhood retractions which
have Lipschitz constant arbitrarily close to 1 on neighbourhoods of compact subsets, let H : A —
R be a bounded, continuous function which satisfies a spherical isoperimetric condition of type
¢, s, and let ug € WH(B, A) be a fized reference surface for which the inequality (1+0)D(ug) < s
holds for some 1 < o < oo. Further let S(ug, A;0) denote the class of all surfaces u € S(ug, A)
with D(u) < oD(ug). Then we have:

(i) If o < o0 and ¢ < 1, or 0 = oo and ¢ < 1, then the variational problem
Eg(u) =D(u) + nVg(u,up) = min  in S(up, A;0) (4.10)
has a solution.
(ii) 1f

o—1

< respectively ¢ <1 if o = oo, (4.11)
o+

then the variational problem (4.10) has a solution v with D(v) < oD (uo); if we have strict
inequality in (4.11), or if ug is itself not a solution to (4.10), then D(u) < oD(ugy) for
every solution u to (4.10).

(iii) If A is the closure of a C?-Domain in R"T! and
|H| < Koa pointwise on 0A, (4.12)
then every minimum u of (4.10) with D(u) < cD(ug) is a weak solution of the Dirichlet
problem D(H,ug) in A. If in addition |H(a)| < Kpa(a) in a given point a € 0A and ug|yp

omits some neighbourhood of a, then there exists a neighbourhood V of a in R** such
that u(B)NV = @.
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Proof: (i) From (3.3) we have, for u € S(ug, 4;0)

M(Ji — Juy) < D(u) + D(ug) < (0 +1)D(ug) < s, (4.13)
so that Vg (u,up) is defined for all u € S(ug, A;0). Using (4.9) and (4.13) we have
Eg(u) > D(u) — n|Va(a,ug)| > (1 — c¢)D(w) — ¢D(up), (4.14)

i.e. Ep is bounded from below on S(ug, A;0). We now choose a minimizing sequence (u;);ieN
for (4.10) and note that (4.14) implies that sup, D(u;) < oo if 0 = 0o and ¢ < 1; for finite
o this follows directly from the definition of S(ug, A;0). After passing to a subsequence we
can assume that u; converges to a map u € S(ug, A;0) weakly in W™ und pointwise almost
everywhere. For given € > 0 we apply Lemma 4.1 and obtain, after passage to a subsequence,
surfaces u; € S(ug, A) with Zl;r(r)lo |t; — will oo (Brn+1) = 0. From Lemma 3.5, (i) we thus have

that Vg (u;,up) and Vg (u;,u;) are well-defined, and furthermore
VH(ﬂz'au[)) — VH(UZ',’U,O) = VH(ﬂza'U/z) — 0 beil i — oo. (4.15)

(The proof of Lemma 3.5, (i) shows that we do not need need to assume that A admits uniform
Lipschitz neighbourhood retractions, since in the current situation, from Lemma 4.1, (iii) we
have u;(z) = u;(z) for |u;(z)| > R.)

Choosing € < $D(u) we obtain via (3.3) and Lemma 4.1, (vi)

M(Jz, — Ju) < Dg(;) + Dg(u) < 2e + D(u;) — D(u) < oD(up) < s
(4.16)

for i sufficiently large (for G C B given by Lemma 4.1). Thus we conclude from the spherical
isoperimetric condition (note ¢ < 1), Remark 4.3 and (4.16) the inequality

n| Vi (g, u)| < cM(Jg, — Jy) < 2 + D(u;) — D(u) (4.17)

for 4 sufficiently large.
We next wish to show

VH(ﬂz'au[)) :VH(QNLZ',U) +VH(’U,,’U,0). (4.18)
To see this, note that (4.17) guarantees the existence of Vy(u;, u), that (4.15) ensures that
Vi (i, ug) is well-defined, and that the existence of Vg (u,ug) is guaranteed by the fact that
u € S(ug, A;0). Therefore we have the existence of rectifiable (n + 1)-currents Iy, 4, Ig; u, and

I, 4, with support in A, all off which are uniquely determined by their boundaries J;, — J,
Ja; — Juy and Jy, — Jy,. Thus we have

Iﬂi,UO = Iﬁi,u + Iu,uov

since the currents on both sides have the same boundary. This shows (4.18).
Using (4.15), (4.18) und (4.17) we have, for ¢ sufficiently large,

Ep(ui) = D(u;) +nVg(ug,uo)

= Epy(u) — D(u) + D(w;) + nVu(ui, up) — n'Vu(u,uo)
= Epg(u) +D(u;) — D(u) + nVa(ui,u) —nVu (i, u;)
> H(u) —2e — nVg (U, u;)

> Epg(u) — 3e.
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This shows that u minimizes the H-energy in the class S(ug, 4;0).

To see (ii), we note that Er(u) < Eg(ug) for solutions of (4.10). Hence we have

D(u)

Ep(u) — nVig(u,up)
Ep(ug) —nVy(u,u)
D(ug) — n'Vu(u,up)
D(uo) + ¢[D(u) 4+ D(uo)]
[1 4 ¢(1 4 0)]D(uo)
oD(up),

IN

IN N IN

where we have used in turn (3.3), the fact that Vg (ug, up) = 0, the isoperimetric condition, and
(4.11). The strict inequality D(u) < 0D(ug) occurs in the following situations: when o = oo;
or ¢ < ZH if 0 < oo; or in the case that ug is not a solution of (4.10), i.e. E(u) < E(up). On
the other hand, if uy solves (4.10), then D(ug) < oD(uyp), since o > 1.

Part (iii) follows from Lemma 3.5, part (ii) and the results from Section 2. ]

Remark 4.5 (1) In the case A # R"*! it is not in fact necessary to assume that the integer
multiplicity rectifiable (n 4 1)-currents Iy ,, occuring in the proof of Theorem 4.4 have support
in A. As long as we have that H is bounded and £"t'-measurable on some closed set A D A,
we can weaken Definition 4.2(ii) by allowing spt Q C A (i.e. we only need to require that T is
uniquely homologically trivial in A).

(2) A natural choice of reference surface ug is a minimizer of the n-Dirichlet integral relative
to given boundary data, i.e. D(up) < D(u) for all w € S(ug,A). The existence of such a
minimizer is guaranteed, for example, if we consider Dirichlet boundary data v € C°(0B, A)
which admits an extension in W"(B, A). The above proof then goes through if we use S(v, A) =
{ue Wwhn(B,A) : t|lpp = v} # @ in place of S(ug, A), and S(v, 4;0) = {u € S(v,A) : D(a) <
oD(ug)}, where ug minimizes the n Dirichlet-integral in S(v, A), in place of S(ug, 4;0).

5 Geometric conditions sufficient for existence

In this section we combine the results of [DS3] concerning isoperimetric inequalities with Theorem 4.4
to obtain conditions on the Dirichlet boundary data ¢ € C°(0B, A) and on the prescribed mean
curvature H which are sufficient to ensure the existence of a (weak) solution of the Dirichlet
problem D(H, ). The first result is a Wente-type theorem. We consider Dirichlet boundary
data ¢ € C°(0B, A) which admits a W1 (B, A)-extension, and we denote by ug € W1 (B, A)
the D-minimizing map with ug|sp = ¢ and set d, = D(ug).

Theorem 5.1 Let A be the closure of a C%-domain in R*' such that the minimum of the
principal curvatures Koy (viewed with regard to the inward pointing normal) is positive at every
point a € OA. Further consider Dirichlet boundary data ¢ € C°(0B, A) as above and H : A — R
bounded and continuous satisfying

Opt1
H|I< » 5.1
sgpl | < 2, (5.1)
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and
|H(a)] < Koala) for a € 0A. (5.2)
Then there ezits a weak solution u € W™ (B, A) to the Dirichlet problem D(H, ), i.e.

Dmi(|Du|n_2Dmiu) =Hou- Uy X -+ Xu,, in B,
ulop = ¢ on OB.

Proof: We extend H via H = 0 on R**! \ A to a bounded, measurable function. The
isoperimetric inequality (1.6), applied to a closed rectifiable n-current T' with support in A and
mass not greater than s and the unique rectifiable (n + 1)-current @ satisfying 9Q = T (recall
the results of Section 3) implies

Al{Q HO)| < 1 sup|H| - M(Q) < nynsr sup |H|s7M(T), (5.3)

i.e. H satisfies an isoperimetric condition of type mn7y,i+1supy |H|s%, s on R*™!'. Thus the
conditions of Theorem 4.4, (i) (keeping in mind Remark 4.5, (i)) are therefore satisfied with

o= i — 1, if s > 2d, and nyp41supy |H|s% < 1. If we further require

1 o—1 s —2d
NYnt1 Slj‘P|H|5” < = 2,

“o+1 s
then we can apply (ii) of Theorem 4.4. Noting that the maximum of the function s — % on
S n
(2dy, 00) occurs for s = 2(n + 1)d,, we obtain the sufficient condition
1 2 1)d, —2d
sup |H| < (n+ )Lp 1Lp:"an+1'
A M+l [2(n+ 1)dy) eV 2dy
The remaining conclusions follow from Theorem 4.4, (iii). [

We can exploit the fact that the functions 4, ,, and ig introduced in Section 3 are actually

in BV (R"*!,Z), and hence in LH%(R”‘H,Z), to give a different set of sufficient conditions; cf.
[St1, Theorem 6.1], [St2, Theorem 3.3].

Theorem 5.2 Let A and ¢ be as in Theorem 5.1. Further let H : A — R be a bounded
continuous function satisfying

1 n+1

and
|H(a)| < Koa(a) for a € 0A.

Then there exits a weak solution u € W™ (B, A) to the Dirichlet problem D(H, ).
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Proof: As in the proof of Theorem 5.1 we extend H via H = 0 on R*™! \ A to a bounded,
measurable function on R**1. We use Hélder’s inequality and [Fe, 4.5.9 (31)] in order to obtain,
for a closed, rectifiable n-current 7" with support in A and its associated (n + 1)-current Q
satisfying 0Q) = T' and multiplicity function ig:

/ iQHQ‘
Rn+l
_n_ 1
n+1 n+1 n+1
Rn+1 Rn+1

1
_ n+1 n+1 a2
= n+1 o, |H| dx M(T),

i.e. H satisfies an isoperimetric condition of type ¢, oo for ¢ = 15 nﬁfl ([ |H|""'dz). Hence
the conditions of Theorem 4.4 (with s = 0 = 00) are therefore satisfied if ¢ < 1; this is precisely
(5.4). ]

The following corollary is immediate:

nl(Q HY)| = n

IN

Corollary 5.3 Let A, Koa and @ be as above, and let H be a bounded, continuous function on
A for which (5.2) and

1 Qn+1
Sl;p |H| < <1 + E) ntl Ul'i'—l(fl) (55)

hold. Then there exits a weak solution u € W™ (B, A) to the Dirichlet problem D(H, ).
In the case A = Bgr(a) C R"*! conditions (5.5) and (5.2) simplify to

+11
sup |H| < =~ — .
BR((L) n

H(a)| < % for a € 9Bx(a),

i.e. Corollary 5.3 contains the results of [DF2, Satz 2.1] as a special case (cf. [MY, Theorem 4]),
in the case of constant H.

Theorem 5.4 Let A and ¢ be as in Theorem 5.1, and let H : A — R be bounded and
continuous, and satisfy

o s
sup |——L" " {a € A : |H(a)| >t} =c<1 (5.6)
t>0 [ Qn+1

in addition to (5.2). Then there exits a weak solution u € WH"(B, A) to the Dirichlet problem
D(H, ¢)-

Proof: We extend H as before. Following the arguments of the proof of [St2, Proposition 5.1]
and noting (5.5) we obtain an isoperimetric condition of type ¢, oo with ¢ < 1, i.e. for every
rectifiable n-current 7" with 97 = 0 and sptT C A and the unique rectifiable n + 1-current
satisfying 0Q) = T we have

n[{Q, HQ)| < ¢- M(T).

Thus the conditions of Theorem 4.4 (with s = 0 = 00, ¢ < 1 and A = R**1) are satisfied. m
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6 Regularity of Solutions

In this section we discuss the regularity of solutions to (4.10). We will call a domain G C R**!
locally convex up to Lipschitz transformations if G = int(G) and if, for every point
ap € 0G, we can find a neighbourhood U of ay and a bi-Lipschitz mapping f from the component
of ag in U NG to some closed convex set. The domain G is called uniformly locally convex
up to Lipschitz transformations if there is a constant A independent of ag, 0 < A < 1, such

that U und f can be chosen to satisfy
U D Ba(ao), Lip(f) <A™', Lip(f~') <A™ (6.1)

(cf.[St1, Remark 3.9], and the comments thereafter).

Theorem 6.1 Let A, H and ug satisfy the conditions of Theorem 4.4, with associated parameters
0,8 and c. Further let A be the closure of a domain which is uniformly locally conver up
to Lipschitz transformations. Then every solution u of (4.10) is Holder-continuous inside B;
further v € C°(B,R""1) if ulsp € C°(OB,R**1).

Proof: Our goal is to prove that the inequality

D, (40) (4) < D,y () (£) (6.2)

r

holds for all zp € B and 0 < p < r < min{rg,1 — |zo|}. We can then apply Morrey’s Dirichlet
growth theorem [M, 3.5.2] to conclude the local Hélder continuity of u with exponent c.

To show (6.2) we begin by fixing 29 € B und set u(r,w) = u(zg + rw) = u,(w) for w € 7!
and 0 <7 <1 — |zg|. The function

L

is absolutely continuous on [0,1 — |zg|], and for almost all 7 in this interval we have

n
2

2
1
+ p—2|dwu|2] " Ldwdp (6.3)

®(r) := Dp, (4)(u) =

ou
dp

U(r):= |dyu(r, )| dw < r®'(r). (6.4)

1
vV nn gn—1
From now on we will only consider r such that (6.4) holds. Sobolev’s embedding theorem

then ensures

osc u(r,") = sup |u(r,w) —u(r,o)] < c(n) Y/ Y(r). (6.5)
gn=t ww'esn—1
Our aim is to obtain an estimate for U(r). Denoting by 0 < A < 1 the constant from (6.1),
n n
we consider the cases ¥(r) > (%) and U(r) < (%) separately. In the former case we

have, using ®(r) < D(u),

B(r) < (201(\n)>n\11(7")D(u) < (201(\n)>naD(uo)r(I>'(r). (6.6)

In the latter case we have from (6.5) the inequality Sosgl Uy < i.e. we can find a; with

A
2
a; € u,(S" 1) = u(0B,(xg)) C B%(al) NA. If B%(al) is not contained in A then we can find
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ag € 0A with {tag+ (1 —t)a; : 0 <t <1} C Ba(a1) N Bp(ap), and with f as in (6.1) we define
2

h € WH(B,(zg), R**!) to be the Dp, (z)-minimizing map with boundary values foulyp, (z0),
and further define w = f~'oh € WH(B,(z¢), R*"!). These are well-defined, since u(dB,(x))
s contained in the component of ag in A N B (ap), and hence h(9B,(x¢)) = fou(dB,(xp)) in
the convex set Im(f), so that h(B,(xg)) C Im(f). For w we have

w € len(Br($0)7 A)a U’|BT($0) —wE W()Ln(Br ($0)7Rn+1)7 (67)
and
D, (1) (w) <A T"Dp (o) (h) < A "Dy, (1) (fou) < A" Dp (4 (u). (6.8)

(here we have extended f to a map of all of A with the same Lipschitz constant Kirszbraun’s
theorem [Fe, 2.10.43]). If Ba(a1) C A, we simply define w := h to be the Dp, (,,)-minimizing
2
map with boundary data u[p, (4,); in this case, too, we have (6.7) and (6.8).
The next step is to show the existence of rg > 0 such that the inequality
D3, (2)(v) < MoDp, (40)(w) (6.9)

holds for all B,(z¢) C B with r < rg, for a constant Mj independent of r und 9. My. We now
define

_ { u  on B\ Br(zg),

““Yw on B, (xp),

(6.10)

and note that & € W'(B, A) and & — up € Wy " (B,R**'). If D(@) > oD(ug) then we have
from (6.10), since D(u) < oD(ug),

DB,«(Q)Q) (U’) < DBT(Z'())(%I) = DBT(xo)(w)a

and hence we have (6.9) with My = 1. On the other hand if D(u) < oD(ug) we can take u as
a comparison surface for problem (4.11), which leads to Ex(u) < Eg(u), or equivalently, from
(6.10),

D g, (20) (1) < D, (a0)(w) + n[VH(u,u0) = Vi (u,uo)]- (6.11)
We now consider the spherical n-current J; — J,,. From (3.4), (6.10) and (6.8) we have
M(Ji — Ju) < Dp, ()W) + D, (29) (1) < (A" +1)D () (w). (6.12)

Since Dp, (5,)(u) becomes arbitrarily small as L™ (B (7)) converges to zero, we can find positive
r1 depending only on s such that M(J; — J,,) < s is for r < 1 (note that A depends only on A,
and not on the parameters s,o and ¢). This guarantees the existence of an integer rectifiable
(n+1)-current I, with support in A and boundary J;z —J,,. Denoting by I o, Luu, the integer
rectifiable (n + 1)-currents with support in A with boundary J; — Jy,, Jy, — Jy, respectively, we
have I o, = Ijiug — Luue- This shows Vg (u,u) = Vg (u,ug) — Vi (u,up), and hence from (6.11)
we have

DB,«(Q)Q) (U’) S DBT(Z'())(U)) + nVH(ﬂ? U’)? (613)

ifo<r <wr.
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Since H satisfies a spherical isoperimetric condition of type ¢, s we can use (4.9) and (6.12)
to estimate n|V(u,u)| as follows:

BV ()] < eM(Jz — Ju) < D, (r0) () + Do) ()] (6.14)
From (6.14) and (6.13) we have, if ¢ < 1:

1+c¢
DBT(ZL‘()) (U’) <

=1_¢ Br(mo)(w)a

and hence (6.9), with M = 1£¢.
In the case ¢ = 1 we use the isoperimetric inequality (1.6) and (6.12) to bound |V g (u,u)]
from above:

~ 1
Vi (dw)| < [|H]|zoM(lau) < Yo | Hl| 2o M(Jz — Ju)
_ 1 1
< Yt | Hl| 1 (A" + 1) 5 (D, 2g) () 7 D, () (w).

Thus given € > 0 we can determine o, 0 < ro < 1 such that n|Vg(u,u)| <eDp, (5,)(u). From
(6.13) we thus have

N

1
DBT (zo) (U’) <

< 7P (W), (6.15)

i.e. (6.9) is also valid in this case (in fact for M arbitrarily close to 1, in that we can choose 7
as small as we please).
We next define p := f¢,_, fou(r,w)dw and

» for we S"L 0 <
U(PWJ) = (2 _ ZTl_p)p_,_ (271_,0 _ 1) fou('r’w) for w € Sn_17 % S

Using Poincaré’s inequality we have

/“/SM

< ¢(n) /Sn 1 |dy(fou)(r,w)|" dw < e(n)A™" - |dyu(r, w)|" dw.

n 2 —1
dodp == [ |foulrw) —pp" do
Snfl

8p p7

For the tangential component we obtain
"1
/ —/ |dv(p,w)|" dwdp < A" 10g2/ |dyu(r,w)|” dw.
% p Sn—1 Sn—1
Combining this with (6.4) we have
D3, (z0)(v) < c(n)A™" |du(r, w)|™ dw < c(n)A~"r®(r).

Sn—1

The Dp, (4,)(-)-minimality of h yields
DBT(ZL‘()) (h) < DBT(wo)('U) < C(n)Ainqu)l(’r)a
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and combining this with (6.9) and the definition of w (recall that w is either h or f loh,
depending on whether or not Ba (a) C A), we have
2

®(r) = Dpg,(a)(t) < MyDp, (40)(w)
< MoA "Dp, (49)(h) < Moc(n)A>"rd'(r). (6.16)

Setting M; := max{(#)n, c(n)MgA*Q”} we have from (6.6) and (6.16)

®(r) < Myrd'(r) for almost all 0 < r < min{rg, 1 — |zg|},
and hence, with o := (nMy) !

no
D(p) < (g) O(r) for 0 < p <r <min{ry, 1 —|zo|};

this yields (6.2) and hence, by the comments above, completes the proof of interior regularity.
If ulpp € C°(OB,R"1) we can generalize [HK, Lemma 3] directly to the current setting to
obtain u € C°(B,R**1). [ ]
Higher regularity for solutions of the Dirichlet problem D(H, ), e.g. CUP for Lipschitz
continuous H, follows from the arguments of [HL, Section 3].
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