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0. Introduction

Discovered by Jean-Louis Loday (see [7]), Leibniz algebras are a non-commutative varia-

tion of usual Lie algebras. There is an homology theory HL� for these new algebraic objects

(see [8]), whose properties are similar to those of the classical Chevalley-Eilenberg homology

theory H� for Lie algebras (see [2]).

In this paper, we study universal central extensions of a Leibniz algebra. Mimicking an

article by H. Garland (see [3]), we give a criterion for a central extension to be universal.

Then we deduce a criterion for a Leibniz algebra to admit a universal central extension

(perfectness). We show that the kernel of the universal central extension is canonically iso-

morphic to the second homology group of the initial object. Since Lie algebras are examples

of Leibniz algebras, any perfect Lie algebra g admits a universal central extension U (resp.

u) in the category (Leib) (resp. (Lie)) of Leibniz (resp. Lie) algebras. It turns out that

the Leibniz algebra U is the universal central extension of u in the category (Leib), and

that u �= ULie that is, the Lie algebra canonically associated to U. These universal central

extensions are homologically characterized by the following isomorphisms

HL1(U) = HL2(U) = 0 = H1(u) = H2(u);

ker(HL2(g)� H2(g)) �= HL2(u) �= ker(U� u �= ULie):

Next, we compute the homology groups HL3(U), HL3(u) and H3(u) in terms of the homol-

ogy groups HL�(g) and H�(g). This is done by using the Hochschild-Serre and its Leibniz

version spectral sequences (see [4], [5]). We give an interpretation of the natural maps

HL3(U)! HL3(u) and HL3(u)! H3(u) as follows

Theorem. Let U (resp. u) be the universal central extension in the category (Leib) (resp.

(Lie)) of a perfect Lie algebra g. Then we have a (non-natural) commutative diagram

HL3(U)
�=

����! HL2(g)

2 � HL3(g)??y

??y





HL3(u)
�=

����! HL2(g)

2=K
2

� HL3(g)??y ??y ??y
H3(u)

�=
����! S2(H2(g)) � H3(g)

where
K := ker(HL2(g)� H2(g)) �= ker(U� u �= ULie) �= HL2(u)

and S2 is the symmetric functor.

The symbol K denotes a �xed commutative ring with unit. All modules, linear maps and

tensor products involved here are over K. In order to simplify computations, we will assume

that K is a �eld in the section 3.
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1. Prerequisites on Leibniz algebras

1.1. Leibniz algebras. A Leibniz algebra is a K-module L equipped with a bilinear map

[�;�] : L � L ! L, called bracket and satisfying only the Leibniz identity

[x; [y; z]] = [[x; y]; z]� [[x; z]; y]

for any x; y; z 2 L. In the presence of the condition [x; x] = 0, the Leibniz identity is

equivalent to the so-called Jacobi identity; therefore Lie algebras are examples of Leibniz

algebras.

A morphism of Leibniz algebras is a linear map f : L1 ! L2 such that

f([x; y]) = [f(x); f(y)]

for any x; y 2 L1. It is clear that Leibniz algebras and their morphisms form a category

that we denote by (Leib).

A two-sided ideal of a Leibniz algebra L is a submodule H such that [x; y] 2 H and

[y; x] 2 H for any x 2 H and any y 2 L. For any two-sided ideal H in L, the quotient module

L=H inherits a structure of Leibniz algebra induced by the bracket of L. In particular, let

([x; x]) denotes the two-sided ideal in L generated by all brackets [x; x]; then the Leibniz

algebra L=([x; x]) is in fact a Lie algebra, said canonically associated to L and is denoted by

LLie.

Let L be a Leibniz algebra. Denote by L0 := [L;L] the submodule generated by all

brackets [x; y]. The Leibniz algebra L is said to be perfect when L0 = L. It is clear that any

submodule of L containing L0 is a two-sided ideal in L.

1.2. Non-trivial examples. i) If (g; [�;�]; d) is a di�erential Lie algebra, then the

bracket de�ned by [x; y]d := [x; d(y)] satis�es the Leibniz identity (but obviously it is not

skew-symmetric).

ii) Let M be a representation of a Lie algebra g (the action of g on M being denoted by

mx for m 2 M and x 2 g). For any g-equivariant map f : M ! g, the bracket given by

[m;m0] := mf(m0) induces a structure of Leibniz (non-Lie) algebra on M .

1.3. Semi-representations. Let L be a Leibniz algebra. A semi-representation of L is a

K-module M equipped with an action of L, [�;�] :M � L ! M , satisfying the rule

[m; [x; y]] = [[m; x]; y]� [[m; y]; x]

for any m 2 M and any x; y 2 L. It turns out that a semi-representation of a Leibniz

algebra L is equivalent to a representation the Lie algebra LLie in the classical sense. It is

clear that a Leibniz algebra is a semi-representation over itself by the adjoint action.

In [10], there are notions of (co)representations with a suitable notion of universal en-

veloping algebra of a Leibniz algebra.

1.4. Leibniz homology. Let L be a Leibniz algebra and let M be a semi-representation

of L. There is a well-de�ned complex (T�(L;M) :=M 
 L
 �; d) where the boundary map

d : Tn(L;M)! Tn�1(L;M) is given by the formula (see [7])

d(x0; � � � ; xn) :=
X

0�i<j�n

(�1)j+1(x0; � � � ; xi�1; [xi; xj ]; xi+1; � � � ; bxj ; � � � ; xn)
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for any x0 2M and x1; � � � ; xn 2 L; here (x0; � � � ; xn) stands for x0 
 � � � 
xn 2 Tn(L;M).

The homology of this complex is denoted HL�(L;M), and simply HL�(L) ifM = K equipped

with the trivial action of L. One easily checks that

HL0(L) �= K; HL1(L) �= Lab := L=[L;L];

HL0(L;M) �=ML :=M=[M;L];

HL�(L;L) �= HL�+1(L):

Remark that if g is a Lie algebra, then the complex (T�(g;M); d) is nothing but a lifting

of the classical Chevalley-Eilenberg complex (M 
��(g); d) de�ning the homology H�(g;M)

of Lie algebras (see [2]). Moreover the canonical projection can� :M 
 L

 �

! M 
 ��(L)

is a morphism of complexes which induces in homology isomorphisms in degrees 0 and 1,

and an epimorphism in degree 2.

Furthermore, J.-L. Loday and T. Pirashvili de�ne general (co)homology theories with co-

e�cients in (co)representations, and they give a Tor-Ext interpretation for Leibniz (co)homology.

2. Universal central extensions of a Leibniz algebra

2.1. Central extensions. An exact sequence of Leibniz algebras

(E) 0! H
i

! E
p

! L ! 0

is called extension of L by H. The morphism i is a Leibniz algebra isomorphism from H

onto the kernel ker(p) of the extension. Therefore we merely write p : E � L the extension

(E), and by abuse of language, we say that the Leibniz algebra E is an extension of L.

An extension p : E � L is said to be split in the category (Leib) if there exists a Leibniz

algebra morphism s : L ! E such that ps = idL; the map s is called a section of p.

A central extension of a Leibniz algebra L is an extension p : C � L whose kernel satis�es

[ker(p); C] = [C; ker(p)] = 0.

A central extension � : U � L is said to be universal if for any central extension p : C � L

there exists a unique Leibniz algebra morphism � : U ! C such that p� = �. It is clear that

a universal central extension, when it exists, is unique (up to a unique isomorphism).

2.2. Universality criterion. Here are some properties which characterize the universality

of a central extension.

Proposition 2.1. If a central extension � : U � L is universal, then the Leibniz algebra U
is perfect.

Proof. Assume that the Leibniz algebra U is not perfect; then there is a non-trivial map

f : U=[U ;U ]! K.

Equip the direct sum U � K with the Leibniz algebra structure given by

[(x; �); (x0; �0)] := ([x; x0]; 0)

where x; x0 2 U and �; �0 2 K. Clearly the map ~� : U �K ! L, (x; �) 7! �(x) is a surjective

morphism of Leibniz algebras whose kernel (which is nothing but ker(�) � K) is central in

U � K. Thus the extension ~� : U � K � L is central.

One checks that the maps �1; �2 : U ! U � K, given by �1(x) := (x; 0) and �2(x) :=

(x; f(�x)), are two distinct morphisms of Leibniz algebras such that ~��i = �, (i = 1; 2);

which contradicts the universality of the extension U . �
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Proposition 2.2. If a central extension � : U � L is universal, then any central extension
of U splits in the category (Leib).

Proof. This is done in two steps.

i) Let p : L � U be a central extension such that L is perfect. It is clear that the map

� := �p : L ! L is a surjective morphism of Leibniz algebras. Let us show that its kernel is

central in L. Firstly remark that an element z is in ker(�) if, and only if, p(z) is in ker(�).

Since ker(�) is central in U , if x or y is in ker(�), then [x; y] is in ker(p). Since ker(p) is

central in L, one has [[x; y]; z] = 0 (resp. [x; [y; z]] = 0) if x or y (resp. y or z) is in ker(�).

Consequently, by the Leibniz identity, we get

[x; [y1; y2]] = [[x; y1]; y2]� [[x; y2]; y1] = 0;

[[y1; y2]; x] = [y1; [y2; x]] + [[y1; x]; y2] = 0

for any x 2 ker(�), y1; y2 2 L. Therefore ker(�) is central in [L;L] = L.

By the universality of the extension � : U � L, there exists a Leibniz algebra morphism

s : U ! L such that �s = � i.e., �ps = �. Consequently the morphism  := ps � idU takes

value in ker(�). Since ker(�) is central in U , one has

 ([x; y]) = [ps(x); ps(y)]� [x; y] = [ (x); ps(y)] + [x;  (y)] = 0:

It follows that  is trivial on [U ;U ]; from whence ps = idU since U = [U ;U ] (cf. Proposition

2.1).

ii) Let p : L � U be any central extension. Denote by p0 the restriction of p to the

subalgebra L0 = [L;L]. Since U is perfect, it is clear that the morphism p0 : L0 ! U is still

surjective with a central kernel. Let us show that L0 is perfect. Let [x; y] be a generator of

L0. Since U is perfect and p is surjective, one can successively write

p(x) =
X

[li; l
0

i
] =
X

[p(xi); p(x
0

i
)] =

X
p([xi; x

0

i
]); li; l

0

i
2 U ; xi; x

0

i
2 L:

Therefore the element h := x�
P

[xi; x
0

i
] is in ker(p). By the same way, there exist elements

(yj ; y
0

j
) in L such that h0 := y �

P
[yj ; y

0

j
] is in ker(p). Since ker(p) is central in L, we get

[x; y] = [ h+
X

[xi; x
0

i
]; h0 +

X
[yj ; y

0

j
] ] =

XX
[ [xi; x

0

i
]; [yj ; y

0

j
] ]:

Then the subalgebra L0 is perfect. And by the step i) there exists an algebra morphism

s0 : U ! L0 splitting p0. Denoting by � the inclusion map L0 ,! L, the composed map

s := �s0 : U ! L is an algebra morphism splitting p. �

Now we can state the following

Theorem 2.3. Let L be a Leibniz algebra. A central extension U of L is universal if, and

only if, the Leibniz algebra U is perfect and any central extension of U splits.

Proof of the converse. Let p : C � L be a central extension of L. We have to show

that there is a unique algebra morphism � : U ! C such that p� = �. The uniqueness

follows from

Lemma 2.4. If � : U � L is a central extension and if the Leibniz algebra U is perfect, then

for any central extension p : C � L there exists at most one algebra morphism � : U ! C

such that p� = �.

Proof of the Lemma. In fact, suppose that there are two such morphisms � and �0.

Then for all x; y 2 U one has

(�� �0)([x; y]) = [�(x); �(y)]� [�0(x); �0(y)]

= [�(x)� �0(x); �(y)] + [�0(x); �(y)� �0(y)]:
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Since the map �� �0 takes value in ker(p) which is central in C, it follows that � � �0 is

trivial on [U ;U ] = U . From whence follows the Lemma. �

For the existence of such a morphism, consider the product C � U equipped with the

bracket given by [(c; u); (c0; u0)] := ([c; c0]; [u; u0]). Denote by C �L U the subalgebra

C �L U := f(c; u) 2 C � U j p(c) = �(u)g:

The second projection �2 : C �L U ! U is a surjective morphism of algebras whose kernel is

obviously central in C �L U . Therefore there exists a morphism s : U ! C �L U such that

�2s = idU . Consider the morphism � := �1s : U ! C where �1 : C �L U ! C is the �rst

projection. By de�nition of �1, �2, � and s, one has s(u) = (�1s(u); �2s(u)) = (�(u); u).

But (�(u); u) 2 C �L U means that p�(u) = �(u); from whence p� = �, and the Theorem is

proved. �

2.3. Remark. These properties of the universal central extension are homologically char-

acterized by the equalities

HL1(L) = HL1(U) = HL2(U) = 0:

2.4. Existence criterion. Now we characterize Leibniz algebras which admit a universal

central extension.

Theorem 2.5. A Leibniz algebra L (free as a K-module) admits a universal central exten-
sion if, and only if, it is perfect. Moreover, the kernel of the universal central extension is

canonically isomorphic to HL2(L).

Proof. The condition is necessary because a universal central extension is perfect and

the surjective image of a perfect Leibniz algebra is also perfect.

Conversely, suppose that the Leibniz algebra L is perfect. Let Im(d3) be the image of the

Leibniz boundary d3 i.e., the submodule of L
 2 generated by the elements

d3(x
 y
z) = [x; y]
z � [x; z]
y � x
 [y; z]; 8 x; y; z 2 L:

Consider the quotient module M := L
 2=Im(d3), equipped with the trivial action of L.

The canonical projection � : L
 2
! M is obviously a 2-cocycle of HL2(L;M). Then it

determines a central extension L� ; recall that L� is the K-module L� = L �M equipped

with the bracket given by [(x;m); (x0; m0)] := ([x; x0]; �(x; x0)) (see [10]). Let us show that

the subalgebra L
0

�
:= [L� ;L� ] is perfect. First, remark that we have L� = L

0

�
+ M . In

fact, since L is perfect, any element of L� takes the form (
P

[xi; x
0

i
]; m); by de�nition of the

bracket on L� , one has

(
X

[xi; x
0

i
]; m) =

X
[(xi; 0); (x

0

i
; 0)] + (0; m�

X
�(xi; x

0

i
)) 2 L

0

�
+M;

which proves the equality L� = L
0

�
+M . Since M is central in L� , one gets

L
0

�
= [L� ;L�] = [L0

�
+M;L0

�
+M ] = [L0

�
;L0

�
]:

From whence follows the perfectness of the algebra L0
�
.

The �rst projection �1 : L
0

�
! L is a central extension whose kernel is generated by the

elements of the form (0;
P
�(xi; x

0

i
)) such that

P
[xi; x

0

i
] = 0.
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Since the K-module L is free, any central (hence abelian) extension of L is of the form

p : Lf � L for a well-determined 2-cocycle f of HL2(L; V ). Then the map

� : L0
�
! Lf ; (x; �(y; z)) 7! (x; f(y; z))

is an algebra morphism satisfying p� = �1. The uniqueness follows from the Lemma 2.4 (L0
�

is perfect).

Now let us show that ker(�1) is canonically isomorphic to HL2(L). Since the Leibniz

boundary d2 : L

 2 ! L acts by x
 y 7! [x; y], the K-linear map

� : ker(�1) �! HL2(L); (0;
X

�(xi; x
0

i
)) 7!

X
xi
x

0

i

is well-de�ned and surjective. Suppose that �(0;
P
�(xi; x

0

i
)) is a boundary i.e.,

�(0;
X

�(xi; x
0

i
)) =

X
xi
x

0

i
=
X

d3(yj 
 y
0

j

 y00

j
):

Then, by the de�nition of M = L

 2=Im(d3), one has

X
�(xi; x

0

i
) =

X
�d3(yj 
 y

0

j

y00

j
) = 0:

Thus the map � is also injective; which proves the isomorphism ker(�1) �= HL2(L). �

2.5. Remark. The universal central extension can also be characterized by the following.

Consider HL2(L) as a trivial representation of L. By the universal coe�cient theorem, there

is an isomorphism HL2(L;HL2(L)) �= Hom(HL2(L);HL2(L)). But one knows that there is a

natural bijection HL2(L;HL2(L)) �= Ext(L;HL2(L)), where Ext(L;HL2(L)) denotes the set

of isomorphism classes of abelian extensions of L by HL2(L). The universal central extension

corresponds to the element

idHL2(L) 2 Hom(HL2(L);HL2(L)):

2.6. Case of Lie algebras. Let g be a perfect Lie algebra which is free as a K-module.

Then there exist a universal central extension � : U � g in the category (Leib) of Leibniz

algebras, and a universal central extension �0 : u� g in the category (Lie) of Lie algebras.

Proposition 2.6. If the K-module u is free (e.g. when K is a �eld), then the Leibniz

algebra U is the universal central extension of the perfect Lie algebra u in the category

(Leib). Moreover there is an isomorphism of Lie algebras u
�
! ULie.

Proof. In fact, the extension �0 : u� g is also central in the category (Leib). Therefore

there exists a morphism of Leibniz algebras � : U ! u such that �0� = �. Since U is perfect

and any central extension U splits, it su�ces to show that the map � : U ! u is a central

extension. Since ker(�) � ker(�), it is clear that ker(�) is central in U. Let us show that �

is surjective. First, remark that one has u = Im(�) + ker(�0). In fact, let z0 2 u; since � is

surjective and �0� = �, there exists an element z 2 U such that �0(z0) = �(z) = �0�(z) i.e.,
z0 � �(z) 2 ker(�0). From whence the equality u = Im(�) + ker(�0). Since the algebra u is

perfect and ker(�0) is central in u, we have

u = [u; u] = [Im(�) + ker(�0); Im(�) + ker(�0)] = [Im(�); Im(�)] � Im(�):

Therefore the morphism � is surjective.
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Furthermore, denote by � (resp. �) the morphism induced by � (resp. �) on ULie. It

is clear that the extension � : ULie � g is central in the category (Lie) and that �0� = �.

Therefore there exists a Lie algebra morphism  : u ! ULie such that � = �0 . By

composition, we get

�( �) = �0� = � and �0(� ) = � = �0:

Since the Lie algebras u and ULie are perfect, we deduce from the Lemma 2.4 that � = id

on u and  � = id on U; from whence the isomorphism u
�
! ULie. �

As consequence, we obtain a commutative diagram with exact columns and rows

0 0??y
??y

0 ����! ker(can2) ����! HL2(u) ����! 0??y
??y

??y
0 ����! HL2(g) ����! U ����! g ����! 0 (Leib)??y ??y 



0 ����! H2(g) ����! u �= ULie ����! g ����! 0 (Lie)??y ??y ??y

0 0 0

(Leib) ;

which yields the following characterization

Corollary 2.7. With the above notation, one has the isomorphisms

ker(U� ULie) �= HL2(ULie) �= ker(can2 : HL2(g)� H2(g)): �

2.7. Examples: the Steinberg and Virasoro algebras. Let A be an associative algebra

and let sln(A) be the Lie algebra of (n� n)-matrices with entries in A and with zero trace

in the abelianised A=[A;A] (here [A;A] stands for the submodule of A generated by the

commutators [a; b] = ab� ba, for any a; b 2 A). Recall that the Lie algebra sln(A) is perfect

for n � 3.

Studying the universal central extension stn(A) of sln(A) in the category (Lie), Ch.

Kassel and J.-L. Loday (see [6]) generalize a result by S. Bloch (see [1]) and obtain the

isomorphism

H2(sln(A)) �= HC1(A); 8n � 5

where HC1(A) denotes the cyclic homology of A (see [7]).

J.-L. Loday and T. Pirashvili (see [10]) construct the universal central extension stln(A)

of sln(A) in the category (Leib) and obtain the isomorphism

HL2(sln(A)) �= HH1(A); 8n � 5
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where HH1(A) denotes the Hochschild homology of A. Corollary 2.7 implies that

stn(A) �= stln(A)Lie:

They also show that there is an isomorphism

HL2(Der(C [z; z
�1 ]))

�
! H2(Der(C [z; z

�1 ]))

which proves that the two universal central extensions of the Lie algebra Der(C [z; z�1 ])

coincide. In fact, this universal central extension is the Virasoro algebra.

3. Third homology groups

From now on we assume that K is a �eld.

3.1. Helpful background. While making explicit computations, one often needs the

following characterization of spectral sequences, whose cohomological version can be found

in [11, section 2.2.2].

Let (F
p

� )p�0 be a �ltration of a complex (C�; d) and let (Er)r�1 be the spectral sequence

derived from this �ltration. De�ne

Zr

p;q
:= F

p

p+q \ d
�1(F

p�r

p+q�1) and Br

p;q
:= F

p

p+q \ d(F
p+r
p+q+1):

Then one has

Er

p;q
�= Zr

p;q
=(Zr�1

p�1;q+1 + Br�1
p;q

):

The di�erential maps are given by the commutative diagram

Zr

p;q

d

����! Zr

p�r;q+r�1

�
r

p;q

??y ??y�rp�r;q+r�1

Er

p;q

d
r

p;q

����! Er

p�r;q+r�1

where �r
p;q

: Zr

p;q
� Er

p;q
is the canonical projection with ker(�r

p;q
) = Zr�1

p�1;q+1 + Br�1
p;q

.

Moreover we have

d(Zr

p;q
) = F

p�r

p+q�1 \ d(F
p

p+q) = Br

p�r;q+r�1 ;

Im(dr
p;q
) = Br

p�r;q+r�1=(Z
r�1
p�r�1;q+r + Br�1

p�r;q+r�1);

Er

p;q
�= ker(dr

p;q
)=Im(dr

p+r;q�r+1):

3.2. Hochschild-Serre spectral sequence. Let g be a perfect Lie algebra and let u be

its universal central extension in the category (Lie) with kernel h �= H2(g). Since h is an

abelian Lie algebra on which g acts trivially, the E2-terms of the Hochschild-Serre spectral

sequence are given by

E2
p;q

�= Hp(g;Hq(h)) �= �q(h)
 Hp(g) =) Hp+q(u):
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Theorem 3.1. Let u be the universal central extension of a perfect Lie algebra g. Then one
has an exact sequence

0! S2(H2(g))! H3(u)! H3(g)! 0;

from whence the (non-natural) isomorphism

H3(u) �= S2(H2(g)) � H3(g)

where S2 denotes the symmetric functor.

Proof. We have to compute separately the four terms E1
p;q

with p+ q = 3. Firstly recall

that the Hochschild-Serre spectral sequence is derived from the �ltration (F
p

� )p�0 where F
p

n

is the subspace of �n(u) generated by the elements x1 ^ � � �^xn with at least (n� p) factors

in h.

i) The term E10;3. One has E2
0;3

�= �3(h). Let us determine the image Im(d22;2) =

B2
0;3=B

1
0;3. Since u is perfect, one has

B2
0;3 = F 0

3 \ d(F
2
4 ) = �3(h) \ d(F 2

4 ) = �3(h):

On the other hand, we have

B1
0;3 = F 0

3 \ d(F
1
4 ) = F 0

3 \ f0g = 0:

Therefore Im(d22;2) = �3(h); from whence we deduce

E10;3
�= � � � �= E3

0;3 = 0:

ii) The term E11;2. Since the Lie algebra g is perfect, it is clear that

E11;2
�= � � � �= E2

1;2 = 0:

iii) The term E12;1. One has E2
2;1

�= h 
 H2(g) �= h
 2. Firstly let us determine the

image Im(d22;1) = B2
0;2=B

1
0;2. Since u is perfect, we have

B2
0;2 = F 0

2 \ d(F
2
3 ) = �2(h) \ d(F 2

3 ) = �2(h):

On the other hand, we have

B1
0;2 = F 0

2 \ d(F
1
3 ) = �2(h) \ f0g = 0:

Therefore Im(d22;1) = �2(h); from whence ker(d22;1)
�= S2(h).

Now we have to calculate Im(d24;0) = B2
2;1=(Z

1
1;2 + B1

2;1) with

B2
2;1 = F 2

3 \ d(F
4
4 );

Z1
1;2 = F 2

3 \ d
�1(F 0

2 ) = F 2
3 \ d

�1(�2(h));

B1
2;1 = F 2

3 \ d(F
3
4 ):

As vector space we have

F 4
4 = �4(u) = F 3

4 + �4(g)
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which yields

d(F 4
4 ) = d(F 3

4 ) + d(�4(g)):

Thus it is clear, that

B2
2;1 = (B1

2;1 + Z1
1;2):

From whence we deduce that Im(d24;0) = 0. And then we have

E12;1
�= � � � �= E2

2;1 = S2(h):

iv) The term E13;0. Since E
2
1;1 = 0 (perfectness of g), we have

E13;0
�= � � � �= E2

3;0 = H3(g):

v) Conclusion. Since K is a �eld, the exact sequence (hence the isomorphism) of

Proposition 3.1 is clear taking into account the above computations. �

3.3. Leibniz spectral sequence. Recall that for any Leibniz algebra G, any two-sided

ideal H in G and any semi-representation M of G, the �ltration (F
p

� )p�0 de�ned by

F p

n
:=

�
M 
 H


 (n�p)

 G


 p; if n � p

M 
 G

 n; if n � p;

gives rise to a spectral sequence (Er(H;M))r�1 which converges to the Leibniz homology

HL�(G;M) (see [4]). Moreover, if the adjoint diagonal action of G=H on HLq(H;M) is

trivial, then one has the isomorphisms

E2
0;q(H;M) �= HLq(H;M);

E2
1;q(H;M) �= HLq(H;M) 
HL1(G=H);

E2
p;q
(H;M) �= HLq(H;M)
HLp�1(G;G=H); p � 2:

Here we let U(= G) be the universal central extension of a perfect Leibniz algebra L.

Denote by H := HL2(L) the kernel of this universal central extension. Since the Leibniz

algebra L �= U=H acts trivially on H, it also acts trivially on HLq(H) = H
 q for any

integer q � 0. Therefore, by the perfectness of L (i.e., HL1(L) = 0), the spectral sequence

(Er(H;K))r�1 is characterized by

E2
0;q(H;K)

�= H

 q; E2

1;q(H;K) = 0;

E2
p;q
(H;K) �= H


 q

 HLp�1(U ;L); p � 2:

Theorem 3.2. Let U be the universal central extension of a perfect Leibniz algebra L. Then

one has an exact sequence

0! HL2(L)

 2

! HL3(U)! HL3(L)! 0;

from whence the isomorphism

HL3(U) �= HL2(L)

 2

� HL3(L):

Proof. In order to obtain HL3(U), we are led to compute HL1(U ;L) and HL2(U ;L). To

this end, we will consider the spectral sequence (Er(H;L))r�1.
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Lemma 3.3. One has an isomorphism

HL1(U ;L) �= HL2(L)

and an exact sequence

0! HL2(L)

 2

! HL3(U)! HL3(L)! 0:

i) From the perfectness of U , one easily checks that

B2
0;3 = H


 3
\ (H
 2


 d(U 
 2)) = H

 3

\ (H
 2

 U) = H


 3:

And since

Z3
0;3 = H


 3
\ d�1(0) = H


 3;

we have E3
0;3(H;K) = 0.

ii) We already know that E2
1;2(H;K) = 0 (perfectness of L).

iii) From the perfectness of U , we also get

B2
0;2 = H


 2
\ d(H 
 U


 2) = H

 2

\ (H 
 U) = H

 2:

And since

B1
0;2 = H


 2
\ d(H
 2


 U) = 0;

we deduce that

Im(d22;1)
�= B2

0;2=B
1
0;2

�= H

 2:

But we know that

E2
2;1(H;K)

�= H 
 HL1(U ;L) �= H

 2;

from whence we have E3
2;1(H;K) = 0.

iv) Since E2
1;1(H;K) = 0 (perfectness of L), one easily checks that

E13;0(H;K)
�= � � � �= E2

3;0(H;K)
�= HL2(U ;L):

v) Conclusion. Therefore there exists an exact sequence

0! HL2(L)

 2

! HL3(U)! HL3(L)! 0;

from whence the isomorphism

HL3(U) �= HL2(L)

 2

� HL3(L): �

Proof of the Lemma. Recall that we are using the spectral sequence (Er(H;L))r�1.

i) Computation of HL1(U ;L). One easily checks that

E2
0;1(H;L)

�= HL0(L;HL1(H;L)) �= HL0(L;L 
HL1(H))

�= L 
H=[L 
H;L] �= (L=[L;L])
 H = 0;

E2
1;0(H;L)

�= HL1(L;HL0(H;L)) �= HL1(L;L) �= HL2(L):
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Therefore we have

HL1(U ;L) �= HL2(L) �= H:

ii) Computation of HL2(U ;L). As before we have

E2
0;2(H;L)

�= HL0(L;HL2(H;L)) �= HL0(L;L 
 HL2(H))

�= L 
 H

 2=[L 
H
 2;L] �= (L=[L;L])
 H


 2 = 0;

E2
1;1(H;L)

�= HL1(L;HL1(H;L)) �= HL1(L;L 
 HL1(H))

�= HL1(H) 
HL1(L;L) �= H 
 HL2(L) �= H

 2:

Here one also needs to return to the characterization of

E3
1;1(H;L) = Z3

1;1=(Z
2
0;2 + B2

1;1):

We have

Z3
1;1 = F 1

2 \ d
�1(F�21 ) = (L 
 H 
 U) \ d�1(0);

Z2
0;2 = F 0

2 \ d
�1(F�21 ) = (L 
H
 2) \ d�1(0) = L 
 H


 2;

B2
1;1 = F 1

2 \ d(F
3
3 ) = (L 
 H 
 U) \ d(L 
 U


 3):

Therefore we obtain

E3
1;1(H;L)

�= H 
 HL1(L;L) �= H 
 HL2(L) �= H

 2:

And it is clear that

E11;1(H;L)
�= � � � �= E3

1;1(H;L)
�= H


 2:

In order to determine E2
2;0, we use the following commutative diagram

0 ����! L

2

 H 
 U ����! E1

3;0
�= L


2

 U


2
����! L


3

 U ����! 0??yd03

??yd13;0
??yd003

0 ����! L

2

 H ����! E1

2;0
�= L


2

 U ����! L


3
����! 0??yd02

??yd12;0
??yd002

0 ����! 0 ����! E1
1;0

�= L

2

����! L

2

����! 0:

Denoting by a the image in L �= U=H of an element a 2 U , one easily checks that

d03(y1
 y2
x
 z) = d(y1
y2 
x
 z); d02 � 0;

d003(y1
 y2
 y3
 z) = d(y1
 y2
 y3
 z)

d002(y1
 y2
 y3) = d(y1
 y2
 y3):

Therefore, the long exact sequence in homology yields the exact sequence

(L
 2=[L
 2;L])
 H
i

! E2
2;0(H;L)

�

�! HL3(L)! 0:
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On the other hand, ones knows that

E2
2;0(H;L)

�= Z2
2;0=(Z

1
1;1 + B1

2;0):

But here we have

Z1
1;1 = F 1

2 \ d
�1(F 0

1 ) = (L
 2

 U) \ d�1(L 
 H):

Thus we have Im(i) � Z1
1;1; from whence we deduce that

E12;0(H;L)
�= � � � �= E2

2;0(H;L)
�= HL3(L):

Therefore the Lemma is clear. �

3.4. Interpretation of the natural maps. From now on, let g be a perfect Lie algebra

and let U (resp. u) be its universal central extension in the category (Leib) (resp. (Lie)).

Since the Leibniz algebra U is also the universal central extension of u, the Proposition 3.2

yields the isomorphisms

HL3(U) �= HL2(g)

 2

� HL3(g) �= HL2(u)

 2

� HL3(u);

and we know that

HL2(u) �= ker(HL2(g)� H2(g)) �= ker(U� u �= ULie):

Therefore we can state the characterization of the natural maps HL3(U) ! HL3(u) and

HL3(u)! H3(u).

Theorem 3.4. Let U (resp. u) be the universal central extension in the category (Leib)

(resp. (Lie)) of a perfect Lie algebra g. Then we have a (non-natural) commutative diagram

HL3(U)
�=

����! HL2(g)

2 � HL3(g)??y

??y





HL3(u)
�=

����! HL2(g)

2=K
2 � HL3(g)??y
??y

??y
H3(u)

�=
����! S2(H2(g)) � H3(g)

where

K := ker(HL2(g)� H2(g)) �= ker(U� u �= ULie) �= HL2(u):

Proof. Recall that the natural map HL�(U) ! HL�(u) (resp. HL�(u) ! H�(u)) is

induced by the canonical projection

U
 � �! (ULie)

 � (resp. u
 � �! ��(u)):

Given a Lie algebra l, one has a commutative diagram of hhlittle ii complexes

����! ?? ����! S2(l) ����! 0??y
??y

����! l
3 ����! l
2 ����! l??y
??y





����! �3(l) ����! �2(l) ����! l ;
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which yields in homology the exact sequence

(y) HL3(l)! H3(l)! S2(l)=�! HL2(l)! H2(l)! 0:

Here \�" stands for the relations generated in S2(l) by the elements

([x; y]; z)� ([x; z]; y)� (x; [y; z]); 8 x; y; z 2 l:

Applied to the Lie algebras u and g, we obtain the diagram

HL3(u) ����! H3(u) ����! S2(u)=� ����! K ����! 0 ����! 0??y
??y

??y
??y

HL3(g) ����! H3(g) ����! S2(g)=� ����! HL2(g) ����! H2(g) ����! 0:

Therefore it is clear that HL3(g)\K

 2 = 0; from whence the computation of HL3(u). The

commutative diagram is now obvious taking into account the previous calculations and the

last diagram. �

3.5. Remark. T. Pirashvili studies in general the kernel of the canonical map

l
 � �! ��(l):

This gives rise to a notion of relative homology which enables him to construct a long exact

sequence generalizing the sequence (y) (see [13]).

4. A �ner Leibniz spectral sequence

There exists another �ltration (FL
p

�)p�0 of the Leibniz complex, more e�cient than the

above one. The vector space FLp
n
is the submodule of M 
G


n generated by the elements

m
x1 
 � � � 
xn such that at least (n � p) factors xi are in H. Obviously the �ltration

(F
p

� )p�0 is a sub�ltration of (FL
p

�)p�0. Nevertheless the EL
2-terms of the spectral sequence

derived from this �ner �ltration are slightly more complicated to determine. It is expected

that if M = K and if the adjoint diagonal action of G=H on HL�(H) is trivial, then the

EL2-terms are given by

EL2
p;q

�= (HL�(G=H) ?HL�(H))p+q :

Here ? stands for the free product of graded modules that is, the non-commutative analogue

of the classical tensor product 
, which arises in the isomorphism

T(V � V 0) �= T(V ) ? T(V 0):

To be more precise, EL2
p;q

is the direct sum of the components

Xi1

 Yi2 
Xi3


 Yi4 
 � � � ; i1 + i2 + i3 + i4 + � � � = p+ q

such that either

X� = HL�(G=H) and Y� = HL�(H)

or

X� = HL�(H) and Y� = HL�(G=H):



16

In particular, this will give an idle way of getting the K�unneth-style formula for the

Leibniz homology (see [9], [12]).
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