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Abstract

We show that the Yang-Baxter equation is equivalent to the associativity of the algebra

generated by non-commuting link operators. Starting from these link operators we build out

the (FFZ) algebras, the s`q(2) is derived by considering a special combination of the generators

of (FFZ) algebra.
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1 Introduction

The Yang-Baxter equation (YBE) is a unifying basis of several studies in two-dimensional inte-

grable systems described by the quantum inverse scattering method [1]. A particular solution

of this equation has lead to the de�nition of quantum groups [2]. The latter are mathematical

objects which arose in the solution of some models of statistical mechanics [3] and in the study

of factorized scattering of solitons and strings [4].

One of the earlier discoveries in particle physics was the realization of the existence of two

di�erent types of particles: bosons and fermions. In the algebraic context they are distinguished

by the fact that the bosonic (fermionic) operators generally satisfy simple commutation (anti-

commutation) relations. In the context of two-dimensional quantum �eld theory, it is natural

to accept that one would encounter more exotic objects than just bosons and fermions. In fact,

anyons which are two-dimensional particles with arbitrary statistics, interpolate between bosons

and fermions (for a review see [5]-[7] and references therein). In the last few years they have

attracted a spectacular interest, especially in the interpretation of certain condensed matter

phenomena, most notably the fractional quantum Hall e�ect [8] and high Tc-superconductivity

[9].

Quantum groups present themselves as natural mathematical objects allowing the description

of the fractional statistics. Indeed, it has been proved in several works that the connection

between quantum deformations and intermediate statistics holds [10-19].

The aim of this paper consists in obtaining the YBE by introducing some non-commuting

operators denoted by Lp. These ones link between di�erent sites of a given arbitrary two-

dimensional lattice, we show that the associativity of the algebra generated by Lp's is equivalent

to the YBE. Starting from these link operators, we consider the anyonic algebra which coincides

exactly with the one obtained in the work [10]. We realize in a pure mathematical context the

Fairke-Fletcher-Zachos (FFZ) algebra, that can be seen as a quantum W1 algebra [20]. We also

derive the s`q(2) from the (FFZ) algebra.

The article is organized as follows. In the second section we obtain the YBE by requiring the

non-commutativity of the link operators introduced on an arbitrary two-dimensional lattice. In

the third section we establish a correspondence between the phase breaking the commutativity

of the link operators and the angle function on the two-dimensional lattice. This construction

leads to the anyonic algebra.

The fourth section is devoted to the introduction of the translation operators on a lattice, we

show that they are nothing but a generator of the (FFZ) algebra. We derive the s`q(2) algebra.

The �nal section consists on giving some concluding remarks.

2



2 The Yang-Baxter Equation (or two-dimensional lattice)

This section is devoted to obtaining the Yang-Baxter equation starting from the de�nition of

some operator denoted by Lp. These ones allow the transition from one site to an arbitrary other

one on a given two-dimensional lattice. We begin with the de�nition of the above operator and

we show that the Yang-Baxter equation is nothing but an equation which is equivalent to the

associativity of the algebra generated by the non-commuting elements L`.

We denote by 
 a two-dimensional lattice and we de�ne the link operators Lp as follows:

De�nition1

�`i(n) � Lp�i(n) (1)

where �i(n)=i = 1; : : : ; d is a d-dimensional vector function on 
, n is de�ned to be a couple of

two integer n � (n1; n2) (n1 and n2 are respectively the horizontal and longitudinal coordinates

of a given site n of 
).

In the equation (1) ` � �1;�2 are the four possible orientations on 
 (Fig.1), so the index

\`" indicates a moving along the direction ` on 
;

De�nition 2

�2i (n) � �i(n1 + 1; n2); �2i (n) � �i(n1; n2 + 1)

��1i (n) � �i(n1 � 1; n2); ��2i (n) � �i(n1; n2 � 1) (2)

We note that in these de�nitions, the element L` is regarded as an operator linking two neigh-

bouring lattice sites, so we call it the link operator. In the simple case where these operators

commute, one can write:

L
(`0)
` � L`0 = L

(`)
`0 �L` (3)

we point out that in this relation, we adopt the notation L
(`0)
` for which we suppose that the link

operator L
(`0)
` act on a given vector function �`i(n) by keeping invariant the direction described

by `0.

The product \�" in Eq.(3) is simply the composition of the operators L`'s, this composition

occurs from the de�nition (1). Now, by introducing a matrix denoted by R``0 , we break the

commutativity of the product (Eq.(3) as follows:

R``0 : V 
 V ! V 
 V

and

(R``0)
ij
mn

�
L
(`0)
`

�m
m0
� (L`0)

n
n0 =

�
L
(`)
`0

�j
n0
� (L`)

i
m0 (4)

where V is a d-dimensional vector space in which lives the multi-component functions \�i". The

indices ij, m0 and n0 take the values 1; 2; : : : ; d.
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The equation (4) can be rewritten in a compact form as:

(R``0)12

�
(L

(`0)
` )1 
 (L`0)2) = (L

(`)
`0

�
2

 (L`)1) (5)

owing to this equality, one can prove, by a direct computation that the relation:

(R``0)12(R`0`)21 = 11 
 11 : (6)

where 11 is the unit d� d matrix acting on V .

Starting from the above tools, we derive the following result:

Proposition 1 By requiring the product in Eq.(3) to be associative, we obtain the well known

Yang-Baxter equation on (R``0):

(R``0)12(R
(`0)
``00 )13(R`0`00)23 = (R

(`)
`0`00)23(R``00)13(R

`00

``0)12 (7)

We recall that in the literature this equation is seen as a representation of the braid group.

The latter plays for the intermediate quantum statistics the same role played by the permutation

group for bosonic and fermionic statistics. In mathematical sense, it su�ces to multiply the

matrix R in (7) by a permutation one P as:

B = P �R

and the YBE becomes:

B12B23B12 = B23B12B23 (8)

We notice that in the classical limit R = 11 
 11, this equation becomes trivial.

The equality (8), known as the Braid relation appears in the study of intermediate statistics

(especially the anyonic ones). So, we construct, using the above mathematical tools, an algebra,

interpolating between the bosonic and fermionic algebras. This matter constitutes the purpose

of the next section.

3 Anyonic Algebra

Firstly, we point out that the approach leading to the anyon algebra is of purely mathematical

aspect. Moreover, it is treated in a way which is di�erent from those usually used in the

literature.

We start by considering a plaquette (Fig. 1). The operators L` along the Pn are written as:

De�nition 3

L1 � `
iA1((n1;n2)=n1+1;n2))

L2 � e
iA2((n1+1;n2);(n1+1;n2+1)) (9)
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L�1 � e
iA1((n1+1;n2+1);(n1;n2+1))

L�2 � e
iA2((n1;n1+1);(n1;n2)) :

The functions A`(n; p) are subject to the following constraint:

@`f`(n) = A
`
(n; n+ `); n 2 
 (10)

In the relation (10), the derivative on 
 is de�ned by:

@`f�̀(n) = f(n+ `)� f(n) (11)

@�` = �@`

` means the direction on the lattice and �̀ is his absolute value.

The motivation for the choice of these link operators will be made clear when we give the

construction of the anyonic algebra.

The phases in (10) may be rewritten as:

A1((n1; n2); (n1+ 1; n2)) = f1(n1 + 1; n2)� f(n1; n2)

= @1f1(n1; n2)

� f1(n1; n2)

A2((n1 + 1; n2); (n1 + 1; n2 + 1)) f2(n1 + 1; n2 + 1)� f2(n1 + 1; n2)

= @2f2(n1; n2)

� f2(n1 + 1; n2)

A1((n1 + 1; n2 + 1)); (n1; n2 + 1)) = f1(n1; n2 + 1)� f1(ns + 1; n2 + 1)

= �@1f1(n1; n2)

� �f1(n1; n2 + 1)

A2((n1:n2 + 1); (n1; n2)) = f2(n1; n2)� f2(n1; n2 + 1)

= �@2f1(n1; n2)

= �f2(n1; n2)

(13)

In this construction the f�(n) can be interpreted as the angles between the sites ni and ni+1.

These angles are given via a point n� 2 
� (we denote by 
� the dual lattice of 
 and n� 2 
�,

n� � (n1 +
a
2 ; n2 +

a
2), a is the lattice spacing between two neighbourhood sites).

It is natural, owing to Eqs.(13) to see that the sum of the four phases over a plaquette Pn

in 
 is given by the relation:

f2(n1 + 1; n2)� f
2(n1; n2)� f

1(n1; n2 + 1) + f1(n1; n2) = 2� (14)

So this expression can be rewritten for one tower as:I
Pn

f(n) = 2� (15)
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And thus for several turns one obtains: I
Pn

f(n) = 2�� (16)

where � is the winding number of the closed loop Pn. Thus in general, for any curve �n on the

lattice we can de�ne the function �(n) as:

��n(n) �

Z
�n
f(n); n 2 
 (17)

Such that �n is the curve from a point p at the in�nity of the x-axis to the point n on the lattice


 (Fig.2). We call ��n(n) the lattice angle function under which the point n may be regarded

by another site m on the lattice. The relevance of angle function appearing in the intermediate

statistics has been introduced �rstly in the work [5]. According to this work, the angle function

is measured from another point m� 2 
 instead of n� 2 
 (Fig.2). We take therefore ��n(n;m)

and f(n;m) instead of ��n(n) and f(n).

In the same way and accordingly of the above de�nitions one de�nes.

De�nition 4

�Fn(n;m)� ��0n(n;m) �

I
�n�

�1
n

f(n;m) = 2�� (18)

where � is the winding number of the loop �n�
�1
n around the dual point m� (Fig.2).

Basing on the fact, there are two kinds of D angle function, when one considers the origin

point \p" at in�nity) of the positive x. axes or at the in�nity of the negative x-axes. One can

prove that these functions are subject to the following conditions:

���n(n;m)� ��Gamman(m;n) =

8<
:
�
Q
sgn(n2 �m2); n2 6= m2

�
Q
sgn(n1 �m1); n2 = m2

���n(n;m)� ��Gamman(n;m) =

8<
:
�
Q
sgn(n2 �m2); n2 6= m2

�
Q
sgn(n1 �m1); n2 = m2

(19)

with \+�n" the curve following the anti-clockwise sense and \��n" is the clockwise one.

Now, we are in a position to construct the anyonic operator. They are given starting from

the introducing of fermionic �eld on a two-dimensional lattice. Let us give the two-component

fermionic spinor �eld by:

 (n) =

0
@  1(n)

 2(n)

1
A (20)

The quantized components in relation (20) obey to the following equation:

f �(n);  �(m)g = 0

f �(n);  
+
� (m)g = �nm��� (21)

f +� (n);  
+
� (m)g = 0
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where �; � = 1; 2 and f'; �g � '� + �'.

Let us recall also that the Fock vacuum state j0i is de�ned by:

 �(n)j0i = 0 (22)

starting from this vacuum, one can generate all the other states describing the fermions on 
.

Returning to our purpose; the construction of the anyonic algebra. To start let us at �rst

introduce the elements:

��(n�) =
X
m

 +� (m)���n(n;m)  �(m) (23)

By straightforward calculation, one obtains

[��(n�);  �(m)] = �������n(n;m)  �(m)

[��(n�);  
+
� (m)] = ������n(n;m) +� (m) (24)

[��(n�); ��(m�)] = 0

Now we can give the expression of the anyonic operators. Indeed one can prove the following

proposition:

Proposition 2 By de�ning the operators '�(n�) and '
+
� (n�) as:

'�(n�) = ei���(n�) �(n)

'+� (n�) =  +� (n)e
�i���(n�) (25)

We obtain the algebra described by the following algebraic relations:

f'�(n�); '
+
� (n�)g = 1

f'�(n�); '�(m�)g�� = 0 n > m

f'�(n�); '
+
� (m�)g�� = 0 n > m

f'+� (n�); '�(m�)g�� = 0 n > m (26)

f'+� (n�); '
+
� (m�)g�� = 0 n > m

f'�(n�); '�(m�)g = 0 � 6= �

f'+� (n�); '�(m�)g = 0 � 6= �

f'+� (n�); '
+
� (m�)g = 0 � 6= �

where �� = e�i�� and n > m,

8>>>>>>>><
>>>>>>>>:

n+ > m+ ,

(
n2 > m2

n1 > m1; n2 � n1

n� < m� ,

8>><
>>:
n2 < m2

n1 < m1

n2 = m2

and fx; yg� = xy+�yx.
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We have also

['�(n�)]
2 = ['+� (n�)]

2 = 0 (27)

This constraint seems to describe an important property of anyonic systems. Indeed it

appears when one discusses the statistics corresponding to anyons, the relation Eq.(27) is viewed

as a hard core condition; at the same point of a two-dimensional lattice, cannot live more than

one particle. For this reason, many of the authors in the literature consider the anyons as a

fermion but de�ned on a given two-dimensional lattice. We add also to this remark that, owing

to the above condition, anyons obey the Pauli exclusion principle.

The parameter � in the equalities (26) is seen as a statistical parameter. The obtained algebra

interpolates between the bosonic algebra (� = 1 mod 2) and the fermionic one (� = 0 mod 2).

Consequently, we have realized the anyonic algebra starting from one special de�nition of the

link operators on the two-dimensional lattice 
. We showed also the correspondance between

them and the angle function discussed in [5]. In the latter, the authors show that the Schwinger

realization of SU(2) which is bosonic or fermionic, can be generalized to anyons of intermediate

statistics. In this case, the Schwinger construction does not lead to ordinary group SU(2), but

rather to its q-analogue, the Uq(2) (q = exp i��).

In order to investigate some other quantum symmetries appearing when the studying of

these exotic statistics, we will show that it is possible to obtain the FFZ algebra from which we

derive the quantum group algebra s`q(2).

4 (FFZ) and s`q(2) algebras

Starting from the above link operators (Eq.(9)), we de�ne the generators Tn as follows:

De�nition 5

Tn = T(n1;n2) = R
�n1 �n2
2

ij L
�ni
�iL

�nj
�j (28)

where n1; n2 2 Z, i; j = 1; 2 and i 6= j. �n is the absolute value of x 2 Z, the indices are omitted

in the notation of T(n�;n�).

As already seen (Fig.1) the operator L` allows the transition from the site Xi to the site Xi+`

on 
. This is described in Fig.3, ` = �1;�2. The generators Tn are regarded as translations

from the point O (the origin of referential) to a point n 2 
 (Fig.4).

At �rst we require that the product of these operators are given by formula:

TnTm = ei�2(n;m)Tn+m (29)

The function �(n;m) depending on two sites of 
 is introduced to be anti-symmetric and is

de�ned as:

�2 : 
� 
! R

8



the motivation of this choice of the product between these two translation operators is due to

the fact that the link operators do not commute and thus the composition of two translations

must lead naturally to a translation.

Before giving the complete description of the (FFZ), we notice that in the literature this

algebra has been poorly realized in a mathematical way. So, one of the main results of this

work is to construct the FFZ algebra on the lattice 
. To do this we are lead, due to a pure

mathematical reason, to divide 
 onto four subsets given by:

i) �++; n 2 D++
, (n2 > 0; n1 > 0)

ii) D+�; n 2 D+�
, (n2 > 0; n1 < 0)

iii) D�+; n 2 D�+
, (n2 < 0; n1 > 0) (30)

iv) D��; n 2 D��
, (n2 < 0; n1 < 0) :

and


 = D++
�D+�

�D�+
�D�� :

Now, by requiring that the translation operators Tn do not commute, but this non-commutativity

property is described by the introducing of some matrix R as follows:

TnTm = Rab
nmTaTb (30a)

we �nd that the matrix obey, owing to the assumption (Eq.(29)), the following relation:

Proposition 3

Rab
nm = �a+bn+me

�i(�2(a;b)��2(m;n)) (30b)

one can check that this matrix satis�es the Yang-Baxter Equation, because the product com-

posing the translation operators in the expression (Eq.(30b)) is associative.

At this stage we are able to give the expression of the generators of the (FFZ) algebra on

every subset of the lattice 
.

De�nition 6

i) for D++:

T++
n � Q

�n2 �n1
2

2;1 L�n2
2 L

�n1
1

S++n � Q
�n2 �n1
2

1;2 L�n1
1 L

�n2
2 (31a)

ii) for D+�:

T+�
n � Q�n2�n1

1;2 L�n�1
�1 L

�n�2
2

S+�n � Q
�n2�n1
2

2;1 L�n1
2 L

�n2
�1 (31b)
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iii) for D�+:

T�+n � Q
�n2 �n1
2

1;2 L�n1
1 L

�n2
�2

S�+ � Q
�n2�n1
2

2;1 L�n2
�2L

�n1
1 (31c)

iv) for D��:

T��n � Q
�n2�n1
2 L�n2

�2L
�n1
�1

S��n � Q
�n2�n1
2

1;2 L�n1
�1L

�n2
�2 (31d)

Following the assumption (Eq.(30)), we prove by a direct calculation that the parameters

Q1;2 appearing in the relations (31) have the expression:

Q1;2 = e
i�(n;n0)

�n0��n

Consequently, the elements (T 's) are nothing but the generators of (FFZ) algebra for both

subset in the lattice 
, we have then:

Proposition 4

for D++; [T++
n ; T++

n0 ] = 2i sin�(n; n0)T++
n+n0

for D+�; [T+�
n ; T+�

n0 ] = 2i sin�(n; n0)T+�
n+n0

for D�+; [T�+n ; T�+n0 ] = 2i sin�(n; n0)T�+n0+n

for D��; [T��n ; T++
n0 ] = 2i sin�(n; n0)T��n+n0 (32)

Using these particular realizations of (FFZ) algebra, we can derive the s`q(2) starting from the

generators de�ned by:

De�nition 7

J+ �
1

(q � q�1)
(T++

(1;1)� T
+�
(�1;1))

J� �
1

(q � q�1)
(T��(�1;�1) � T

�+
(1;�1)) (33)

q2J3 � T++
(2;0)

q�2J3 � T��(�2;0)

Basing on these de�nitions, we obtain:

[J+; J�] = [2J3]q

qJ3J�q
�J3 = q�1J� (34)

where q is taken to equal Q1;2 = Q2;1 in the above equations and

[x]q =
qx � q�x

q � q�1
:

10



We point out that surprisingly enough, we have constructed the s`q(2) algebra starting from the

introduction of the � in k operators on a lattice. Our realization is di�erent than the one given

in the work [5] where the authors obtain the same quantum symmetry by using the Schwinger

construction.

5 Concluding Remarks

In some mathematical point of view, the notion of discretization of the two-dimensional manifold

has been seen in the literature as the main and essential conception allowing the connection

between the intermediate statistics and quantum algebras. In this context, starting from the

de�nition of the link operators on a given two-dimensional lattice 
, we have constructed an

algebra coinciding exactly with the anyonic algebra. We have realized, in a mathematical way

the (FFZ) algebra build out from the introduced link operators and 
. The s`q(2) is thus

obtained in an original way.

Acknowledgments

Two of the authors (M.D. and Y.H.) would like to thank Professors M. Virasoro and G. Ghirardi,

the International Atomic Energy Agency and UNESCO for hospitality at the Abdus Salam

International Centre for Theoretical Physics, Trieste. A particular thanks goes to Professor

G. Thompson for his helpful and interesting discussions and comments. This work was done

within the framework of the Associateship Scheme of the Abdus Salam International Centre for

Theoretical Physics, Trieste.

11



References

[1] E.K. Sklyanin, L.A. Takhtadzhyan and L.D. Faddev, Teor. Mat. Fiz. 40 (1879) 194.

[2] V.G. Drinfeld, \Quantum groups", Proc. Int. Cong. Math. (Berkely, 1986) Vol. 1, p. 798.

M. Jimbo, Lett. Math. Phys. 11 (1986) 247.

[3] R.J. Baxter, \Exactly solved models in statistical mechanics" (Academic Press, New York,

1982) [Russ. Transl. Mir. Moscow, 1985].

[4] A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. Phys. (New York) 120 (1979) 253.

[5] J.M. Leiraas and J. Myrheim, Nuovo Cimento B37 (19 77) 1.

[6] A. Lerda, Anyons: Quantum Mechanics of Particle with Fractional Statistics (Springer,

Berlin, 1992).

[7] J.M. Leinaas, in Symmetry and Structural Properties of Condensed Matter, Pozn�ar 1992

(World Scienti�c, Singapore, 1993);

F. Wilczek, Phys. Rev. Lett. 48 (1982) 114.

[8] R.B. Laughhic, Science 242 (1988) 525.

[9] B.I. Halperin, Phys. Rev. Lett. 52 (1984) 1583.

[10] A. Lerda and S. Sciuto, Nucl. Phys. B401 (1993) 613.

[11] R. Caracciolo and M.A.R. Monteiro, Phys. Lett. B308 (1993) 58.

[12] M. Frau, M.A.R. Monteiro and S. Sciuto, J. Phys. A27 (1994) 801.

[13] L. Frappat, A. Sciama, S. Sciuto and P. Sorba, Phys. Lett. B369 (1996) 313.

[14] S. Majid, \Anyonic quantum groups", in Spinors, Twistors, Cli�ord Algebras and Quantum

Deformations (Proc. of 2nd Max Borr Symposium, Wroclaw, Poland, 1992), Z. Oziewicz

et al., eds. Kluwwa.

[15] A. Liguori and M. Mintchev, preprint IFUP-TH 51/93.

[16] M. Daoud, Y. Hassouni and M. Kibler, \The fermions as objects interpolating between

fermions and bosons", in Symmetries in Science X, eds. B. Gruber and M. Ramek (Plenum

Press, New York, 1998).

[17] M. Daoud and Y. Hassouni, Mod. Phys. lett. 7 (1997) 7.

[18] M. Daoud and Y. Hassouni, Prog. Theor. Phys. 6 (1997) 1033.

[19] M. Daoud and Y. Hassouni, LPT preprint to appear in Helv. Phys. Acta.

[20] D.B. Fairlie, P. Fletcher and C. Zachos, J. Math. Phys. 31 (1990) 1088.

12



�

�

�

�

 

!

#"

L�1

L1

L�2 L2

(n1; n2)

Fig.1 { Elementary plaquette An, n = (n1; n2) 2 
, on which we translate from n to n.

 

  

 

 

 

!

" "

"

"

#

#

�n

p

�0n

Fig.2 - ��n(n;m) is the angle under which the point n is seen by m� in the positive

direction (+) and ��0n(n;m) in the opposite direction(�)
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Fig.4 - Lattice 
 is divided in four parts: D++, D+�, D�+ and D��
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