
E
X

T
-2

00
0-

04
3

01
/

09
/

19
98

Available at: http://www.ictp.trieste.it/~pub�off IC/98/154

United Nations Educational Scienti�c and Cultural Organization

and

International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

SYNCHRONIZATION OF DIFFUSIVELY COUPLED OSCILLATORS

NEAR THE HOMOCLINIC BIFURCATION

Dmitry Postnov

Department of Physics, Saratov State University,

Astrakhanskaja st.83, Saratov, 410026, Russian Federation

and

Department of Physics, Chungbuk National University, Cheongju, Chungbuk 360-763, Korea,

Seung Kee Han

Department of Physics, Chungbuk National University, Cheongju, Chungbuk 360-763, Korea

and

Hyungtae Kook�

Department of Physics, Kyungwon University, Sungnam, Kyunggi 461-701, Korea

and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

It has been known that a di�usive coupling between two limit cycle oscillations typically leads to the

inphase synchronization and also that it is the only stable state in the weak coupling limit. Recently,

however, it has been shown that the coupling of the same nature can result in the distinctive dephased

synchronization when the limit cycles are close to the homoclinic bifurcation, which often occurs

especially for the neuronal oscillators. In this paper we propose a simple physical model using the

modi�ed van der Pol equation, which unfolds the generic synchronization behaviors of the latter kind

and in which one may readily observe changes in the sychronization behaviors between the distinctive

regimes as well. The dephasing mechanism is analyzed both qualitatively and quantitatively in the

weak coupling limit. A general form of coupling is introduced and the synchronization behaviors

over a wide range of the coupling parameters are explored to construct the phase diagram using the

bifurcation analysis.
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I. INTRODUCTION

Synchronizations between oscillations are abundant in a variety of situations ranging from physical

to biological phenomena [1,2]. In particular, recent studies to understand information processings

of the nervous systems have been guided by the idea that synchronization of oscillatory neuronal

units may provide a mechanism for functioning of the neural systems, which has been supported by

experimental observations [3,4]. More speci�cally, it has been suggested that the temporal correlation

scheme among oscillatory neuronal units may underlie the mechanism for the feature binding and

segmentation in the sensory perceptions [5].

A prototype of the nonlinear oscillations may be provided by the well-known van der Pol oscillator

which was originally devised as a model in the electronic circuit theory [6]. Dynamic behaviors of the

oscillator are rather simply predicted from the existence of a single equilibrium (source) and a single

limit cycle in the phase space. Often arising in many physical systems with an inherent nonlinear

energy disspation, such a limit cycle oscillation naturally occurs as a balance between the energy

generation at a small amplitude oscillation near the source and the energy dissipation at a large

amplitude. The coupled dynamics of such oscillations has also been studied extensively and it has

been well known from the literatures that a di�usive coupling between two such oscillations typically

leads to the inphase synchronization and also that the inphase synchronization is the only stable state

in the weak coupling limit [7,8].

Meanwhile, a rather di�erent kind of the synchronization behaviors has been observed for the

di�usively coupled neuronal oscillators [9,10]. The classical model for the electrophysiological activities

of a neuron has been provided by Hodgkin and Huxley [11], which is given as coupled di�erential

equations of four degrees of freedom. The model can be reduced to simpler ones while retaining some

of the important features of the neuronal dynamics. The examples of the reduced models include

the Morris-Lecar [12] and the Hindmarsh-Rose model [13]. Even though these models may exhibit

di�erent speci�cs in datails, the structure of phase space is qualitatively the same and, therefore, the

dynamics display similar behaviors. Namely, the structure of phase space is based on the existence of

three equilibria and a limit cycle. The three equilibria correspond to a stable node (N ), a saddle (S),

and an unstable focus (F ), respectively. The limit cycle is located at the boundary for 
ows diverging

from the focus. A typical phase portrait is depicted in Fig. VI.

The two coexisting attractors represent the two possible states of a spiking neuron. That is, the

stable node corresponds to the resting state (the equilibrium state) and the limit cycle to the �ring

state of a neuron. The stable manifolds of the saddle separate the phase space into two attraction

basins. Consequently, a stimulus to a resting neuron may not lead to �ring of the neuron unless it is

strong enough to push the trajectory over the separatrix into the other basin for the �ring state.

When two neurons are in the �ring state and are coupled to each other di�usively, the synchro-

nization behavior becomes quite di�erent from the case of the coupled van der Pol oscillators. That

is, it has been shown that for the coupled neuronal oscillators the inphase synchronization may lose
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its stability and, in particular, the dephased synchronization can occur as the only stable state in

the regime of the weak coupling strength, which is contrasted with the previous observations in the

coupled van der Pol oscillators [10]. In the cited studies it has been indicated that the instability of the

inphase synchronization is essentially due to the vector �eld deformation in
uenced by the presence of

the saddle point near the limit cycle oscillations, which implies that the dephasing may be enhanced

when the limit cycle oscillation gets close to the homoclinic bifurcation situation.

In the present work we elucidate the mechanism of the dephased synchronization of the di�usively

coupled oscillators and show that a distinctive synchronization behavior is provided by the coupled

oscillator systems in which the limit cycles are close to the homoclinic bifurcation. In the followings,

we propose as a generic model a simple physical model using the modi�ed van der Pol equation that

has the structure of the phase space depicted in Fig. VI. In the weak coupling limit the dephas-

ing mechanism of the synchronized oscillations near the saddle is analyzed both qualitatively and

quantitatively. A geral form of coupling between the oscillators is considered by introducing coupling

between the both variables of the oscillators. Then, the synchronization behaviors over a wide range

of the coupling parameters are explored using the techniques of the bifurcation analysis to construct

the phase diagrams. The results observed from the proposed model is also compared with the speci�c

example of the neuronal oscillator model.

II. MODIFIED VAN DER POL OSCILLATOR

A general form of two-dimensional oscillatory systems can be given in the following form:

�x+ F1(x; _x;p) _x+ F2(x;p) = 0; (1)

where the vector p represents a set of the control parameters. The functions F1 and F2 can be given

arbitrarily as long as they ful�ll conditions for the existence of an oscillation. In the given form F1 is

responsible for the energy dissipation and F2 for the force exerted on the oscillator. The zeroes of F2

determine the locations of the equilibria, and their stabilities are determined from the signs of dF2=dx

and F1 at each equilibrium: dF2=dx is negative only for saddles and a node, or a focus, is stable when

F1 is positive.

The simplest example of a nonlinear oscillator of such form is given by the van der Pol oscillator;

F1 = �(x2 � 1) and F2 = x. For positive � the only equilibrium at x = 0 is an unstable focus since

F1 is negative for jxj < 1. In addition, since the energy is dissipated at the large distances (jxj > 1),

there also exists a stable limit cycle enclosing the focus with a �nite amplitude. Consequently, the

global dynamic behavior of the van der Pol oscillator can be predicted from the simple structure of

the phase space that contains only one unstable focus and a limit cycle.

The neuronal oscillator models can be often represented in the form of Eq. (1). That is, taking the

Morris-Lecar model as an example, those functions are given as

F1(v; _v) =
@m1(v)

@v
(v � 1) +

f

�w(v)
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+
m1(1� vk) + �gL(v � vL) + Idc � _v

v � vk
;

F2(v) =
f

�w(v)
f�gK(v � vK)w1(v)

+m1(v)(v � 1) + �gL(v � vL)� Idcg; (2)

where the variable v stands for the membrane potential of the neuron and Idc is the external current

input which plays as a main control parameter of the model. More details for the model equation

with the notations for the other parameters can be easily found in the literatures [10,12].

In the typical regime of the parameters, F2 has three zeroes that correspond to a stable node, a

saddle, and a focus, respectively. Also, when the stable and the unstable manifold of the saddle are

connected via the homoclinic bifurcation, a limit cycle is born that typically encloses the unstable

focus. Therefore, as it takes place, the homoclinic bifurcation separates the regime of the sustained

�ring (limit cycle oscillation) of the neuron, as will be described below with the Morris-Lecar model.

The existence of the homoclinic bifurcation appears as a common feature of the neuronal models.

Going back to the Morris-Lecar model example, for a small external current Idc the only stable state

is the stable node that corresponds to the resting state of a neuron; typically, the focus is unstable near

the homoclinic bifurcation. Nearby the stable node a saddle exists whose stable manifolds separates

the response of a resting neuron against a stimulus into two kinds; this is often referred to as the 'all-or-

none' �ring behavior of a neuron. That is, a small stimulus does not induce �ring, which corresponds

to a short excursion of the phase 
ow being attracted eventually to the stable node, whereas a large

stimulus over a threshold level may lead to �ring of the neuron, which corresponds a long excursion

of the 
ow across the separatrix. For the latter case the 
ow is also eventually attracted to the stable

node where the neuron completes one �ring. The �ring is not sustained at this regime unless the

stimulus is repeated.

However, as Idc is increased, the homoclinic bifurcation occurs at Idc � 0:0729 on which the stable

and the unstable manifold of the saddle are connected to form a loop homoclinic to the saddle. Beyond

the bifurcation point, a stable limit cycle occurs, the 
ow on which corresponds to the sustained

periodic �rings. Consequently, in this parameter regime of the model, the phase space contains three

equilibria, a stable node, a saddle and an unstable focus, and a limit cyle, as its typical phase protrait

can be also given by Fig. VI. This structure of the phase space can be readily predicted from the

shape of the functions F1 and F2 as shown in Fig. VI(a). That is, three equilibria are located at the

zeroes of F2 and the type of each equilibrium is determined from the signs of F1 and dF2=dx. In the

�gure, F1 is given as a contour plot in the (v; _v) plane and the dark area corresponds to the negative

dissipation (the energy generation).

As indicated above the limit cycle oscillations near the homoclinic bifurcation are typical in the

neuronal oscillators. Therefore, in understanding systematically the generic behaviors of the coupled

dynamics between such oscillations it would be desirable to have a model that is easily controllable

near the bifurcation and shares the features of interest with the neuronal oscillators as well. For this

purpose we propose a simple model as follows and the present work will be focussed on the quantitative
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descriptions for this model.

The model is obtained from the van der Pol oscillator, while a slight modi�cation is needed to

maintain the required structure of the phase space; hereafter, this model will be called as the modi�ed

van der Pol (MVP) model. That is, to have three equilibria, we need to introduce a nonlinear cubic

force:

F1(x) = �(x2 � �);

F2(x) = x(x+ d)(x+ 2d)=d2; (3)

where �, � and d are the control parameters that assume positive values.

The MVP model maintains the features of the neuronal models in that the phase space has basically

the same structure as shown in Fig. VI. The function plots for F1 and F2 are shown in Fig. VI(b). The

three equilibrium points are located at _x = 0 and xF;S;N = 0;�d;�2d for the focus, the saddle, and

the stable node, respectively, and the slopes of F2 at the equilibria are dF2=dx = 2;�1; 2, respectively.

The focus is unstable since F1 is negative at xF and the limit cycle is located in between the unstable

focus and the saddle. In this presentation we set d = 3 and � = 0:2. For the �xed values of d and �,

the distance to the homoclinic bifurcation is controlled by �; the limit cycle gets closer to the saddle

as � is increased and the homoclinic connection occurs at � � 1:255. The limit cycle far from the

bifurcation with a small � reduces to the similar situation to the van der Pol oscillation.

In the following sections we will consider various coupling con�gurations. For this purpose it turns

out that a more convenient form for the MVP model is provided by the canonical form of Eq. (1):

_x = y;

_y = �F1(x)y � F2(x): (4)

III. DEPHASING OF SYNCHRONIZED OSCILLATIONS NEAR THE SADDLE

In this section, using the coupled MVP model, we consider the synchronization behavior between

two limit cycle oscillations near the homoclinic bifurcation based on the dephasing mechanism of phase


ows near the saddle point.

Let us consider a simpler case of the single-variable and we also assume that the coupling is su�-

ciently weak so that the perturbation raised in each subsystem is negligibly small. That is, the coupled

MVP model with a di�usive position-variable coupling is given as

_x1 = y1 + "(x2 � x1);

_y1 = �F1y1 � F2; (5)

where " is assumed to be su�ciently small. The coupling term for the other oscillator is given

symmetrically as "(x1 � x2).

5



Fig. VI shows the contour plot for the magnitude of the phase velocity v� for the single oscillator in

the absence of coupling; the phase velocity de�ned as v� =
p

_x2 + _y2 vanishes at the equilibria (S and

F ). For small � values, the limit cycles are located close to the focus. Then the phase space structure

in terms of the v�-surface along �1 is qualitatively equivalent to that of the van der Pol oscillation for

which it is known that a di�usive coupling typically leads to the stable inphase synchronization. An

examplary limit cycle trajectory at � = 0:2 is depicted as �1 in the �gure.

However, for increased �, the limit cycle gradually approaches close to the saddle and then the

shape of the v�-surface explored by the limit cycle becomes qualitatively di�erent from the small �

case. The limit cycle trajectory at � = 1:0 is plotted and labelled as �2 in Fig. VI. A trajectory on

�2 spends most time near the saddle and, therefore, the interaction due to coupling in this region

becomes important. Notice that since the vector �eld and also v� change as � changes it is impossible

to plot both �1 and �2 in the same plot. Accordingly, in Fig. VI, �2 has been plotted with a numerical

accuracy while the plot of �1 has been added only schematically to help compare the two cases.

The 
ows of the vector �eld in the vicinity of the saddle and the dephasing behavior in the presence

of coupling are depicted schematically in Fig. VI for the case of the di�usive position-coupling as given

in Eq. (5). The circles around S represent the v� contour lines and W s and Wu represent the stable

and the unstable manifolds of the saddle, respectively. � denotes the limit cycle trajectory in the

absence of coupling and �s and �f denote trajectories perturbed due to coupling, as will be explained

further below.

Suppose there is a small time lag between two oscillators when they enter into the vicinity of the

saddle. That is, one oscillator (
1) advances in phase the other (
2) as denoted at the bottom of �.

Then, the coupling force on 
1 acts in the positive x direction where the 
ow velocity is faster, whereas

the coupling force on 
2 acts in the other direction where the 
ow velocity is slower. Therefore, the

trajectory of 
1 is gradually pushed to the trajectory �f which is faster than � and, the trajectory

of 
2 to �s which is slower. As a result, the initial time lag diverges. This implies that the inphase

synchronization can be unstable, which is contrary to the synchronization behavior observed in the

coupled van der Pol oscillators.

It should be noti�ed that the dephasing does not necessarily occur all the time when the limit

cycle is close to the saddle point. A similar consideration can be also given to show that the di�usive

'velocity-coupling' leads to the inphase synchronization; in this case the coupling force would be in

the vertical direction in Fig. VI, and hence attractive.

To get a quantitative estimate for the dephasing between the oscillators, let us �rst divide the limit

cycle into two pieces by a line AB as shown in Fig. VI. It is expected that the e�ect of coupling in the

region of the saddle (to the left of AB) is much more relevant to the synchronization. We introduce

the measures P and Q for the linear rate of dephasing as follows.

�t(B) = P�t(A);

�t(A) = Q�t(B); (6)

6



where �t in the right-hand-side of Eq. (6) is an initial time lag at the location A or B, and �t in the

left is the evolved time lag measured at the other side. The values of P and Q are to be determined

in the limit of the small initial �t.

The numerical investigations for the coupled MVP model show that P is insensitive to � and

approximately the unit. Meanwhile, Q strongly depends on �. The variation of Q versus � is shown

in Fig. VI for di�erent coupling strengths and di�erent coupling variables as well. As can been seen

in the �gure the position-coupling (curves 1 and 2) leads to stronger dephasing as � approaches the

value of the homoclinic bifurcation, � � 1:255. The other case of the velocity-coupling (curves 3 and

4) leads to inphasing. The trend of both inphasing and dephasing becomes stronger as the coupling

strength becomes stronger: compare the curves 2,4 for " = 0:01 with the curves 1,3 for the " = 0:001.

IV. VECTOR COUPLING

For a di�usively coupled system, the coupling term in general would be proportional to the dif-

ferencies x1 � x2 and y1 � y2. A simpler case might be conceived in which the coupling is through

only a single variable, either the position or the velocity. For instance, the position-coupling has been

often considered in the studies of the coupled oscillators. The examples include the electronic circuits

with a purely resistive coupling between component circuits, the inertial coupling for mechanical os-

cillator systems, and the neuron models with the electric coupling. In more realistic circumstances,

however, the two-variable coupling seems to be more natural. For instance, the reactance present in

electronic circuits or the propagation time delay of the impulses along the neuronal axon may well

require couplings between oscillator units through the velocity variable.

In the followings we attempt to consider the general case of the two-variable coupling and choose a

form called the vector coupling. That is, the coupling is introduced using a vector K = (Kx;Ky) as

follows:

_x1 = y1 +Kx(x2 � x1);

_y1 = �F1y1 � F2 +Ky(y2 � y1): (7)

For the other oscillator the coupling term is obtained by interchanging x1 and y1 with x2 and y2,

respectively. That is, the coupling is given symmetrically. Such form of coupling has been previously

considered for studies in di�erent contexts [7,8].

In the present work we represent the vector coupling using the polar coordinate:

Kx = K cos	;

Ky = K sin	: (8)

That is, K denotes the coupling strength and the angle 	 denotes the relative weight of coupling

between two variables. 	 can be also viewed as the orientation angle of the coupling force in the

two-dimensional subspace of each oscillator. A special case occurs when 	 = �=4; 5�=4 in which the
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coupling force on an oscillator is directed toward the other. The single-variable coupling cases are

achieved when 	 = 0; � (the position-coupling) and 	 = ��=2 (the velocity-coupling), respectively.

The 'purely' di�usive coupling refers to the regime where neither Kx nor Ky is negative, that is, where

0 � 	 � �=2.

V. SYNCHRONIZATION OF THE COUPLED MVP OSCILLATORS

The presentation of the observations on the synchronization behaviors of the coupled MVP equations

are divided in three subsections below. The �rst part considers the case when the coupling strength

is su�ciently weak so that an analytic method can be applicable. The second part considers the

case of the �nite coupling strength and shows how the results in the weak coupling limit extends

in this regime, let alone some additional behaviors. The third part considers the stronger coupling

strength regime where the coupled oscillators are placed in an intermediate distance to the homoclinic

bifurcation.

A. Weak coupling limit

Firstly, we consider the weak coupling case in which the coupling raises only a negligible perturbation

to the limit cycles of the uncoupled oscillators. It is well known that such limits can be analyzed using

the phase model reduction method [1,14]. That is, in this scheme, each limit cycle is approximated

with the uncoupled one and the phase dynamics between oscillators due to coupling can be analyzed

merely from the antisymmetric part, �effa (��), of the e�ective coupling function de�ned as

�eff (��) =
1

2�

Z 2�

0

Z(�)p(�;��)d�; (9)

where �� denotes the phase di�erence between two oscillators and p(�;��) denotes the perturbation

due to coupling that depends on the oscillator phases. The sensitivity function, Z(�) � rX�jX=X0(�),

measures the phase-dependent reponse of the uncoupled limit cycle (X0) to the perturbation.

Then, the zeroes of �effa (��) correspond to the phase-locked synchronization states and their

stabilities are determined from the slope of �effa (��) at the corresponding states: the negative slope

means a stable state, and vice versa. Some typical behaviors of �effa (��) at di�erent parameter

values are shown in Fig. VI. The three curves in the �gure correspond to the three main kinds of the

synchronized states: the inphase (I), antiphase (A), and out-of-phase synchronization (O). Due to

the symmetry of Eq. (7), the existence of the inphase state is trivial. The existence of the antiphase

state is also guaranteed due to the periodicity of �effa (��). The out-of-phase state corresponds to the

phase-locked state with phase di�erence between zero and �. The symmetry of Eq. (7) is broken for

the out-of-phase states (also for A), but they occur as a pair each of which is symmetric to the other.

From the phase model analysis we observe that di�erent states of synchronization exist depending

on the paramemter values of � and 	 and the parameter space is basically divided into four di�erent

regions. Fig. VI(a) shows the phase diagram in the polar coordinated plane of (�;	). The range of

8



� is given such that the radius of the plane is limited to the � value for the homoclinic bifurcation.

In the �gure the blank area corresponds to the inphase synchronization states (I), the dark grey area

to the antiphase states (A), and the dashed area to the out-of-phase states (O). The overlap of the

I and A areas is denoted by the light grey area (C) in which the inphase states and the antiphase

states coexist. The scale of the radial axis has been nonlinearly transformed to magnify the behavior

at larger � values.

For smaller � values (� <� 0:5, roughly), the diagram shows that the synchronization behavior is

qualitatively equivalent to that of the coupled van der Pol oscillators. Namely, the inphase synchro-

nization is the only stable state in the (purely) di�usive coupling regime. The synchronization states

are either of inphase (I) or of antiphase (A), depending on the coupling angle 	; the antiphase state

is stable only when the coupling (Kx;Ky) is negative, in which case the coupling is repulsive rather

than being di�usive (attractive).

For larger � values, however, synchronization depends not only on 	 but also on �, and one more

kind of synchronization exists, that is, the out-of-phase state (O). To see the parameter dependence

of the behavior, let us set � = 1:2 and, starting from some value within the I region, say 	 = 3�=4,

increase 	 along the circular path as denoted in Fig. VI(a). The inphase state is the only stable state

until it reaches P1 where the Floquet multiplier of maximum magnitude becomes +1. The inphase

state loses stability at this point and two other stable states with the broken symmetry (O states)

are born. The curve of the symmetry-breaking bifurcations is denoted as SB1 in the �gure. As 	

is increased, the pair of the out-of-phase states collide to each other and disappear at P2 where the

inverse symmetry-breaking bifurcation (SB2) occurs, which in turn gives birth to a stable antiphase

state (A).

When 	 is further increased the inphase state becomes stable at P3, while the antiphase state still

remains stable. That is, there exists a region where both the inphase and the antiphase state are

stable, as denoted by C in the �gure. They coexist until the antiphase state loses its stability at P4

upon the symmetry-breaking bifurcation with increased 	. The bifurcation curves passing through

P3 and P4 are denoted in Fig. VI(a) as SB3 and SB4, respectively. The bifurcations at SB3 and SB4

are subcritical in that they are entailed by the presence of two unstable (out-of-phase) states.

To summarize the contrasted behaviors, the phase diagram of Fig. VI(a) shows that the inphase

synchronization is the only stable state for the weak di�usive coupling (0 � 	 � �=2), similar to the

behaviors of the coupled van der Pol oscillators, only when � is su�ciently small, that is, when the limit

cycle is far from the homoclinic bifurcation. However, it also shows that the inphase synchronization

may not be the only stable state even in the regime of the di�usive coupling, when the limit cycle

approaches the homoclinic bifurcation with increased �. Such tendancy seems to be more outstanding

for the case of the position-coupling especially, as one can notice from the presence of the antiphase

synchronization as the only stable state in the regime of 	 � 0.

The three synchronization states occur by exchanging their stabilities under the symmetry-breaking

bifurcations. The occurrence of the symmetry-breaking bifurcations along the circular path of
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Fig. VI(a) is schematically depicted in Fig. VI(b). The circles at the four sites represent the variation

of the phase di�erence �� and the smaller circles on them denote the synchronization states; the �lled

small circle denotes the stable state and the empty circle denotes the unstable state. In the insets of

the bifurcation diagrams the branches for inphase and antiphase states are denoted as straight lines

and the emerging pairs of branches for symmetry-breaking O states are denoted as parabolic curves.

A solid line denotes a stable branch and a dotted line an unstable branch.

B. Finite coupling strength

When the coupling strength becomes �nite, the perturbation of the limit cycle due to coupling can

be signi�cant and, consequently, the phase model reduction may not be appropriate for predicting the

behavior of the coupled dynamics. Then, one needs to resort to direct numerical methods.

In this subsection, using the techniques of the bifurcation analysis, we examine the synchronization

behaviors of the coupled MVP model over a range of the coupling strength, focusing on how the re-

sults of the weak coupling limit in the previous subsection extend in the regime of the �nite coupling

strength. Also we obtain the phase diagram for the coupled Morris-Lecar model and compare it with

the one for the MVP model to show that the proposed model in a moderate range of the parame-

ters may well display the generical behaviors of the coupled oscillator systems near the homoclinic

bifurcation.

Since our primary interest is on the limit cycle oscillations near the homoclinic bifurcation, we �x

� = 1:2 for the both oscillators, which is close to the bifurcation point, and then vary the two coupling

parameters, K and 	. In particular, our view of interest is limited to the region of the phase space

where each oscillator is in a stable oscillatory state; we may call this region as 'the region of coupled

oscillations'. Therefore, whenever trajectories leave the region via a boundary crisis, we assume that

there are no stable attractors in the region. The detailed mechanism for the crisis is beyond the

present scope.

The resulting phase diagram in the polar coordinated plane (K, 	) is shown in Fig. VI(a) in the

regime of K <� 0:01. The occurrence of the boundary crisis is denoted as BC and the region of

the parameter space with no attractors in the region of coupled oscillations is colored black in the

diagram. Notice that Fig. VI(a) and Fig. VI(a) are drawn in the di�erent parameter planes.

As shown in the weak coupling limit, there exist three main kinds of the synchronization states: the

inphase (I), antiphase(A), and out-of-phase (O) states. As K becomes �nite, the region of each state

starts to be deformed from the phase model prediction, which is manifested by the de
ection of the

bifurcation lines that depends of K. Besides the symmetry-breaking bifurcation described previously,

the states may also undergo other bifurcations such as the period-doubling that cannot be predicted

from the phase model description either.

Typical behaviors of the transitions and their coexistences are depicted in Fig VI(b) along the 	

paths with two di�erent K values: the two paths are labeled as shown in Fig.VI(a). The branches
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in the diagrams are drawn using the same convention as in Fig. VI(b). In each subset the upper

horizontal line denotes the inphase state branch (I) and the lower line denotes the antiphase state

branch (A). Note that the diagram depicted for the path 1 of smaller K, coincides with the behavior

observed in the case of the weak coupling limit (Fig. VI(b) ).

For the path 2 of largerK, we observe the new behavior of the period-doubling cascades of the out-of-

phase states. The cascades at the symmetric branches lead to the onset of chaos which are symmetric

to each other as well. As 	 further decreased, two chaotic attractors merge to form a single chaotic

attractor, which then restores the symmetry. This symmetric chaotic attractor eventually disappears

via a boundary crisis and the trajectory leaves the region of coupled oscillations. The period-doubling

cascades of the out-of-phase states also occur at di�erent regimes of stronger coupling strength.

In Fig. VI(b), from the diagram corresponding to the path 2, one may also notice that the saddle-

node bifurcation of the out-of-phase states provides an additional source for the birth of a pair of the

O states, which can be viewed as the connection of a stable and an unstable branch of the O state that

originate from di�erent states, I and A, respectively. This saddle-node bifurcation is not observed in

the weak coupling limit (Fig. VI(a)) even though they can occur in the phase model description; the

saddle-node bifurcation occurs at the tangency of �effa in Fig. VI. The region of these O states is

denoted in Fig. VI(a) as the dark dashed area.

For a comparison with the neuronal model, the phase diagram for the coupled Morris-Lecar model

is shown in Fig. VI. For this model the homoclinic bifurcation takes place at Idc � 0:0729 and the

diagram has been obtained at Idc = 0:0750, close to the homoclinic bifurcation. The broader region of

chaos following the period-doubling cascades is denoted by the hatched area in the �gure. A peculiar

cusp point (CP ) appears to which many regions for di�erent states merge, which is commented brie
y

in the following subsection.

The organization of the various states for the Morris-Lecar model is not precisely the same as

for the MVP model, which should vary depending on speci�c models. It is likely that the range of

the parameters such as Idc and K has not been chosen to the best to show a better coincidence.

Nevertheless, the features in the regime of the weak coupling strength are essentially the same for

the both models in terms of the existence of the bifurcations and the pattern of their occurrences.

More importantly, the diagrams show that the both systems have the stable dephased synchronization

in a wide range of the di�usive coupling regime, which has been the primary interest of the present

examination.

C. Intermediate regime of the coupled oscillator

So far we have emphasized a contrast between the behaviors of the coupled oscillators in two

distinctive regimes in the aspect of the closeness to the homoclinic bifurcation. That is, the coupled

van der Pol-type oscillators and the coupled oscillators near the homoclinic bifurcation. In this

subsection we examine the behavior of the coupled MVP model in an intermediate regime between
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those distinctive regimes, which we may consider to be provided by setting the parameter at � = 1:0.

In particular, the case of the stronger coupling strength is considered since it turns out that the weak

coupling results in rather trivial behaviors that have been already observed from those two regimes.

The phase diagram in this regime of the parameters is shown in Fig. VI which demonstrates a variety

of complex behaviors.

The inphase synchronization states, in addition to the symmetry-breaking bifurcation described

previously, may undergo two more kinds of bifurcations: the period-doubling and the torus bifurcation.

The period-doubling either gives birth to a stable period-doubled inphase state, or to none of stable

attractors. In the former case the period-doubled inphase state undergoes the symmetry-breaking

bifurcation, which in turn gives birth to a pair of the out-of-phase states. These out-of-phase states

undergo the cascade of period-doublings leading to chaos in the same way as observed for the O states

in Fig. VI. Two such cases are shown in Fig. VI to the northwest and the southeast directions.

The latter case of the period-doubling bifurcation entailing no attractors implies the occurrence

of the boundary crisis with an attractor outside the region of coupled oscillations. Therefore, the

trajectory suddenly disappears from the region of coupled oscillation. The regime of the paprameters

of this case is denoted by the black area in the diagram. The period-doubling bifurcations of the

inphase states resulting in these two cases also occur for the Morris-Lecar model as can be found in

Fig. VI.

The torus bifurcation of the inphase states occurs when a complex conjugate pair of the Floquet

multipliers leaves the unit circle in the complex plane. The bifurcating torus is observed to retain

the symmetry of Eq. (7). The 
ows on the torus are just the ones for the coupled systems with two

competing frequencies. Below the curve for the torus bifurcation (T ) in Fig. VI(a), note the existence

of the familiar resonant tongues corresponding to the frequency-locked states with rational rotation

numbers. The most prominent among them is the tongue of the one-to-one locking, which is denoted

in the diagram. Notice also that the tongues can persist even in the absence of the stable torus nearby

in the parameter space. The torus disappears via a boundary crisis. The torus bifurcation also occurs

for the Morris-Lecar model even though such case is not indicated in Fig. VI; it is observed to occur

at a stronger coupling strength, K � 0:15.

A special notice is on the existence of the cusp points in the northwest and the southeast directions

in Fig. VI (CP in the diagram), to which all the regions of the period-doubling merge to form a

common boundary; they are observed to be the cusp points within the numerical resolution. Such

location implies that the codimension of the bifurcation would be in�nite. Interestingly, the cusp point

also exists in the Morris-Lecar model as shown in Fig. VI. Possible questions such as its genericity

and the unfolding prompt further investigations.

Again, the global organization pattern of the phase diagram in �g. VI is not quite the same as

for the Morris-Lecar model in Fig. VI. However, as we have already noticed in this subsection the

coincidences between the local behaviors in the two models are striking. Therefore, in this sense of

similarities, it seems that the proposed MVP model represents well the Morris-Lecar model over a
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wider range of the parameter space not just restricted to the neighbors of the homoclinic bifurcation

with a rather weak coupling strength. We presume that this representation can be also approriate for

other models having the structure of Fig. VI.

VI. CONCLUSIONS

Synchronization between coupled oscillations has been shown to display distinctive behaviors as the

limit cycle oscillation approaches the homoclinic bifurcation. In this paper, a generic physical model

for studying such behaviors has been proposed using the modi�ed van der Pol equation. A general

form of coupling has been also considered by introducing the vector coupling between the variables of

the two-dimensional oscillators.

The homoclinic bifurcation implies the presence of a saddle nearby the limit cycle. The dephasing

mechanism of the synchronized oscillations in the vicinity of the saddle has been analyzed both

qualitatively and quantitatively in the weak coupling limit. The dephasing rate measured by the linear

rate Q is shown to increase dramatically as the limit cycle approaches the homoclinic bifurcation and

such tendancy becomes even enhanced as the coupling strength is enlarged.

The synchronization behaviors of the coupled MVP oscillators have been examined over a wide

range of the coupling parameters. In the weak coupling limit the phase model reduction method has

been used to show the existence of the main synchronization states and to identify the transitions

among them through the symmetry-breaking bifurcations. For the �nite coupling strength we have

resorted to the direct numerical calculations using the techniques of the bifurcation analysis, which has

revealed the extended behaviors that cannot be predictable from the phase model description. In both

cases the phase diagrams have been obtained and it has been shown that the inphase synchronization

may not be the only stable state in the regime of the di�usive coupling as the limit cycle approaches

the homoclinic bifurcation.

The intermediate regime has been also examined where the coupled oscillators are in between the

two distinctive regimes of the van der Pol-type oscillators and the oscillators near the homoclinic

bifurcation. A variety of complex behaviors, including the period-doubling and the torus bifurcations,

the mode-locking tongues and chaos arises in this regime as the coupling strength becomes larger, for

which the phase diagram has been also constructed.

The phase diagrams for the MVP model has been compared with the one for the the Morris-Lecar

model which is only an example of the neuronal models that have provided motivations to the present

study. The comparison leads to a reasonable conclusion that the synchronization behaviors observed in

the MVP model should be generic for the systems of coupled oscillators near the homoclinic bifurcation.

The close coincidences between the local behaviors of the models have been also observed over a wider

range of the parameter space which is not restricted only to the neighbors of the homoclinic bifurcation

with a rather weak coupling strength.
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FIG. 1. Typical phase portrait of the neuronal oscillators.
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FIG. 10. Phase diagram for the coupled MVP model at � = 1:0 upto stronger coupling strength.
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