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Abstract

Chaos synchronization in some dynamical systems is studied in a general case. We use the

boundedness of some dynamical systems, nonreplica approach to chaos synchronization and

Routh-Hurwitz criteria to propose a simple method to make negative all the conditional Lya-

punov exponents. The method is tested on the classical Lorenz model and one of R�ossler models.

Generalization of some features of chaos synchronization for high dimensional systems with some

form of nonlinearities is also discussed.
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1. Introduction

It is well-known that some dynamical systems depending on the value of systems' parame-

ters exhibit unpredictable,chaotic behavior[1-6].Such a situation makes impossible a long-range

prediction of system's behavior, but paradoxically allows one to control this behavior with tiny

perturbations (see,e.g. [7-12] and references therein). The seminal papers [7-8] induced an

avalanche of research works in the theory of control of chaos in synergetics.Chaos synchro-

nization in dynamical systems is one of such ways of controlling chaos. According to [7-8]

synchronization of two systems occurs when the trajectories of one of the systems will converge

to the same values as the other and they will remain in step with each other. For the chaotic

systems synchronization is performed by the linking of chaotic systems with a common signal or

signals (the so-called drivers): suppose that we have a chaotic dynamical system of three or more

state variables (it is well-known that for chaotic behavior in continuous dynamical systems the

number of state variables should be no smaller than three [3-4]). According to [7-8] in the above

mentioned way of chaos control one or some of these state variables can be used as an input to

drive a subsystem consisting of remaining state variables and which is a replica of part of the

original system.In [7-8] it has been shown that if the real parts of the Lyapunov exponents for

the subsystem are negative then the subsystem synchronizes to the chaotic evolution of original

system.

If the real parts of the sub-Lyapunov exponents are not negative, then as it has been proved

in [13] synchronism is also possible if a nonreplica system constructed according to some rule

is used instead of replica system. The interest in the chaos synchronization in part is due to

the application of this phenomenon in secure communications, in modelling of brain activity

and recognition processes, etc [7-12]. Also it should be mentioned that this method of chaos

control may result in the improved performance of chaotic systems (see e.g.[12] and references

therein).As it has been shown in [13] from the application viewpoint the use of nonreplica

systems has some advantages over the replica approach to the chaos synchronization. The

above-mentioned chaos synchronization method [7-8] (replica approach) is applied to di�erent

chaotic dynamical systems [7-12]. As already underlined, a new approach-nonreplica approach

to chaos synchronization has recently been proposed in [13].A detailed analysis of that paper

shows that for high dimensional systems the calculation of the Lyapunov exponents in general re-

quires to solve high order algebraic equations or to recourse to the help of numerical simulations.

This paper is dedicated to the chaos synchronization in some dynamical systems within the

nonreplica approach. It has been shown that by using the boundedness of the solutions to some

dynamical systems, nonreplica approach to chaos synchronization and Routh-Hurwitz criteria,

it is possible to make negative all the conditional Lyapunov exponents without complex numer-

ical and analytical calculations.This is the main feature of the paper. The paper is organized

as follows. Section 2 is dedicated to the general theory.In Section 3 the proposed method of

chaos synchronization is applied to the classical Lorenz model and one of R�ossler models. Some

conclusions are presented in Section 4.

2. General Theory

Suppose that an autonomous dynamical system under study has N state variables:

dx1

dt
= f1(x1; x2; � � � ; xN ; a1; a2; � � � ; aN);

dx2

dt
= f2(x1; x2; � � � ; xN ; a1; a2; � � � ; aN);
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... (1)

dxN

dt
= fN (x1; x2; � � � ; xN ; a1; a2; � � � ; aN);

where x1; x2; � � � ; xN are state variables,f1; f2; � � � ; fN are su�ciently smooth functions of

x1; x2; � � � ; xN and a1; a2; � � � ; aN ,and a1; a2; � � � ; aN are parameters. Let

xss
1
; xss

2
; � � � ; xssN ; (2)

be the steady state solutions (�xed points) to the original nonlinear dynamical system (1).Also

suppose that for some values of parameters the system (1) behaves chaotically. As is known

from [13] while performing chaos synchronization within replica approach one deals with the

response system whose dimensionality is less than the dimensionality of the original nonlinear

system.But it is trivial that for high dimensional original nonlinear system even in the case of

replica approach the response system dimensionality could be high.Also it is well-known that

within nonreplica approach the response system dimensionality is equal to the dimensionality of

the original nonlinear system. That is why without loss of generality we will investigate the case

of nonreplica approach in order to deal with the highest possible dimensionality.As was already

mentioned above,the possibility of chaos synchronization essentially depends on the sign of the

Lyapunov exponents. (In the case of replica approach to chaos synchronization these exponents

are called the sub-Lyapunov exponents. Within the nonreplica approach, these exponents are

known as the conditional Lyapunov exponents. Although sometimes this label is also used to re-

fer to the sub-Lyapunov exponents too.). To be more precise, these exponents should be negative.

According to [13], within nonreplica approach the response system contains some arbitrary

constants added according to some rule.The presence of these arbitrary constants allows one to

be more exible to achieve chaos synchronization.

Without the loss of generality, take the state variable x1 as a driver. Then using the ap-

proach developed in [13] we construct the following nonreplica response system(with the super-

script"nr"):

dxnr
1

dt
= f1(x1; x

nr
2
; � � � ; xnrN ; a1; a2; � � � ; aN) + �1(x

nr
1
� x1) = F1;

dxnr
2

dt
= f2(x1; x

nr
2
; � � � ; xnrN ; a1; a2; � � � ; aN) + �2(x

nr
1
� x1) = F2;

... (3)

dxnrN
dt

= fN (x1; x
nr
2
; � � � ; xnrN ; a1; a2; � � � ; aN) + �N (x

nr
1
� x1) = FN ;

(Here it is necessary to underline the following point: in order to construct the nonreplica

response system in fact we added to the right-hand side of the initial nonlinear equations some

terms which are linear functions of the original and the response system's variables. Such

simpli�cations can be justi�ed, as our task is to demonstrate the simplest way of achieving chaos

synchronization: according to [13], in principle one can construct the response system by adding

to the original nonlinear system arbitrary functions, which vanish when chaos synchronization

is achieved.) The eigenvalues of the Jacobian matrix of the nonreplica system

J =
@(F1; F2; � � � ; FN)

@(xnr
1
; xnr

2
; � � � ; xnrN )

(4)
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satis�es the following equation:

�N + p1�
N�1 + p2�

N�2 + � � �+ pN = 0; (5)

where p1; p2; � � � ; pN are in general the functions of the arbitrary constants �1; �2; � � � ; �N , param-

eters a1; a2; � � � ; aN , and solutions of the original nonlinear system (1) x1(t); x2(t); � � � ; xN(t).It

is well-known that in a general case with some exceptions it is highly problematic to �nd an

adequate analytical solution of the system of nonlinear equations.This fact creates immense dif-

�culties in the treatment of equation (5) analytically.

As was mentioned above the task of this paper is to make negative all the roots of equa-

tion (5) without the need of performing tedious numerical and analytical calculations. As the

analyses show there are some classes of dynamical systems, which could be explored from this

point of view. In other words, albeit in general the coe�cients p1; p2; � � � ; pN are the functions

of time, in some cases one can easily make negative (by choosing the "appropriate" values of the

arbitrary constants) the real parts of the roots to the equation (5) without lengthy, formidable

numerical and analytical calculations .

For example, it is trivial, that in the case of constant Jacobians [13] of the initial nonlinear

system these coe�cients are time-independent (below as an example one of the R�ossler models

is investigated), which allows to treat equation (5) quite easily.But there is a wide class of dy-

namical systems, chaos synchronization which can be treated with relative ease even in more

general cases.We mean dynamical systems with bounded solutions.It is widely known that many

dynamical systems with dissipative nature have bounded solutions.(see below). It is well-known

that the classical Lorenz system is one of the well-studied dissipative dynamical systems with

bounded solutions (see, e.g.[1, 2, 4-5]).

Below as an example we will investigate this classical Lorenz model in the relatively unex-

plored case.

But �rst we present the more general approach developed for the bounded systems. So,

suppose that the original nonlinear system has bounded solutions. As it has been shown by

E.N.Lorenz in [14], the dissipative systems of the form

dxi

dt
=

NX

j;k=1

aijkxjxk �

NX

j=1

bijxj + ci; (6)

with the constants chosen so that
P

aijkxixjxk vanishes identically and
P

bijxixj is positive

de�nite, have bounded solutions.

We argue that using the boundedness of the solutions of the dynamical systems and the

presence of arbitrary constants with the help of Routh-Hurwitz criteria one can try to judge the

sign of the real parts of the roots of equation (5) without conducting explicit calculations.

Thus, in general we obtain the equation of N-dimensionality for Lyapunov exponents with

coe�cients depending on arbitrary constants �1, �2; � � � ; �N .

Due to the exibility in choosing the form of nonreplica response system, one will be able to

obtain eigenvalue equation (5) with coe�cients containing only linear terms on these arbitrary

constants.(As it will be clear below from the investigation of one of R�ossler models, in the case

of such linearity in some cases one can get the real possibility virtually �rst to "choose" any

desired negative values for the conditional Lyapunov exponents and after that calculate "the
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right" arbitrary constants to achieve the necessary goal even more easily).

For this purpose we choose such a nonreplica response system which gives rise to the Jaco-

bian containing all the arbitrary constants along one column. It should be noted that if chaos

synchronization is investigated within nonreplica approach and the number of driving variables

more than unity then it is possible to obtain algebraic equation of N-th order with coe�cients

containing also nonlinear terms on the arbitrary constants. One should keep in mind that, as

a rule the more the number of the arbitrary constants,the easier it is to achieve our goal of

negative conditional Lyapunov exponents. But without the loss of generality and for the sake

of simplicity a case of coe�cients with linear terms on the arbitrary constants will be studied.In

the case of nonlinear terms on the arbitrary constants, again due to the exibility warranted by

the form of the nonreplica response system, it is possible to choose some of these constants so

that coe�cients before �'s could contain only linear terms on the arbitrary constants.

So, we have some N order algebraic equation.Suppose that �i (i = 1; 2; 3; � � � ; N) are roots

of this equation.It means that the equation (5) for the eigenvalues of the Jacobian matrix of the

nonreplica response system could be presented in the following form:

NY

i=1

(�� �i) = 0 (7)

or

�N + s1�
N�1 + s2�

N�2 + � � �+ sN = 0 (8)

where s1; s2; � � � ; sN are functions of �1; �2; : : : ; �N :

s1 = (�1)1
NX

i=1

�i;

s2 = (�1)2
NX

i=1

NX

j;j>i

�i�j (9)

s3 = (�1)3
NX

i=1

NX

j;j>i

NX

k;k>j

�i�j�k;

...

sN = (�1)N
NY

i=1

�i;

Now one has a characteristic equation expressed in two ways:1) equation (8); 2) equation (5)

obtained from the calculation of eigenvalues of Jacobian matrix of the nonreplica response sys-

tem.Comparing terms with the same order of � it is possible to express arbitrary constants in the

nonreplica response system through the solutions of the characteristic equation (or vice versa):

p1 = s1; p2 = s2; � � � ; pN = sN ; (10)

It is well-known that the necessary and su�cient conditions for the roots of eqs.(8) or (5) to

have negative real parts are determined by the Routh-Hurwitz criteria.

(Below, upon investigating the examples these conditions will be written explicitly.)

As it will be seen from the represented examples below one could quite easily \pick up" the

appropriate values and signs for the arbitrary constants in the nonreplica approach to make
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negative the real parts of the conditional Lyapunov exponents.

Thus the feature of our approach to chaos synchronization is that for some dynamical sys-

tems the possibility of chaos synchronization could be judged without calculating the conditional

Lyapunov exponents explicitly.

3. Examples

Now as the �rst example consider the following nonlinear chaotical dynamical system.The

system under consideration is of the form ([15],the fourth model proposed by R�ossler in 1977

the so-called model 1977-1V:
dx

dt
= �y � z;

dy

dt
= x; (11)

dz

dt
= a(1� x2)� bz;

According to [15] the dynamical system for values of parameters a=0.275,b=0.2 (see [16]) exhibits

chaotic behavior. The system (11) has the following �xed point:

x = 0; z = ab�1; y = �ab�1; (12)

There are three dynamical variables in (11), and there is only one nonlinear term of a single

variable,namely x. We will consider the case, when x variable is the driver.According to [13] the

following form of nonreplica system (with the subscript "nr") is adequate:

dxnr

dt
= �ynr � znr + �1(xnr � x);

dynr

dt
= x+ �2(xnr � x); (13)

dznr

dt
= a(1� x2)� bznr + �3(xnr � x);

As the calculations show the eigenvalues of the Jacobian matrix of the system (13) satis�es the

following equation:

�3 + �2(b� �1) + �(�2 + �3 � b�1) + b�2 = 0; (14)

Suppose that �1; �2; �3 are roots of this equation. Then using the above proposed method

(comparing the equations (5) and (7)) it is very easy to establish the following relationship

between the coe�cients of eq.(14) and these roots:

p1 = b� �1 = �(�1 + �2 + �3) = s1;

p2 = �2 + �3 � b�1 = �1�2 + �1�3 + �2�3 = s2; (15)

p3 = b�2 = ��1�2�3 = s3

As �1, �2, �3 should be negative, we obtain the following inequalities from the relationships

(14):

p1 = b� �1 > 0;

p2 = �2 + �3 � b�1 > 0; (16)

p3 = b�2 > 0;

6



But one should keep in mind that these conditions are not su�cient to have negative roots (or

roots with negative real parts).According to Routh-Hurwitz criteria, for roots with negative real

parts, the following inequality also is required:

p1p2 � p3 = b(�3 + �2
1
)� �1(b

2 + �2 + �3) > 0; (17)

(In fact, according to [17 ] the positiveness of p1; p3; p1p2� p3 is su�cient, as the positiveness of

p2 follows from the previous inequalities (16)).

As can be seen from the relationships (16) and (17), it is quite easy to make the conditional

Lyapunov exponents negative by choosing positive values for �2 and quite large negative values

for �1.

(Here and below on studying the Lorenz model one should keep in mind that in practice the

wide dynamic range for state variables and parameters is undesirable and this di�culty can be

eliminated by a simple transformations see,e.g. [9].)

As the Jacobian in this case of R�ossler model is constant, one can even choose �rst any

desired values for the conditional Lyapunov exponents, after that solve the equation (15) to �nd

arbitrary constants.

One can easily see that in the case of linear dependence of the coe�cients of the charac-

teristic equations (5) or (8) on the arbitrary constants, further simpli�cations of the method

are possible. Presenting the application of the proposed method one should keep in mind that

the case of this particular R�ossler model is the trivial one in the sense that one deals with the

constant Jacobian and therefore the coe�cients before �'s are time-independent.

Here we would like also to stress the following conclusion which can be derived from the

results of the application of the proposed method to the R�ossler model investigated in this re-

port. The studied R�ossler model contains three state variables and only one nonlinear term

of a single variable x.Considering this variable as a driver one obtains in essence a linear re-

sponse system,which contains three arbitrary constants within nonreplica approach to the chaos

synchronization and by choosing these arbitrary constants one can make all the conditional

Lyapunov exponents negative and perform synchronization.

Using the algorithm proposed in this report it is easy to arrive at the same conclusion in

the general case:Namely if one has a nonlinear dynamical system with an N-dimensional phase

space, and if all the nonlinear terms are functions of a single variable x, then it is always pos-

sible to �nd an N-dimensional linear response system, with N arbitrary constants, which will

synchronize when driven by x, if the N constants are adjusted to make all eigenvalues of the con-

stant Jacobian matrix negative.The linearity of the response system is highly important in the

communications applications from the point of view of exact recovery of transmitted signals (see

[18] and references cited therein). Speaking about the communications applications of the chaos

synchronization one should also mention that by choosing the arbitrary constants one can make

all the conditional Lyapunov exponents not only negative, but also larger in magnitude.This

fact also is very important from the application viewpoint. Because, the time required for syn-

chronization to take place depends on the value of the largest conditional Lyapunov exponent.

Now as the second example of application of the proposed method consider the nontrivial

case of the classical Lorenz dynamical system:

dx

dt
= �(y � x);

dy

dt
= rx� y � xz; (18)

7



dz

dt
= xy � bz;

It is well-known that the dynamical system (18) for some values of parameters exhibits chaotic

behavior [1-10].

The adopted values of parameters followed by Lorenz and most other investigators are:� =

10, b = 8

3
.As for the values of r for the chaotic behavior to occur, according to the linear

stability analysis (see.e.g.[3]),for the given values of other parameters r must be larger than

critical Rayleigh number of rcr:r > rcr = (3 + b+ �)�(� � 1� b)�1. At r > rcr the �xed points

of the Lorenz system

xss = yss = �(b(r� 1))
1

2 ; zss = r � 1; (19)

become unstable,and there is a strange attractor over which a chaotic motion takes place.

It is well known that for � = 10, b = 8

3
the critical Rayleigh number is equal to rcr = 24:74.In

[8], while investigating the chaos synchronization in Lorenz model the value of r = 60 was used.

As was mentioned above, the Lorenz model is a classical example of chaotic behavior in low

dimensional nonlinear dynamical systems, and is one of well studied nonlinear systems. Al-

though, the chaos synchronization phenomenon in Lorenz system is also investigated in detail,

nevertheless there is some gap in the study of this phenomenon.Namely, the possibility of chaos

synchronization in the case of z variable as a driver has not been analyzed thoroughly yet.(To

our knowledge, there is only one recent paper [19] addressing this issue.In that paper,the chaos

synchronization in the case of z driving is achieved by considering perturbations of the nonlin-

ear system's parameter, to be more speci�c the perturbation of the parameter r was considered.

In this paper we demonstrate that such a synchronization is possible even without parameter

perturbations within nonreplica approach.)

As was shown in [8], in the case of z variable as a driver synchronization of the response

subsystem (x,y) with the original Lorenz system does not occur for the values of parameters

� = 10, b = 8

3
,r = 60,as one of the sub-Lyapunov exponents is positive. Here we will apply the

proposed method of chaos synchronization to this case.

Thus, consider the z variable as a driver.Then according to [13], in the case of failure of

replica approach the following nonreplica system (with the subscript "nr") can be used for

synchronization purposes.

dxnr

dt
= ��xnr + �ynr + �1(znr � z);

dynr

dt
= rxnr � ynr � xnrz + �2(znr � z); (20)

dznr

dt
= �bz + xnrynr + �3(znr � z);

As the calculations show the eigenvalues of the Jacobian matrix of the system (20) satisfy the

following equation:

�3 + �2(� + 1� �3)� �(y�1 + x�2 + (� + 1)�3) + �(r� z)� �)

�y(��2 + �1)� ��3 � x�2� � (r� z)(x�1 � �3�) = 0; (21)

Here x(t); y(t); z(t) are the solutions of the Lorenz system (18).
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According to Routh-Hurwitz criteria, the su�cient and necessary conditions for roots with

negative real parts are:

� + 1� �3 > 0;

�y(��2 + �1)� ��3 � x�2� � (r� z)(x�1 � �3�) > 0; (22)

�(� + 1)(1� (r � z)) + �2
3
(� + 1)� (� + 1)2�3

+�y(�2 � �1) + x(�1(r � z)� �2) + �3(y�1 + x�2) > 0

Now one can use the fact that solutions to the Lorenz system are bounded. The bounding value

depends on the relationships between the system's parameters and the expression for it could

be found in di�erent textbooks and papers, see, e.g.[2, 5, 20].

As the solutions of the initial Lorenz model are bounded and one can choose the magnitude

of the arbitrary constants arbitrarily large or small and the sign negative or positive, then it can

easily be seen from equation (22), say, by equalizing �3 to a large negative value to �100),and by

choosing �1 and �2 approximately equal in magnitude, it is possible to make negative the real

parts of the Lyapunov exponents. For obtaining the negative conditional Lyapunov exponents,

it would be quite helpful to take into account the fact that after transition processes in the

long time limit for � >> 1 , x(t) � y(t) and z(t) > 0.For the given values of the system

parameters it is relatively easy to\predict" the right order of arbitrary constants to obtain the

conditional Lyapunov exponents with negative real parts. Really, taking into account the above-

mentioned equality of x(t) and y(t), also the positiveness of z(t) and writing z(t) = r � 1 � �,

where � is not necessarily a small number, one can obtain the following expressions for the

coe�cients of the characteristic equation: a1 = � + 1� �3; a2 = �((� + 1)�3 + y(�1 + �2) + �),

a3 = �3��� 2��2y � y(2 + �).

From this expression one can easily establish that larger negative values of �3 and large

positive (if y < 0) or negative (if y > 0) values of �2 will help to satisfy the conditions of

negativity of real parts of the roots of characteristic equation a1 > 0; a3 > 0; a1a2 � a3 > 0.

Also the larger negative values of �3 with the small and close magnitudes of constants �1; �2
are appropriate from the point of view of obtaining the conditional Lyapunov exponents with

negative real parts. This "right guess" is con�rmed by the numerical simulations. Really, for

� = 10; b= 8

3
; r = 60, taking �3 = �100; �1 = �1, �2 = �1 from the solution of the equation for

the Lyapunov exponents (the initial Lorenz model was solved by the fourth-order Runge-Kutta

method) we found the following values for the Lyapunov exponents: �1 = �2:575, �2 = �11:000,

�3 = �97:425. So, just using the boundedness of the dynamical systems (eq.(6)) and applying

nonreplica approach we were able to perform chaos synchronization in Lorenz model. And we

didn't use the system parameters perturbation, as in [19].

Speaking about the possibility of replacing of the solutions of the original nonlinear system

with some constant values for the calculation of sub-Lyapunov exponents, we would like to

stress that such an approach (to my knowledge) was used for the �rst time by the authors of

the paper [10]. Namely, as it was proved in [10] numerically, while calculating the sub-Lyapunov

exponents for dynamical systems, whose chaotic behavior has arisen out of instability of �xed

points (steady-state solutions) one can replace the solutions of the original nonlinear systems

with the steady-state solutions. Moreover, for some of these systems (e.g., for Lorenz system,

some of R�ossler models) sub-Lyapunov exponents of some of the unstable �xed points appears

to govern the locking not only to chaotic orbits, but also to the periodic orbits. In other words,

the sub-Lyapunov exponents for the �xed points and the periodic orbit also agree with each

other.

In the light of these results,it would be quite interesting to try to calculate not only sub-

Lyapunov exponents, but the conditional Lyapunov exponents.
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Having this in mind, we also calculated (numerically) the conditional Lyapunov exponents

of the equation (18) by replacing the time- dependent solutions of the Lorenz model with the

non-trivial steady-state solutions. As the numerical simulations show in a general case the

conditional Lyapunov exponents for the time-dependent and steady-state solutions are di�erent.

For example, using the above-mentioned values of system's parameters � = 10, b = 8

3
; r =

60 and taking instead time-dependent solutions of the Lorenz model the non-trivial steady-

state solution we obtain the following values for the conditional Lyapunov exponents: �1 =

�0:251; �2 = �11; 000�3 = �99; 75. As can be seen in general these conditional Lyapunov

exponents for the cases of time-dependent and time-independent solutions are di�erent(although

one can see the sharp di�erence only between one Lyapunov exponents): the other two are in

satisfactory agreement; by the way, this tendency was established also for other values of system

parameters, even for cases when one of total Lyapunov exponents becomes positive. It appears

that the satisfactory agreement established between two sub-Lyapunov exponents within the

replica approach has some memory-retaining inuence on two of the three of the conditional

Lyapunov exponents in the case of non-replica approach to chaos synchronization;at the same

time one should be aware of the fact that two of the conditional Lyapunov exponents are di�erent

in magnitude from those sub-Lyapunov exponents within the replica approach. The fact that the

conditional Lyapunov exponents are di�erent for the cases of time-dependent and steady state

solutions to the original Lorenz model could be seen from the following argument even without

explicit numerical and analytical calculations: really for the case of steady state solutions the

equation (21) gives the following expression:

�3 + �2(� + 1� �3)� �((�1 + �2)xss + � + 1)�3)� 2xss(��2 + �1) = 0; (23)

It can easily be seen from this equation for �1 = 0; �2 = 0 one of the roots of this equation is

equal to zero exactly.Putting �1 = 0; �2 = 0 also in the equation (21) will not give the same

result. Having in mind the above-mentioned satisfactory agreement between the sub-Lyapunov

exponents for the �xed points and the periodic orbits, one can say that in general the conditional

Lyapunov exponents of the chaotic orbit and the periodic orbits also will not coincide with each

other.

Speaking about the di�erent values for the conditional Lyapunov exponents, one should

also mention that in some special cases by choosing the appropriate arbitrary constants, one

can obtain the conditional Lyapunov exponents for the cases of both time-dependent and time-

independent solutions with high degree of accuracy.

Really, taking �1 = �10; �2 = 0; �3 = 0 (with the above- mentioned set of system's param-

eters) we obtain that in the case of steady-state solutions the real parts of the two Lyapunov

exponents are equal to �1 = �2 = �0:326. The third Lyapunov exponent equals �3 = �10:348.

The numerical calculation of the conditional Lyapunov exponents for the time-dependent so-

lutions gives rise to the following values: �1 = �2 = 0:320,�3 = �10:361. One can see that

there is quite a good agreement between two cases.But these cases could be called "coincidental

closeness" and could be explained by the choice of arbitrary constants in the nonreplica ap-

proach. One more point to underline:judging by the form of nonreplica response system, it is

clear that, in fact we have used the linear feedback method of chaos control.Preserving all the

arbitrary constants, one actually makes the task of making Lyapunov exponents negative easier.

It is quite interesting to study this problem in more particular cases, say nullifying one or more

of these arbitrary constants, in other words feedback scheme works only for part of the state

variables.By studying these cases, we have found that to make all the conditional Lyapunov

exponents negative is problematic, even in some cases virtually impossible.For example, taking

equation (21) �1 = 0; �2, it is quite easy to obtain that in this case chaos synchronization is

not realizable by nonreplica approach. This result conforms to the inference of the recent paper
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[21], whose author has used the methods of di�erential geometry.

4. Conclusions

In conclusion, in this report we have shown that using the boundedness of the dynamical sys-

tems and nonreplica approach, one can make negative the real parts of the conditional Lyapunov

exponents without lengthy, formidable, cumbersome and tedious numerical and analytical calcu-

lations. Also it has been shown that the conditional Lyapunov exponents calculated for the cases

of time-dependent and steady-state solutions to the dynamical systems, whose chaotic behavior

has arisen from instability of �xed points, in general are di�erent from each other.Nevertheless,

it has been established that due to the presence of many arbitrary constants in the response

system of equations, within the nonreplica approach, it is quite possible that in some cases these

two sets of conditional Lyapunov exponents will be identical.

As an example chaos synchronization in the classical Lorenz model and in one of R�ossler

models is investigated.

Generalization of some features of chaos synchronization for high dimensional systems with

some form of nonlinearities is also discussed.
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