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Abstract

The solution of BBGKY hierarchy of kinetic equations is de�ned through particle

method solution of Vlasov equation.
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Suppose we are given a system of monoatomic molecules. Suppose that the molecules

interact through a two-body potential �. In the framework of classical statistical physics,

we consider for the given system the problem of solving the hierarchy of BBGKY kinetic

equations [N.N.Bogoluibov, 1970]:

@

@t
fn(t) = [Hn; fn(t)] +

1

v

Z X
1�i�n

[�(qi � q); fn+1(t)]dx; (1)

where fn is the probability density of the gas ensemble at time t 2 IR+ at position

q1 2 ^; q2 2 ^; � � � ; qn 2 ^ with the velocities V12R
3
���; Vn2IR

3

of particles. Therefore,

f : IR+ � F ! IR+ with the phase space F =
�
^ � IR3

�n
.

Here,

Hn =
X

1�i�n

Ti +
X

1�i<j�n

�(qi � qj); Ti =
pi

2m
;

m = 1 is the mass of a molecule, p the momentum of a molecule, n 2 N;N is the number

of molecules, V - the volume of the system; N !1; V !1; v = V

N
= const is volume

per molecule, [; ] denotes the Poisson brackets.

Introducing the notation

(Hf)n = [Hn; fn] ; (Dxf)n(x1; � � � ; xn) = fn+1; (x1; � � �xn; x) ;

(Axf)n = 1
v

X
1�i�n

[�(qi � q); fn] ;

f(t) = ff1(t1x1); � � � � � � ; fn(t; x1; � � � ; xn); � � �g ; n = 1; 2; � � �

we can cast Eq.(1) in the form

@

@t
f(t) = Hf(t) +

Z
AxDxf(t)dx: (2)

Derivation of Hierarchy of Kinetic Equations for correlation functions.

Proposition 1. The hierarchy of kinetic equations for the correlation functions has

the form

@

@t
'(t)=H'(t)+

1

2
W('(t);'(t)) +

Z
AxDx'(t)dx+

Z
Ax'(t)?Dx'(t)dx; (3)

where [D.Ruelle, 1969],[M.Yu.Rasulova, 1980],[M.Yu.Rasulova, A.K.Vidibida, 1976]:

f(t)=�'(t)=I+'(t)+
'(t)?'(t)

2!
+� � �

(?'(t))n

n!
+� � � ; (4)
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'(t)=f'1(t; x1);� � � ;'(t; x1;� � � ; xn);� � �g ;

(' ? ') (x) =
X
Y CX

'(Y )'(X n Y ); I ? ' = '; (?')n = ' ? ' ? � � � ? '| {z } n times;

X = (x1; � � � ; xn) = (x(n)); Y = (xn0 ); n
0

2; n � n
0

= 1; 2; � � � ;

(U'n) =

2
4 X
1�i<j�n

�(qi � qj); 'n

3
5 ;W (';') =

X
Y CX

U (Y ;X n Y )'(Y )' (X n Y ) :

Proof: To obtain (3), we substitute (4) in (2) :

@

@t
�'(t) = H�'(t) +

Z
AxDx�'(t)dx: (5)

We have

Dx�'(t) = Dx'(t) ? �'(t); (6)

Ax�'(t) = Ax'(t) ? �'(t); (7)

AxDx�'(t) = AxDx'(t) ? �'(t) +Ax'(t) ?Dx'(t) ? �'(t); (8)

T�'(t) = T'(t) ? �'(t); (9)

U�'(t) = U'(t) ? �'(t) +
1

2
W ('(t); '(t) ? �'(t)) ; (10)

@

@t
�'(t) =

@

@t
'(t) ? �'(t): (11)

substituting (6) � (11) in (5), multiplying both sides by � (�'(t)) we obtain (3). This

proves the proposition.

To investigate our system on the basis of arguments similar to those in [1], we can

choose as expansion parameter v, setting

�(qi � qj) = v�(qi � qj) (12)

and making substitution [N.N.Bogoluibov, 1970], [M.Yu.Rasulova, 1980], [S.Ichimary, 1968],

[R.L.Libo�, G.Perona, 1967], [A.I.Akhiezer (ed.), 1974]:

'n(t) = vn�1 n(t) (13)

On the basis of (12); (13) Eq.(3) for n molecules takes the form

@

@t
 n (t;X) =

2
4 X
1�i�n

Ti;  n (t;X)

3
5+ v (U (t))

n
(X)
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+
v

2
(W (t);  (t))

n
(X) + v2

Z
(AxDx (t))n (X)dx (14)

+v
Z
(Ax (t) ? Dx (t))n (X)dx

To solve Eq.(14), we apply perturbation theory, we shall seek a solution in the form

of the series

 n (t;X) =
X
�

v� �
n (t;X) ; n = 1; 2; 3; � � � ; � = 0; 1; 2; � � � (15)

Substituting the series (15) in Eq.(14) and equating the coe�cients of equal powers of

v we obtain  
@

@t
+ L1

!
 o
1(t) = 0; (16)

 
@

@t
+ L1 + L2

!
 o
2(t) = So

2; (17)

� � � � � � � � � � � � � � � � � �

 
@

@t
+
X
i=1

Li

!
 �
n(t) = S�

n ; (18)

where we have introduced the notation

L1 
o
1(t) = V 1

@

@q1
 o
1(t; x1)�

Z
@�(q1 � q)

@q1

@ o
1(t; x)

@p1
 o
1(t; x)dx;

Li 
�
n(t) = V i

@

@q1
 �
n (t;X)� v

Z �
Ax (t)

�
(xi) (Dx 

�)n�1 (t;X n xi) dx;

and

S�
n =

�
U ��1(t)

�
n
(X) +

1

2

X
�1+�2=��1

�
W( �1(t);  �2(t)

�
(X) (19)

+v
Z �

AxDx 
��1(t)

�
n
(X)dx:

Thus, the solution of Eq. (14) reduces to the solution of the homogeneous (16) and

inhomogenous (17); (18) Vlasov's [A.A.Vlasov, 1950] equations for  o
1(t) and  �

n(t), ac-

cordingly.

Proposition 2. The series (15),  n(t;X) =
P

� v
� �

n(t;X), where  o
1 is de�ned in

accordance with solution of Vlasov's equation and the remaining  �
n on the basis of the

formula

 �
n (t;X)=

Z
dx

0

1� � �
Z
dx

0

n

Z t

�1

dt
0

S�
n

�
t; x

0

1; � � � ; x
0

n

� \
1�i�n

G
�
t�t; x;x

0

i

�
; (20)
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is a solution of Eq. (14).

Proof: We consider Eqs. (16) and (17) where (16) is the Vlasov equation. This

system of coupled equations for the single-molecule and two-molecule perturbations can

serve to determine the successive approximations  �
n(t):  

o
1(t;X) is the solution of Vlasov's

equation.

Substituting [M.Yu.Rasulova, 1980],[S.Ichimary, 1968]

 o
2(t; x1; x2) =

Z
dx

0

1

Z
dx

0

2

Z t

�1

dt
0

So
2(t

0

;x
0

1; x
0

2): (21)

G(t� t
0

;x1; x
0

1)G(t� t
0

;x2; x
0

2)

in (17), we see that (21) is a solution of (17) if

So
2(t; x1; x2) = [�(q1 � q2);  

o
1(t;x1) 

o
1(t; x2)]

+
Z
1�i�2

[�(qi � q);  o
1(t;x1) 

o
1(t;x)]dx

and if G satis�es equation 
@

@t
+ V 1

@

@q1

!
G
�
t � to;x1; x

0

1

�
�
@ (t; x1

@V 1
: (22)

Z
@�(q1 � q)

@q1
G(t� t

0

;x; x
0

1)dx�

Z
@� (q1 � q)

@q1
@
G
�
t� t

0

;x1; x
0

1

�
@V 1

 (t; x)dx = 0

with the initial condition

G(0;x1; x
0

1) = �(x1 � x
0

1) (23)

The recursive system of Eq. (18) can, with allowance for the established structure

of the solutions, serve to determine the successive approximations  �
n(t) and, therefore,

formula (15). Indeed substituting again (20) directly in (18), we can see that (20) is a

solution of (18) if S�
n is de�ned in accordance with (19) and if G satis�es Eq. (22) with

the initial condition (23).

[H.Neunzert, 1978], [K.Steiner, 1995], [H.Neunzert and A.H.Siddiqi, 1997] by the par-

ticle method have proved the existence of unique solution of Vlasov equation

@t 
o
1 (t1x1)=�V 1rx 

o
1 (t1x1)+

es

ms

rxA
k�1rV 1

 o
1 (t1; x1) ;  

o
1 (Tk) = fk�11 (Tk) (24)

�4xU
k =

1

2o

X
s

Z
�s
e1f

k
1 dS T = Tk (25)
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where Tk = k
n
T; k = 1; � � � ; n; n 2 IN of size 1

n
T; IU0 is solution (25) with fo (o; P ) =

fo(P ); �(j qi � qj j) is Coulomb potential; IU -potential by E = �rIU satis�es Poisson's

equation. Inkn:Neinzert2, kn:Steiner it is shown that  o
1(t; x1; v1)=( o�o;t)(x1; v1) is solu-

tion of the Vlasov equation. Here we assume that E is Lipschitz continuous, �t;� : F ! F

is a measure preserving group homomorphism [H.Neunzert, 1978] and  o is continuous

initial conditions.

A Numerical Scheme for the Vlasov equation is as follows [K.Steiner, 1995]:

For every time step tk = k4t; k = 0; 1; � � �

V
N
i (tk+1) = V

N
i (tk) +4tE

�
qNi (tk)

�

qNi (tk+1) = qNi (tk) +4tV
N
i (tk+1)

�Ni (tk+1) = �Ni (tk) :

Solution (20) of two equations (16); (17) of hierarchy are in good agreement with results of

[S.Ichimary, 1968] for plasma physics and this method is opening possibilities to calculate

the solutions of the next complex kinetic equations of BBGKY hierarchy.
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