THE SOLUTION OF BBGKY HIERARCHY OF KINETIC EQUATIONS THROUGH THE PARTICLE SOLUTION OF VLASOV EQUATION

M.Yu. Rasulova
The Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Ulughbek, Tashkent 702132, Uzbekistan ${ }^{1}$
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
and
A.H. Siddiqi
Aligarh Muslim University, Aligarh 202002, India.

Abstract

The solution of BBGKY hierarchy of kinetic equations is defined through particle method solution of Vlasov equation.

[^0]Suppose we are given a system of monoatomic molecules. Suppose that the molecules interact through a two-body potential ϕ. In the framework of classical statistical physics, we consider for the given system the problem of solving the hierarchy of BBGKY kinetic equations [N.N.Bogoluibov, 1970]:

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{n}(t)=\left[H_{n}, f_{n}(t)\right]+\frac{1}{v} \int \sum_{1 \leq i \leq n}\left[\phi\left(q_{i}-q\right), f_{n+1}(t)\right] d x \tag{1}
\end{equation*}
$$

where f_{n} is the probability density of the gas ensemble at time $t \in \mathbb{R}_{+}$at position $q_{1} \in \wedge, q_{2} \in \wedge, \cdots, q_{n} \in \wedge$ with the velocities $V_{1} \in R^{3} \cdots ; V_{n} \in \mathbb{R}^{3}$ of particles. Therefore, $f: \mathbb{R}_{+} \times F \rightarrow \mathbb{R}_{+}$with the phase space $F=\left(\Lambda \times \mathbb{R}^{3}\right)^{n}$.

Here,

$$
H_{n}=\sum_{1 \leq i \leq n} T_{i}+\sum_{1 \leq i<j \leq n} \phi\left(q_{i}-q_{j}\right), \quad T_{i}=\frac{p_{i}}{2 m},
$$

$m=1$ is the mass of a molecule, p the momentum of a molecule, $n \in N, N$ is the number of molecules, V - the volume of the system; $N \rightarrow \infty, V \rightarrow \infty, v=\frac{V}{N}=$ const is volume per molecule, [,] denotes the Poisson brackets.

Introducing the notation

$$
\begin{aligned}
(\mathcal{H} f)_{n} & =\left[H_{n}, f_{n}\right] ; \quad\left(\mathcal{D}_{x} f\right)_{n}\left(x_{1}, \cdots, x_{n}\right)=f_{n+1},\left(x_{1}, \cdots x_{n}, x\right) \\
\left(\mathcal{A}_{x} f\right)_{n} & =\frac{1}{v} \sum_{1 \leq i \leq n}\left[\phi\left(q_{i}-q\right), f_{n}\right] ; \\
f(t) & =\left\{f_{1}\left(t_{1} x_{1}\right), \cdots \cdots, f_{n}\left(t, x_{1}, \cdots, x_{n}\right), \cdots\right\}, n=1,2, \cdots
\end{aligned}
$$

we can cast Eq.(1) in the form

$$
\begin{equation*}
\frac{\partial}{\partial t} f(t)=\mathcal{H} f(t)+\int \mathcal{A}_{x} \mathcal{D}_{x} f(t) d x \tag{2}
\end{equation*}
$$

Derivation of Hierarchy of Kinetic Equations for correlation functions.

Proposition 1. The hierarchy of kinetic equations for the correlation functions has the form

$$
\begin{equation*}
\frac{\partial}{\partial t} \varphi(t)=\mathcal{H} \varphi(t)+\frac{1}{2} \mathcal{W}(\varphi(t), \varphi(t))+\int \mathcal{A}_{x} \mathcal{D}_{x} \varphi(t) d x+\int \mathcal{A}_{x \varphi}(t) \star \mathcal{D}_{x \varphi}(t) d x \tag{3}
\end{equation*}
$$

where [D.Ruelle, 1969],[M.Yu.Rasulova, 1980],[M.Yu.Rasulova, A.K.Vidibida, 1976]:

$$
\begin{equation*}
f(t)=\Gamma \varphi(t)=I+\varphi(t)+\frac{\varphi(t) \star \varphi(t)}{2!}+\cdots \frac{(\star \varphi(t))^{n}}{n!}+\cdots, \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \varphi(t)=\left\{\varphi_{1}\left(t, x_{1}\right), \cdots, \varphi\left(t, x_{1}, \cdots, x_{n}\right), \cdots\right\} ; \\
&(\varphi \star \varphi)(x)=\sum_{Y C X} \varphi(Y) \varphi(X \backslash Y) ; \quad I \star \varphi=\varphi ; \quad(\star \varphi)^{n}=\underbrace{\varphi \star \varphi \star \cdots \star \varphi} n \text { times; } \\
& X=\left(x_{1}, \cdots, x_{n}\right)=\left(x_{(n)}\right) ; \quad Y=\left(x_{n^{\prime}}\right), \quad n^{\prime} \in ; n \cdot n^{\prime}=1,2, \cdots ; \\
&\left(\mathcal{U} \varphi_{n}\right)=\left[\sum_{1 \leq i<j \leq n} \phi\left(q_{i}-q_{j}\right), \varphi_{n}\right], \mathcal{W}(\varphi, \varphi)=\sum_{Y C X} \mathcal{U}(Y ; X \backslash Y) \varphi(Y) \varphi(X \backslash Y) .
\end{aligned}
$$

Proof: To obtain (3), we substitute (4) in (2) :

$$
\begin{equation*}
\frac{\partial}{\partial t} \Gamma \varphi(t)=\mathcal{H} \Gamma \varphi(t)+\int \mathcal{A}_{x} \mathcal{D}_{x} \Gamma \varphi(t) d x . \tag{5}
\end{equation*}
$$

We have

$$
\begin{gather*}
\mathcal{D}_{x} \Gamma \varphi(t)=\mathcal{D}_{x} \varphi(t) \star \Gamma \varphi(t), \tag{6}\\
\mathcal{A}_{x} \Gamma \varphi(t)=\mathcal{A}_{x} \varphi(t) \star \Gamma \varphi(t), \tag{7}\\
\mathcal{A}_{x} \mathcal{D}_{x} \Gamma \varphi(t)=\mathcal{A}_{x} \mathcal{D}_{x} \varphi(t) \star \Gamma \varphi(t)+\mathcal{A}_{x} \varphi(t) \star \mathcal{D}_{x} \varphi(t) \star \Gamma \varphi(t), \tag{8}\\
T \Gamma \varphi(t)=T \varphi(t) \star \Gamma \varphi(t), \tag{9}\\
\mathcal{U} \Gamma \varphi(t)=\mathcal{U} \varphi(t) \star \Gamma \varphi(t)+\frac{1}{2} \mathcal{W}(\varphi(t), \varphi(t) \star \Gamma \varphi(t)), \tag{10}\\
\frac{\partial}{\partial t} \Gamma \varphi(t)=\frac{\partial}{\partial t} \varphi(t) \star \Gamma \varphi(t) . \tag{11}
\end{gather*}
$$

substituting (6) $-(11$) in (5), multiplying both sides by $\Gamma(-\varphi(t))$ we obtain (3). This proves the proposition.

To investigate our system on the basis of arguments similar to those in [1], we can choose as expansion parameter v, setting

$$
\begin{equation*}
\phi\left(q_{i}-q_{j}\right)=v \theta\left(q_{i}-q_{j}\right) \tag{12}
\end{equation*}
$$

and making substitution [N.N.Bogoluibov, 1970], [M.Yu.Rasulova, 1980], [S.Ichimary, 1968], [R.L.Liboff, G.Perona, 1967], [A.I.Akhiezer (ed.), 1974]:

$$
\begin{equation*}
\varphi_{n}(t)=v^{n-1} \psi_{n}(t) \tag{13}
\end{equation*}
$$

On the basis of (12), (13) Eq.(3) for n molecules takes the form

$$
\frac{\partial}{\partial t} \psi_{n}(t, X)=\left[\sum_{1 \leq i \leq n} T_{i}, \psi_{n}(t, X)\right]+v(\mathcal{U} \psi(t))_{n}(X)
$$

$$
\begin{gather*}
+\frac{v}{2}(\mathcal{W} \psi(t), \psi(t))_{n}(X)+v^{2} \int\left(\mathcal{A}_{x} \mathcal{D}_{x} \psi(t)\right)_{n}(X) d x \tag{14}\\
+v \int\left(\mathcal{A}_{x} \psi(t) \star \mathcal{D}_{x} \psi(t)\right)_{n}(X) d x
\end{gather*}
$$

To solve Eq.(14), we apply perturbation theory, we shall seek a solution in the form of the series

$$
\begin{equation*}
\psi_{n}(t, X)=\sum_{\mu} v^{\mu} \psi_{n}^{\mu}(t, X), n=1,2,3, \cdots, \mu=0,1,2, \cdots \tag{15}
\end{equation*}
$$

Substituting the series (15) in Eq.(14) and equating the coefficients of equal powers of v we obtain

$$
\begin{align*}
& \left(\frac{\partial}{\partial t}+\mathcal{L}_{1}\right) \psi_{1}^{\circ}(t)=0, \tag{16}\\
& \left(\frac{\partial}{\partial t}+\mathcal{L}_{1}+\mathcal{L}_{2}\right) \psi_{2}^{o}(t)=S_{2}^{\circ}, \tag{17}\\
& \left(\frac{\partial}{\partial t}+\sum_{i=1} \mathcal{L}_{i}\right) \psi_{n}^{\mu}(t)=S_{n}^{\mu}, \tag{18}
\end{align*}
$$

where we have introduced the notation

$$
\begin{gathered}
\mathcal{L}_{1} \psi_{1}^{o}(t)=v_{1} \frac{\partial}{\partial q_{1}} \psi_{1}^{o}\left(t, x_{1}\right)-\int \frac{\partial \theta\left(q_{1}-q\right)}{\partial q_{1}} \frac{\partial \psi_{1}^{o}(t, x)}{\partial p_{1}} \psi_{1}^{o}(t, x) d x \\
\mathcal{L}_{i} \psi_{n}^{\mu}(t)=V_{i} \frac{\partial}{\partial q_{1}} \psi_{n}^{\mu}(t, X)-v \int\left(\mathcal{A}_{x} \psi_{(t)}\right)\left(x_{i}\right)\left(\mathcal{D}_{x} \psi^{\mu}\right)_{n-1}\left(t, X \backslash x_{i}\right) d x
\end{gathered}
$$

and

$$
\begin{gather*}
S_{n}^{\mu}=\left(\mathcal{U} \psi^{\mu-1}(t)\right)_{n}(X)+\frac{1}{2} \sum_{\delta_{1}+\delta_{2}=\mu-1}\left(\mathcal{W}\left(\psi^{\delta_{1}}(t), \psi^{\delta_{2}}(t)\right)(X)\right. \tag{19}\\
+v \int\left(\mathcal{A}_{x} \mathcal{D}_{x} \psi^{\mu-1}(t)\right)_{n}(X) d x
\end{gather*}
$$

Thus, the solution of Eq. (14) reduces to the solution of the homogeneous (16) and inhomogenous (17), (18) Vlasov's [A.A.Vlasov, 1950] equations for $\psi_{1}^{\circ}(t)$ and $\psi_{n}^{\mu}(t)$, accordingly.

Proposition 2. The series (15), $\psi_{n}(t, X)=\sum_{\mu} v^{\mu} \psi_{n}^{\mu}(t, X)$, where ψ_{1}^{o} is defined in accordance with solution of Vlasov's equation and the remaining ψ_{n}^{μ} on the basis of the formula

$$
\begin{equation*}
\psi_{n}^{\mu}(t, X)=\int d x_{1}^{\prime} \cdots \int d x_{n}^{\prime} \int_{-\infty}^{t} d t^{\prime} S_{n}^{\mu}\left(t, x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right) \bigcap_{1 \leq i \leq n} G\left(t-t, x, x_{i}^{\prime}\right) \tag{20}
\end{equation*}
$$

is a solution of Eq. (14).

Proof: We consider Eqs. (16) and (17) where (16) is the Vlasov equation. This system of coupled equations for the single-molecule and two-molecule perturbations can serve to determine the successive approximations $\psi_{n}^{\mu}(t) . \psi_{1}^{o}(t, X)$ is the solution of Vlasov's equation.

Substituting [M.Yu.Rasulova, 1980],[S.Ichimary, 1968]

$$
\begin{gather*}
\psi_{2}^{o}\left(t, x_{1}, x_{2}\right)=\int d x_{1}^{\prime} \int d x_{2}^{\prime} \int_{-\infty}^{t} d t^{\prime} S_{2}^{o}\left(t^{\prime} ; x_{1}^{\prime}, x_{2}^{\prime}\right) . \tag{21}\\
G\left(t-t^{\prime} ; x_{1}, x_{1}^{\prime}\right) G\left(t-t^{\prime} ; x_{2}, x_{2}^{\prime}\right)
\end{gather*}
$$

in (17), we see that (21) is a solution of (17) if

$$
\begin{aligned}
& S_{2}^{\circ}\left(t, x_{1}, x_{2}\right)=\left[\theta\left(q_{1}-q_{2}\right), \psi_{1}^{o}\left(t ; x_{1}\right) \psi_{1}^{o}\left(t, x_{2}\right)\right] \\
& \quad+\int_{1 \leq i \leq 2}\left[\theta\left(q_{i}-q\right), \psi_{1}^{o}\left(t ; x_{1}\right) \psi_{1}^{\circ}(t ; x)\right] d x
\end{aligned}
$$

and if G satisfies equation

$$
\begin{gather*}
\left(\frac{\partial}{\partial t}+v_{1} \frac{\partial}{\partial q_{1}}\right) G\left(t \cdot t_{o} ; x_{1}, x_{1}^{\prime}\right)-\frac{\partial \psi\left(t, x_{1}\right.}{\partial v_{1}} . \tag{22}\\
\int \frac{\partial \theta\left(q_{1}-q\right)}{\partial q_{1}} G\left(t-t^{\prime} ; x, x_{1}^{\prime}\right) d x- \\
\int \frac{\partial \theta\left(q_{1}-q\right)}{\partial q_{1}} \partial \frac{G\left(t-t^{\prime} ; x_{1}, x_{1}^{\prime}\right)}{\partial v_{1}} \psi(t, x) d x=0
\end{gather*}
$$

with the initial condition

$$
\begin{equation*}
G\left(0 ; x_{1}, x_{1}^{\prime}\right)=\delta\left(x_{1}-x_{1}^{\prime}\right) \tag{23}
\end{equation*}
$$

The recursive system of Eq. (18) can, with allowance for the established structure of the solutions, serve to determine the successive approximations $\psi_{n}^{\mu}(t)$ and, therefore, formula (15). Indeed substituting again (20) directly in (18), we can see that (20) is a solution of (18) if S_{n}^{μ} is defined in accordance with (19) and if G satisfies Eq. (22) with the initial condition (23).
[H.Neunzert, 1978], [K.Steiner, 1995], [H.Neunzert and A.H.Siddiqi, 1997] by the particle method have proved the existence of unique solution of Vlasov equation

$$
\begin{gather*}
\partial_{t} \psi_{1}^{o}\left(t_{1} x_{1}\right)=-V_{1} \nabla_{x} \psi_{1}^{o}\left(t_{1} x_{1}\right)+\frac{e_{s}}{m_{s}} \nabla_{x} \mathcal{A}^{k-1} \nabla_{V_{1}} \psi_{1}^{o}\left(t_{1}, x_{1}\right), \psi_{1}^{o}\left(T_{k}\right)=f_{1}^{k-1}\left(T_{k}\right) \tag{24}\\
-\triangle_{x} U^{k}=\frac{1}{\epsilon_{o}} \sum_{s} \int_{\Gamma_{s}} e_{1} f_{1}^{k} d S \quad T=T_{k} \tag{25}
\end{gather*}
$$

where $T_{k}=\frac{k}{n} T, k=1, \cdots, n, n \in \mathbb{N}$ of size $\frac{1}{n} T, \boldsymbol{U}^{0}$ is solution (25) with $f^{\circ}(o, P)=$ $f^{\circ}(P) ; \theta\left(\left|q_{i}-q_{j}\right|\right)$ is Coulomb potential; \boldsymbol{U}-potential by $E=-\nabla \boldsymbol{U}$ satisfies Poisson's equation. Inkn:Neinzert2, kn:Steiner it is shown that $\psi_{1}^{\circ}\left(t, x_{1}, v_{1}\right)=\left(\psi^{\circ} \Phi_{o, t}\right)\left(x_{1}, v_{1}\right)$ is solution of the Vlasov equation. Here we assume that E is Lipschitz continuous, $\Phi_{t, \tau}: F \rightarrow F$ is a measure preserving group homomorphism [H.Neunzert, 1978] and ψ° is continuous initial conditions.
A Numerical Scheme for the Vlasov equation is as follows [K.Steiner, 1995]:

For every time step $t_{k}=k \triangle t, k=0,1, \cdots$

$$
\begin{aligned}
& v_{i}^{N}\left(t_{k+1}\right)=v_{i}^{N}\left(t_{k}\right)+\triangle t E\left(q_{i}^{N}\left(t_{k}\right)\right) \\
& q_{i}^{N}\left(t_{k+1}\right)=q_{i}^{N}\left(t_{k}\right)+\triangle t v_{i}^{N}\left(t_{k+1}\right) \\
& \alpha_{i}^{N}\left(t_{k+1}\right)=\alpha_{i}^{N}\left(t_{k}\right) .
\end{aligned}
$$

Solution (20) of two equations (16), (17) of hierarchy are in good agreement with results of [S.Ichimary, 1968] for plasma physics and this method is opening possibilities to calculate the solutions of the next complex kinetic equations of BBGKY hierarchy.

Acknowledgements

M.Yu. Rasulova would like to thank the Abdus Salam International Centre for Theoretical Physics, Trieste, for hospitality. The first author would like to thank the 3rd World Academy, Trieste, Italy and the Department of Mathematics of Aligarh Muslim University, Aligarh, India for providing financial support to carry out part of this work at AMU, Aligarh.

References

[N.N.Bogoluibov, 1970] Selected Papers. Vol.2. Kiev, Naukova Dumka, 1970.
[A.A.Vlasov, 1950] Many-particle Theory. Moscow, GTUZ, 1950.
[D.Ruelle, 1969] Statistical Mechanics, New York 1969.
[M.Yu.Rasulova, 1980] Theoreticheskaya i Mathematicheskaya Physika, Moscow, V.42, N.1. P.124-132, 1980.
[M.Yu.Rasulova, A.K.Vidibida, 1976] Kinetic Equations for distribition functions and Density Matrices, Preprint ITP-27P. Kiev, 1976.
[S.Ichimary, 1968] Phys. Rev., 1, P.1974. 1968.
[R.L.Liboff, G.Perona, 1967] J.Math.Phys., 8, P.2001. 1967.
[A.I.Akhiezer (ed.), 1974] Elecrodynamics of a Plasma. Moscow. Nauka. 1974.
[H.Neunzert, 1984] An Introduction to the Nonlinear Boltzmann-Vlasov Equation 60-110, in Cercignani C.(ed.): Kinetic Theory and the Boltzmann Equation, Springer, Berlin. 1984.
[H.Neunzert, 1978], Math. Investigations on Particle-in-Cell methods. Proc. of XIII Symp. advance. Probl. metho. Fluid mech. Fluid Dyn. 9. 1978.
[K.Steiner, 1995] Weighted particle methods solving kinetic equations for Dilute ionized gases. Preprint universitat Kaiserslautern, Bericht 95-155. November. 1995.
[H.Neunzert and A.H.Siddiqi, 1997] Industrial Mathematics - Modelling and Basics, Narosa, Springer. 1997.

[^0]: ${ }^{1}$ Permanent address

