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Abstract

Two di�erent realizations of the supersymmetric sine algebra (SSA) are given. We show

that the quantum superalgebra slq(2=1) is derived from the SSA. We discuss the relevance of

the latter result to the study of spin-1
2
Bloch electron in a constant magnetic �eld. The relation

between the deformation parameter q and the degeneracy of Landau levels is established.
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1 Introduction

For a long time all e�orts to develop the theory of symmetry in physics were restricted to the

linear case, i.e. Lie groups and Lie algebras. They are seen as symmetry algebras and groups

which describe linear physical systems. However, the extensive machinary largely developed for

the analysis of symmetries in physics breaks down in the non-linear domain.

One notices that the non-linear algebras, having received much attention in the last few

years, are the so-called quantum groups [1, 2, 3]. They are obtained by deforming the ordinary

Lie algebras and are used initially for solving the quantum Yang-Baxter equation [4, 5]. The

latter, seen mathematically as a representation of the braid group, has been applied in several

areas of physics: conformal �eld theories [6, 7], quantum inverse scattering [8], description of spin

chains [9, 10] and, more recently, intermediate statistics (anyon physics) [11] and the quantum

Hall e�ect [12; 13].

We also point out that recent progress in the theory of quantum groups has led to a relation-

ship between the concept of deformation and the degeneracy of Landau levels in the description

of a charged spinless particle with mass m moving on a two-dimensional vector space in a

constant magnetic �eld [14].

The aim of this work is two-fold. On one hand, we wish to convey to the reader our view

that the quantum superalgebra slq(2=1) is not only interesting from some mathematical points

of view, but that it also plays an important role in the spin-1
2
Bloch electron in a uniform

magnetic �eld. Indeed, the dimensions of the slq(2=1) cyclic representations will be related to

the degeneracy of Landau levels. Another essential result in this paper is a construction of the

supersymmetric sine algebra in an original mathematical way. We also show how to obtain the

quantum superalgebra slq(2=1) from the supersymmetric sine algebra.

The material in the present paper is organized as follows. In section 2, we realize, via two

di�erent ways, the supersymmetric sine algebra (SSA). In the �rst step we construct it on the

extended quantum plane [15]. This construction can be seen as a di�erential realization, since it

is based on the introduction of a consistent non-commutative geometry on the quantum super-

plane. We discuss in the same context the realization of the SSA by using the notion of non

commutative (quantum) two-torus [16]. On the other hand, we realize the SSA by considering

the k-fermion oscillators, which can be seen as statistical objects interpolating between bosons

and fermions [17].

In section 3, we show that it is possible to express the elements of the quantum superalgebra

slq(2=1) as simple combinations of the generators of the supersymmetric sine algebra (SSA). This

construction may be regarded as an extension of the results found in the works [12, 13, 14, 18],

where the authors introduced the embedding of the quantum algebra slq(2) in the sine algebra,

also called the Fletcher-Floratos-Zachos (FFZ) algebra [19].

The physical application of these mathematical results is given in section 4. We will discuss

a spin-1
2
Bloch electron in a constant uniform magnetic �eld. The relevance of the quantum

symmetry slq(2=1) superalgebra, in the study of this simplest quantum system, is exhibited.

We also show the relationship between the degeneracy of Landau levels and the deformation

parameter q.

Conclusions are presented in the �nal section.

2 Supersymmetric sine algebra (SSA)

2.1 Di�erential realization

In this section we realize the SSA starting from two di�erent ways. As already mentioned in

the �rst section, we construct it in a �rst step by considering a non-commutative di�erential
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calculus discussed in [15].

Let us start by recalling these di�erential calculi on the quantum plane. It is introduced by

considering a di�erential operator d which satis�es:

i) the nilpotency condition: d2 = 0,

ii) d satis�es the graded Leibnitz rule,

iii) the di�erential calculus is invariant under scale transformations of coordinate points.

In the work of [15], the authors found three di�erent di�erential calculi. In this paper we

consider only one of them, equivalent to the following algebraic relations:

xdx = pdxx; xdy = qdyx;

ydx = q�1dxy; ydy = rdyy;

dxdy = �qdxdy;

(1)

with q, p and r arbitrary complex numbers. The variables x and y obey the following equality

xy = qyx: (2)

It is easy to verify that the relation

xnym = qnmymxn; (3)

holds for any (n;m) 2 N2.

The de�nition of the �rst derivatives given by

Dxf(x; y) =
f(px;y)�f(x;y)

(p�1)x
;

Dyf(x; y) =
f(x;ry)�f(x;y)

(r�1)y

(4)

is consistent with the di�erential calculi introduced above. They are known in the literature as

Gauss derivatives along the directions x and y. 1
x
and 1

y
are considered, in a formal sense, as

objects decreasing the power of x and y in the analytic function f(x; y). Following the relations

(Eqs.(2) and (4)), one can prove the commutation relation

DxDy = qDyDx: (5)

Now we will extend this di�erential calculus to the supersymmetric case by adding a variable

� commuting with x and y and obeying the relations

�2 = @2� = 0; @�� = 1� �@� ;

x� = �x; x@� = @�x;

y� = �y; y@� = @�y:

(6)

The variable � is called a fermionic variable, @� is the corresponding derivative.

After this brief review concerning the di�erential calculi on the quantum superplane, we are

able to introduce the supersymmetric sine algebra (SSA) by de�ning the generators

Tm = (q�
m1m2

2 Dm1
x Dm2

y )
 1;

Sm = (q�
m1m2

2 Dm1
x Dm2

y )
 (@�� � �@�):
(7)

The symbol 
 means the tensorial product between the generators belonging to the same quan-

tum superplane described by the relations (Eqs.(1),(2),(5),(6)).

We show, by a straightforward calculation, that Tn and Sn satisfy

[Tm; Tn]� = 2isin(�
k
n�m)Tm+n;

[Tm; Sn]� = 2isin(�
k
n�m)Sm+n;

[Sm; Sn]+ = 2cos(�
k
n �m)Tm+n

(8)
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where m = (m1; m2), n = (n1; n2) are elements of Z2, n � m = n1m2 � n2m1 and k is an

integer which appears after demanding q to be a root of unity (q = e
2�i
k ). We also note that

[x; y]� = xy � yx and [x; y]+ = xy + yx in these relations.

Consequently, we have obtained, through the equalities (Eq.(8)), and via the di�erential

calculus on the quantum superplane introduced above, the supersymmetric sine algebra (SSA).

This di�erential realization is possible only when q is a root of unity.

A similar realization can be obtained on the non-commutative quantum two-torus. In fact,

the non-commutative two-torus is de�ned as an associative C�-algebra Ah which is generated

by two unitary operators U and V satisfying the relation:

UV = qV U; q = eih = e
2�i
k : (9)

By considering the correspondence

U �! Dx; V �! Dy ; (10)

the realization of the (SSA) on the quantum non-commutative two-torus becomes obvious. Now,

we describe another way to lead to the realization of the SSA.We will use the k-fermion formalism

introduced in the work of [17]. The construction is completely di�erent from the one discussed

above.

2.2 k-fermionic realization

Let us �rst introduce the k-fermionic algebra
P

q generated by an annihilation operator aq, a

creation operator a+q and a number operatorN . The elements aq, a
+
q and N satisfy the following

relations:
aqa

+
q � qa+q aq = 1;

Naq � aqN = �aq;

Na+q � a+q N = a+q

(11)

Here and in the following the complex number q is chosen to be a root of unity;

q = e
2�i
k ; (12)

where k is a �xed number in N=f0; 1g. In this case the operator N is taken to be hermitian. We

note that, owing to relations (Eq.(11)) with q being a root of unity, the operator aq (respectively

a+q ) is not (except for k = 2 and k �! 1) the adjoint of a+q (respectively aq).

From the relation (Eq.(11)), we obtain

aq(a
+
q )

l = [l]q(a
+
q )

l�1 + ql(a+q )
laq;

(aq)
la+q = [l]q(aq)

l�1 + qla+q (aq)
l;

(13)

where the symbol [ ]q is de�ned by [x]q =
1�qx

1�q and l = 1; 2; :::; k � 1. In the particular case

l = k, (Eq.(13)) can be put into the form

aq(a
+
q )

k = (a+q )
kaq;

(aq)
ka+q = a+q (aq)

k:
(14)

In addition, one can �nd
N(a+q )

l = (a+q )
l(N + l);

(aq)
lN = (N + l)(aq)

l:
(15)

We remark that the relations (Eqs.(13),(14)) become trivial if we assume

(a+q )
k = (aq)

k = 0: (16)
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In this section, we shall deal with a representation of the algebra
P

q such that (Eq.(16)) is

satis�ed. We note that the algebra
P
�1 obtained for k = 2, corresponds to ordinary fermion

operators with (a+
�1)

2 = (a�1)
2 = 0 which is nothing but the relation that reects the Pauli

exclusion principle. The algebra
P

q(q = e
2�i
k ) corresponds to quon operators (or k-fermion

operators) aq and a+q interpolating between fermion and boson operators.

We continue with the situation where the constraints (Eq.(16)) hold. In this situation, we

easily obtain the k-dimensional representation of
P

q [20, 21] de�ned through

aqjn >= ([n]q)
1
2 jn� 1 >; aqj0 >= 0;

a+q jn >= ([n+ 1
2
]q)

1
2 jn+ 1 >; a+q jk � 1 >= 0;

N jn >= njn > :

(17)

where n = 0; 1; :::; k�1. This representation is built on a �nite-dimensional (Fock) unitary space

F = fjn >;n = 0; 1; :::; k� 1g of dimension k. The space F is of dimension 2 for the fermionic

algebra
P
�1 and in�nite-dimensional for the bosonic algebra

P
+1.

We now introduce two operators U and V de�ned in terms of the generators of the algebraP
q,

U = aqa
+
q � a+q aq;

V = aq +
(a+q )

k�1

[k�1]q!
:

(18)

An elementary calculation leads to

UV = q�1V U: (19)

The latter can be iterated to produce

UnVm = q�nmV mUn; (n;m) 2 N2: (20)

Let us de�ne the operators

Kn = K(n1;n2) = (q�
n1n2
2 Un1V n2)
 1;

Fn = F(n1;n2)
= (q�

n1n2
2 Un1V n2)
 (a�a

+
�
� a+

�
a�);

(21)

with 1 the k � k identity matrix, a� and a+
�
are respectively aq=�1 and aq=�1 (k = 2).

The operators Kn and Fn satisfy the following commutation relations

[Km; Kn]� = 2isin(�
k
n�m)Km+n;

[Km; Fn]� = 2isin(�
k
n�m)Fm+n;

[Fm; Fn]+ = 2cos(�
k
n �m)Fm+n:

(22)

As a conclusion, the generatorsKn and Fn can be viewed as the generators of the supersymmetric

sine algebra (SSA).

We recapitulate the main results obtained in this section. We realize the SSA in two di�erent

ways. In the �rst one we used the di�erential calculi on the supersymmetric quantum plane. This

construction may be regarded as a geometric one, while in the second way we have considered

one k-fermion and one fermion (Eq.(23)).

To close this section, we recall that the quantum algebra slq(2) has been obtained from sine

algebra (FFZ) [12, 13, 14, 17, 18]. So, it is natural to think about some quantum enveloping

superalgebra which can be derived from the (SSA). This idea will be treated in the following

section.
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3 The embedding of slq(2=1) in the SSA

This section is devoted to the construction of the quantum superalgebra slq(2=1) from the

supersymmetric sine algebra (SSA). The slq(2=1) generators are obtained as linear combinations

of those generating the SSA.

Before starting, we recall that the deformed superalgebra slq(2=1) is generated by the set of

generators fei; fi; hi; i = 1; 2g satisfying the following commutation relations [22]

qh1qh2 = qh2qh1 ;

qhiejq
�hi = qaijej ;

qhifjq
�hi = q�aijfj ;

e1f1 � f1e1 =
q2h1�q�2h1

q�q�1
;

e2f2 + f2e2 =
q2h2�q�2h2

q�q�1
;

e1f2 � f2e1 = 0;

e2f1 � f1e2 = 0;

e21e2 � (q + q�1)e1e2e1 + e2e
2
1 = 0;

f21 f2 � (q + q�1)f1f2f1 + f2f
2
1 = 0;

e22 = 0 = f22 ;

(23)

where the Cartan matrix (aij) is given by

(aij) =

�
2 �1

�1 0

�
: (24)

To obtain the slq(2=1) superalgebra from the (SSA), we consider the generators

Ln = L(n1;n2) = T(n1;n2) 
 1;

Mn =M(n1;n2) = T(n1;n2) 
 (@�� � �@�);
(25)

where � and @� are the Grassmann variable and its derivative, respectively. For convenience, we

de�ne the product between Tm and Tn as follows

TmTn = q�
m�n
4 Tm+n (26)

where q is a root of unity (i.e. q = e
2�i
k ).

By a direct computation, one can show that the generators Lm and Mm generate the SSA.

From the latter, we de�ne the operators

e1 =
T(1;1)+T(�1;1)

q�q�1

 1;

f1 = �i
T(1;�1)�T(�1;�1)

q�q�1

 1;

qh1 = �iT(�4;0) 
 1;

q�h1 = iT(4;0)
 1;

qh2 = �iT(�4;0) 


�
q
�1
4 0

0 q
1
4

�
;

q�h2 = iT(4;0)


 
q
1
4 0

0 q
�1
4

!
;

e2 =
T(1;�1)�T(�1;�1)

(q�q�1)
1
2


 @� ;

f2 =
T(�1;1)+T(1;1)

(q�q�1)
1
2


 �;

(27)

which satisfy equations (23) de�ning the quantum superalgebra slq(2=1). Consequently, we have

presented the general construction of the quantum superalgebra from the supersymmetric sine

algebra. This is one of the main results of this paper.
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We point out that the construction of the quantum superalgebra slq(2=1) from the SSA is

not only interesting from a mathematical point of view, but it also has an interesting physi-

cal application. Indeed, we will show, in what follows, that slq(2=1) is related (through the

deformation parameter q) with the spin-1
2
Bloch electron in a constant uniform magnetic �eld.

4 Physical application

In this section, we show that the supersymmetric sine algebra and thus the quantum superalgebra

slq(2=1) lead to the study of the degeneracy for a physical system describing an electron moving

in a constant magnetic �eld. In what follows we will investigate the connection between the

deformation parameter q and the degeneracy. To clarify all these statements, let us introduce

the Hamiltonian corresponding to a spin-1
2 Bloch electron moving in the (ex; ey)-plane under

the inuence of a constant uniform magnetic �eld B = Bez (ez is normal unit vector to plane).

This Hamiltonian is

H =
1

2m
(�2

x + �2
y) +

1

2
�h!�z; (28)

where �z is the Pauli spin matrix and ! = eB
mc

. The problem under consideration is super-

symmetric [23] and the eigenfunctions of the Hamiltonian are labelled, in addition to the usual

bosonic quantum numbers (n;m)B, by a fermionic quantum number nF = 0; 1. The latter

introduces a two-fold degeneracy of each excited state.

In equation (28), the canonical momenta are de�ned by:

�x = px �
e
c
Ax;

�y = py �
e
c
Ay ;

(29)

where A = (Ax; Ay) is the potential vector and can be given by

Ax = �B
2
y + @x�;

Ay =
B
2
x+ @y�;

(30)

� is an arbitrary scalar function determining the gauge we are working in. For simplicity, we

choose � = 1
2
Bxy.

As in the case of spinless electron, we de�ne the magnetic translation operators as follows:

Tm = T(m1;m2) = e
i
�h
Rm:K; (31)

where Rm = m1a1 +m2a2 is an arbitrary two-dimensional vector, m = (m1; m2) 2 Z
2, a1 and

a2 are respectively two given vectors in directions ex and ey . The operator K is given by

Kx = �x �m!y;

Ky = �y +m!x:
(32)

The components Kx and Ky of K satisfy the following commutation relation

[Kx; Ky] = i�h!m: (33)

Using the Baker-Campbell-Hausdor� formula, one gets the relation

TmTn = q�
m�n
4 Tm+n; (34)

where q = e
2�i
k and k = � hc

2eB�1�2
. The scalars �1 and �2 are de�ned by

a1 = �1ex; a2 = �2ey: (35)

7



Now, we will display the relationship between the above magnetic translation operators Tm
and the generators of the supersymmetric sine algebra. Let us introduce the operators

T+
m = Tm 
 1;

T�m = Tm 
 (���+ � �+��);
(36)

where the matrices �+; �� and �z are given by

�+ =

�
0 0

1 0

�
; �� =

�
0 1

0 0

�
; �z =

�
1 0

0 �1

�
: (37)

The generators T+
m and T�n satisfy

[T+
m ; T

+
n ]� = 2isin( �

2k
n �m)T+

m+n;

[T+
m ; T

�

n ]� = 2isin( �
2k
n �m)T�m+n;

[T�m ; T
�

n ]+ = 2cos( �
2k
n �m)T�m+n:

(38)

One notices that in the limit q �! 1 we recover the supersymmetric extension of the area-

preserving di�eomorphisms algebra on the two dimensional surface. As before (section 3, equa-

tion (27)), we can realize the quantum superalgebra slq(2=1) from the SSA. This result shows

the relevance of slq(2=1) in the system under consideration. More precisely, the degeneracy of

Landau levels is related to the dimension of the cyclic representation of slq(2=1). Indeed, follow-

ing the work of [24], it has been proved that the representation of this quantum superalgebra

has several exotic properties for q, a root of unity. The representation in this case is called a

cyclic representation, and it has been demonstrated that the dimension of the representation

space equals 2k. Using this result and de�ning the basis vectors by the ket jn;m; nF >, where

n = 0; 1; :::;1 denote the energy Landau levels, m is a new quantum number labelling the dif-

ferent quantum states for a �xed n and nF is related to the spin state (nF = 0; 1). The action

of the slq(2=1) generators on the states jn;m; nF > is given by:

qh1 jn;m; nF >= �21q
�2(nF+2m)jn;m; nF >

qh2 jn;m; nF >= �22q
2(nF+m)jn;m; nF >; (m = 0; 1; :::; k� 1)

f1jn;m; nF >= 'qnF jn;m+ 1; nF >; (m 6= k � 1)

f1jn; k� 1; nF >= 'qnF jn; 0; nF >

e1jn;m; nF >= '�1q�nF (m+ �2)(�1 + �2 �m+ 1� nF )jn;m� 1; nF >

(m 6= 0)

e1jn; 0; nF >= '�1q�nF (�2)(�1 + �2 � 1� nF )jn; k� 1; nF >

f2jn;m; nF >= (1� nF )q
m�1(m+ �2)jn;m� 1; nF + 1 >

(k 6= 0)

f2jn; 0; nF >= (1� nF )�2q
�1(�2)jn; k� 1; nF + 1 >

e2jn;m; nF >= nF�
�1
2 q�mjn;m+ 1; nF � 1 >

(k 6= l � 1)

e2jn; 0; nF >= nF�
�1
2 qjn; k� 1; nF >

(39)

where �1; �2; �1; �2 and ' are complex constants determined by the cyclic properties of the rep-

resentation.

The dimension of the cyclic representation fjn;m; nF >; m = 0; 1; :::; k�1; nF = 0; 1g is 2k

which coincides, suprisingly enough, with the degeneracy of the Landau levels. This constitutes

an important physical application of the mathematical results obtained in this work. Finally, we

note that in the classical limit q �! 1 (k �! 1), the system exhibits a continuous degeneracy,

which is a well known result.
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5 Conclusion

The main result of this work is of a mathematical nature, dealing with the realization of the

supersymmetric sine algebra. As in the construction of all symmetry algebras in the study

of physical systems, one proceeds, in general, through a di�erential calculus or an oscillator

realization. For linear systems, these two methods as well as, sometimes, the correspondence

between, are well understood. However, to establish this correspondence in the context of

quantum algebras is much more di�cult. This di�culty is related to the fact that one can �nd

many di�erent di�erential calculi to realize the same algebra. The reason is that the unicity of

all the introduced di�erential calculi remains an open question in the literature. One can think

of the same problem in terms of q-oscillator algebras.

Therefore, in this work we have constructed the supersymmetric sine algebra following two

di�erent ways. The �rst one has been based on a specifc non-commutative di�erential calculus

and the second one involves the k-fermion oscillator. But also establishing the correspondence

between the two remains for us an open question that will be treated in a future work. An-

other important result of this paper is the realization of the slq(2=1) superalgebra from the

supersymmetric sine algebra. This result generalizes one well known in the context of (in)�nite

dimensional Lie algebras. Indeed, it has been shown in several works that slq(2) can be derived

from the sine algebra.

Finally, we deal with all these tools to treat one of the simplest two-dimensional quantum

mechanics systems. We have proved, in fact, that the deformation parameter q of the super-

algebra slq(2=1) may be related to the degeneracy of Landau levels; the degree of degeneracy

of Landau levels is 2k which is nothing but the dimension of the cyclic representation space of

slq(2=1).
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