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Abstract

This is a survey of recent results on the Castelnuovo-Mumford regularity and a-

invariant of graded rings.
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Preliminaries

Let S = �n�0Sn be a �nitely generated graded standard algebra over a local ring S0.

For convenience we assume that the residue �eld of S0 is in�nite.

Let Q � S be any graded ideal. We will denote by Hi
Q(S) the i-th local cohomology

module of S with respect to Q. Put

aiQ = supfnj Hi
Q(S)n 6= 0g:

Let S+ := �n>0Sn. If Q � S+, H
i
Q(S)n = 0 for all n large enough, hence aiQ <1.

De�nition. [EG] [O1] The number

reg(S) := maxfaiS+ � ij i � 0g

is called the Castelnuovo-Mumford regularity of S.

Remark. Let m denote the maximal ideal of S0. The number

`(S+) := dim�n�0Sn=mSn

is called the analytic spread of S+. It is well known that Hi
S+
(S) = 0 for i > `(S+).

The Castelnuovo-Mumford regularity carries a lot of information on the presentation

of S. Let S = S0[T ]=J be a presentation of S as a factor ring of a polynomial ring S0[T ].

Then we denote by reltype(S) the maximal degree of the generators of J . This number

is independent of the presentation, and we call it the relation type of S.

Proposition. [T1] reltype(S) � reg(S) + 1.

If S0 is a �eld k, this bound for reltype(S) is only a consequence of a more general

fact. Let

0! Fs ! � � � ! F1 ! k[X]! S

be a minimal free resolution of R as a k[X]-module. Let ai be the maximal degree of the

generators of Fi. Then

reg(S) = maxfai � ij i = 1; : : : ; sg:

This fact has often been used as the de�nition for reg(S) when S0 is a �eld.

Let M denote the maximal graded ideal of S and d = dimS. It is well known that

Hi
M (S) = 0 for i > d. The number

a(S) := adM

is an important invariant of S [GW]. For instance, if S has a canonical module K, then

a(S) = minfnj Kn 6= 0g:

In order to estimate a(S) we have studied in [T2] the number

a�(S) := maxfaiM j i � 0g:
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Recently, Hyry [Hy] has shown that

a�(S) = maxfaiS+ j i � 0g:

This invariant has its own interest as shown by the following fact.

Remark. Let S0 be of �nite length. Let HS(n) := length(Sn) be the Hilbert function of

S. Then there is a polynomial PS(n) such that HS (n) = PS(n) for all n large enough.

The number

p(S) := minftj HS(n) = PS(n) for n � tg

is called the postulation number (or Hilbert regularity) of S. By a result of Serre we know

that

p(S) � a�(S) + 1:

As local cohomology modules are complicated objects, we want to �nd e�ective char-

acterizations for reg(S) and a�(S).

2. reg(S) and a�(S) via filter-regular sequences

We start with some observations on an arbitrary sequence z := z1; : : : ; zv of homoge-

neous elements of degree 1 in S. Put

Qi := (z1; : : : ; zi):

De�nition. [T1] The sequence z is called a �lter-regular (with respect to S+) if zi 62 P

for all associated primes P of Qi�1, P 6� S+, i = 1; : : : ; v.

For any graded S-module E we set

�(E) := inffnj En 6= 0g:

Theorem. [T3] [T4] Let z be a �lter-regular sequence. Then

maxfaiS+ + ij i = 0; : : : ; vg = maxf�(Qi : S+=S+)j i = 0; : : : ; vg;

maxfaiS+ j i = 0; : : : ; vg = maxf�(Qi : S+=Qi) � ij i = 0; : : : ; vg:

It is surprising that the above formulas do not depend on the choice of the sequence

z. Moreover, we have

�(Qi : S+=Qi) = �(Qi : zi+1=Qi); i = 0; : : : ; v � 1:

Thus, it makes sense to introduce the following invariants:

a(z) := minf�(Qi�1 : zi=Qi�1)j i = 1; : : : ; vg;

s(z) := minf�(Qi�1 : zi=Qi�1)� i+ 1j i = 1; : : : ; vg:

They are called the regularity resp. sliding regularity of the sequence z [AHT]. It is not

hard to see that a(z) <1 or s(z) <1 if and only if z is a �lter-regular sequence.
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Let Q be a reduction of S+, i.e. a graded ideal in S+ with Sn = Qn for n large enough.

The number

rQ(S+) := minfnj Sn+1 = Qn+1g

is called the reduction number of S+ with respect to Q.

We will consider only the case when Q is generated by a sequence z = z1; : : : ; zv of

homogeneous elements of degree 1. Since the residue �eld of S0 is in�nite, we may always

choose (and therefore assume) z to be a �lter-regular sequence.

It is easy to check that

�(Qv : S+=Qv) = rQ(S+):

Since v � `(S+), the above theorem yields the following result:

Theorem. [T3] [T4] Let Q and z be as above. Then

reg(S) = maxfa(z); rQ(S+);

a�(S) = maxfs(z); rQ(S+) � vg:

Note that these formulas are independent of the choice of z and Q. If Q is a minimal

reduction of S+, the formula for a
�(S) was also found by Herrmann et al [HHK]. From

the above formulas we can deduce that

reg(S) � 0;

a�(S) � � grade(S+):

Moreover, there is the following relationship between reg(S) and a�(S):

Corollary. a�(S) + grade(S+) � reg(S) � a�(S) + `(S+).

3. Applications to the associated graded ring

Let A be a local ring with in�nite residue �eld and I an ideal of A. Let

G := �n�0I
n=In+1

denote the associated graded ring of I. We will apply the above results to compute

reg(G) and a�(G) by means of elements of I.

Our starting point is a reduction J of I, i.e. an ideal J � I such that there is an

integer n for which

In+1 = JIn:

The least number n with this property is called the reduction number of I with respect

to J , and we will denote it by rJ (I).

Let x1; : : : ; xv be a generating set of J . Let zi be the image of xi in I=I2. Since the

residue �eld of A is in�nite, we may always choose (and therefore assume) that z1; : : : ; zv
is a �lter-regular sequence of G. Put

Ji = (x1; : : : ; xi):
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Theorem. [T3] reg(G) is the least number r � rJ (I) such that

(Ji�1 : xi) \ I
r+1 = Ji�1I

r; i = 1; : : : ; v:

The above characterization of reg(G) is independent of the choice of J . In particular,

the case J = I yields the following interesting result.

Corollary. reg(G) = r if and only if I is generated by a sequence x1; : : : ; xv such that

(Ji�1 : xi) \ I
r+1 = Ji�1I

r; i = 1; : : : ; v:

For r = 0 the above formula is one of the de�ning conditions for x1; : : : ; xv to be a

d-sequence [Hu2].

Corollary. reg(G) = 0 if and only if I is generated by a d-sequence.

Remark. Let R := �n�0I
ntn denote the Rees algebra of I. Ooishi [O2] has proven that

we always have

reg(R) = reg(G):

One of the most important properties of an ideal generated by a d-sequence is that it is

of linear type, i.e. reltype(R) = 1 [Hu1], [V]. Since reltype(R) � reg(R) + 1, this is only

a consequence of the fact reg(R) = 0. Thus, the above corollary clearly sets apart ideals

of linear type from those generated by d-sequences.

There is a similar characterization for a�(G) in terms of any reduction J of I.

Theorem. [T4] a�(G) is the least number s � rJ (I) � v such that

(Ji�1 : xi) \ I
s+i = Ji�1I

s+i�1; i = 1; : : : ; v:

Corollary. If I is generated by a d-sequence, then

a�(G) = � grade(I):

Example. (1) I is a generic codimension 2 Cohen-Macaulay ideal: a(G) = �2.

(2) I is a generic codimension 3 Gorenstein ideal: a(G) = �3.

We conclude this survey with a less trivial application to the class of analytic deviation

1 ideals recently studied by Huckaba and Huneke [HH].

Corollary. Let A be a regular local ring. Let I be a prime ideal with ht(I) � 1, ad(I) = 1.

Assume that IP is a complete intersection for all primes P � I with ht(P=I) = 1. Then

reg(G) � 1 and a�(G) = �ht(I).
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