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Abstract

The method to be described here is an extension to the Dantzig-Wolfe method for convex QP

problems. Our method can successfully locate a KT point for a general QP problem. It even

solves concave QP problems without any additional e�ort. The main di�erence from the Dantzig-

Wolfe method is that it allows for the decreasing of the multipliers during non-complementary

iterations. The main e�ort of this work is devoted to proving results that lead to the conclusion

of successful termination with the assumption of boundedness and non-degeneracy.
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1. Introduction

The model problem to be solved is

Minimize f(x) =
1

2
xT Gx+ gTx

subject to(1.1)

ATx � b;

where G is an n � n symmetric matrix and A is n � m. The ith column of A is denoted by

ai, and carries the coe�cients of the ith constraint. The vector x is the unknown vector to be

found.

Historically, the name of quadratic programming was restricted to the speci�c problem of min-

imizing a convex quadratic function subject to linear constraints (see Wolfe[16] and Dantzig[7]).

Later on, the de�nition was extended to include the problem of �nding a local minimum of any

quadratic function subject to linear constraints (see Beale[1]).

When the function to be minimized is convex, the problem is well understood both theoret-

ically and computationally. Many active set methods have been designed. Best[2] has pointed

out that under certain assumptions various methods designed to solve convex problems are

equivalent. Fletcher[8] has shown that the active set method is equivalent to the Dantzig-Wolfe

method. In solving the general problem when the function is nonconvex some of the convex pro-

gramming solvers can be modi�ed to terminate successfully , as was done by Gill and Murray

[9]. Gill and Murray did modify , in a stable way , the active set method. Murray[13] also made

an algorithm for the inde�nite case.

There are also other classes of methods designed to solve the general problem. Among those

are the Ritter cutting plane methods (Cottle and Mylander [6]). Of more interest to us, here,

are the complementarity pivoting methods. Our method could be considered to be one of them.

This class of methods has been applied to solve convex programming problems.(See Cottle[3] ,

Cottle and Dantzig[5], and recently Cottle[4].) Complementarity pivoting methods can work for

a wider range of quadratic programming problems (even nonconex ones.) However, Hashim[10]

has shown the failure of such methods by giving an example. There are also other methods with

the same idea of pivoting. Among these is the algorithm designed by Keller[11], a method by

Van de Panne and Whinston[15], and also Lemke[12].

Our method is capable to solve concave quadratic programming. It practically searches the

solution at the vertices. (For more about concave minimization see Pardalose and Rosen [14].)

In section(3) we introduce our method and prove theorems to show its successful termination

at a KT point under the practical assumption of boundedness. Also cycling is not supposed to

happen as a result of degeneracy. In the next section we introduce and give preliminaries that

pave the way to the description of the method. The next section will end up with a general

description of the Dantzig-Wolfe method to which our method is an extension.
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2. Preliminaries

The KT conditions for (1.1) are

Gx� A�+ g = 0;

�ATx+ v + b = 0;(2.1)

v; �� 0 and �Tv = 0;

where � are the multipliers corresponding to ATx � b and v are slack variables. The condition

�Tv = 0 is known as the complementarity condition. In that case we say that the tableau is

complementary. (2.1) could be rewritten as

Mt = q;(2.2)

where

M =

�
G �A O

�AT O I

�
; t =

2
4 x

�

v

3
5 ; and q =

�
�g
�b

�
:

Now , rearrange M in the following partitioned form

M = [MB :MN ];

where MB is an (n +m)� (n +m) non-singular matrix (called the basis matrix) , and MN is

(n+m)�m. Correspondingly t and q are rearranged and partitioned to

t =

�
tB
tN

�
; and q =

�
qB
qN

�
:

The components of tB are called basic variables and those of tN are called nonbasic. The

nonbasic variables are always kept at zero. Notice that the components of x are always among

the basic variables.

The basis matrix will initially take the form

MB =

2
4 G �A1 O

�AT
1 O O

�AT
2 O I

3
5 :

(This form always appears when the tableau is complementary , i.e. when �Tv = 0.) Here A1

contains those (l say) columns of A corresponding to the (basic) Lagrange multipliers, �1 say.

A2 carrys the remaining m� l columns. The basic vector tB takes the form

tB =

2
4 x

�1
v2

3
5 ;

where v2 is the (m� l)� vector carrying the basic slack variables. Respectively we obtain the

resulting forms for MN ; tN ;qB; and qN as2
4 �A2 O

O I

O O

3
5 ;

�
�2
v1

�
;

�
�g
�b1

�
; and b2:
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We now move to give a representation of f in terms of x; � and v. This representation has

been used by Keller[11]. Pre-multiplying the �rst equation of (2.1) by 1
2
xT and the second by

1
2x�

T we get, respectively

1

2
xTGx+

1

2
xTA�+

1

2
gTx = 0

and

0:5�TATx+
1

2
�Tv+

1

2
bT� = 0:

On subtraction of the above two equations we get

f(x) =
1

2
(gTx+ bT�+ vT�)(2.3)

Before ending up this section we give a general description of the Dantzig-Wolfe method to

solve (2.1). The method is iterative. It starts with a complementary tableau with v2 � 0 ,

�2 = 0, �1 � 0, and v1 = 0. During the remaining iterations the basic slack variables are to be

kept non-negative.

Let us assume that at the kth iteration the tableau is complementary. Using superscripts for

the relevant matrices , vectors , and scalars we can write M (k) for the basis matrix , A
(k)
1 for

the partition of A corresponding to the basic multipliers �
(k)
1 , and so on. Also de�ne at the kth

iteration the set I(k)of active constraints. That is

I(k) = fi : v
(k)
i is nonbasicg:

At the kth iteration of the Dantzig-Wolfe method if �
(k)
1 � 0 then x(k) is a KT point and the

method will terminate. Otherwise, q 2 I(k) is chosen for which �
(k)
q < 0. It has been a general

agreement , although not always the best computationally, to choose q that solves

min
i2I(k)

�
(k)
i :(2.4)

In the next step the complementary variable vq is chosen to be increased. The e�ect on the

basic variables is then observed. As long as all the basic slack variables stay non-negative, vq

is increased until �q " 0. The resulting tableau is again complementary and I(k) is updated to

I(k+1) by removing q. It may be , however , that when vq is increased a basic slack variable

vp1(p1 =2 I(k)) decreases to zero. In this case an interchange takes place by removing vp1 from

the basic variables and adding vq to the basic variables. As a result I
(k) is updated by removing

q and adding p1. In the next iteration the complement of vp1 , �p1 , is then increased. If �q " 0

then complementarity is restored, and the process is repeated again as above. In general, the

process might add p1; p2; ::: ; pr to I
(k) before complementarity is restored. This will not go on

inde�nitely (assuming non-degeneracy) since r + l
(k)
1 � min(m;n).

It has been proved [7] that the values of the function keep on decreasing from iteration to

iteration when G is positive de�nite. This ensures termination if the problem is bounded.
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3. The Method

In this section we start by giving a general description of the method. The description is given

parallel to that of the Dantzig-Wolfe method, so that the slight di�erence becomes obvious. The

main di�erence occurs when proving the successful termination , since we are dealing with a

general objective function.

If the kth iteration is complementary (i.e. when the tableau is complementary) and �(k) � 0

is not satis�ed, the next iteration is the same as in the Dantzig-Wolfe method, that is , the

slack variable corresponding to the most negative Lagrange multiplier is to be increased. The

increase might be blocked by vp1 decreasing to zero before complementarity is restored. The

next iteration in our method is slightly di�erent from that of the Dantzig-Wolfe method. In

the latter �p1 is to be increased , while in ours it might be increased or decreased. The choice

between increasing or decreasing �p1 is made to ensure that the objective function f decreases.

The case when G is positive de�nite the increase of �p1 guarantees the decrease. However , in

the general case , when G is inde�nite , the increase might not decrease f . So at each iteration

a decision has to be made (based on a simple condition) on whether to increase or decrease �p1 .

Thus it is better to say "�p1 is changed" to mean either increased or decreased. Now if the

change of �p1 is blocked again by vp2 the next iteration will be to change "increase or decrease"

�p2 , and so on , until complementarity is restored. The process is thus repeated again.

Before getting into proving results that guarantee a successful termination , we show out the

shape of some basis matrices and the corresponding expression of the objective function. If at

the kth iteration the tableau is complementary, the basis matrix will have the form

M
(k)
B =

2
64 G �A

(k)
1 O

�A
(k)T

1 O O

�A
(k)T

2 O I

3
75 ;(3.1)

The general shape of the basis matrix after r successive non-complementary tableaux (l(k)+r �

min(m;n)), with suitable rearrangements, is

M
(k+r)
B =

2
666664

G �A
(k)
1 �W 0 O

�A
(k)T

1 O O eq O

�WT O O 0 O

�aTpr 0T 0T 0 0T

�A
(k+r)T

2 O O 0 I

3
777775 ;(3.2)

where W = [ap1 ; ::: ; apr�1 ] and A
(k+r))
2 is the matrix that results when removing ap1 ; ::: ; apr

from A
(k)
2 . For example when r = 1 we get

M
(k+1)
B =

2
6664

G �A
(k)
1 0 O

�A
(k)T

1 O eq O

�aTpr oT 0 0T

�A
(k+1)T

2 O 0 I

3
7775 :(3.3)
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Corresponding to (3.1) and using (2.3) the function value f (k)(� f(x(k))) will be given by

f (k) =
1

2
(gTx(k) + b

(k)T

1 �
(k)
1 ):(3.4)

When vq; q 2 I(k); is increased from zero f changes according to

f =
1

2
(gTx+ b

(k)T

1 �1 + �qvq);(3.5)

where x; �; and �q are the corresponding changes in these basic variables. In the next iteration

if �p1 is to be changed (as a result of vq being blocked by vp1), the corresponding expression of

f is given by

f =
1

2
(gTx+ b

(k)T

1 �1 + bp1�p1 + �qvq):(3.6)

If after r � 1 successive non-complementary tableaux p1; p2; ::: ; pr�1 are added to I(k) , and in

the (k + r)th iteration it is decided to change �pr (as a result of �pr�1 being blocked by vpr) ,

the function f changes according to

f =
1

2
(gTx+ b

(k)T

1 �1 + bTW�W + bpr�pr + �qvq);(3.7)

where bTw = [bp1; ::: ; bpr�1] and �TW = [�p1; ::: ; �pr�1]:

In the proof of the following results we will be using the matrices H , T , and U which are

de�ned by "
G �A

(k)
1

�A
(k)T

1 O

#�1
=

�
H �T
�TT U

�
;(3.8)

(see [8]). It is obvious that both H and U are symmetric. We now start with the following

theorem.

Theorem 3.1. Suppose �
(k)
q < 0 at the kth iteration when the tableau is complementary. Let

the choice of the next move be to increase vq. Suppose , before complementarity is restored, the

following r iterations added p1; ::: ; pr to I(k) (r + l(k) � min(n;m)). Then , in the coming

iteration , we will have the following changes , in terms �pr , in f , �q, and vq respectively

f = f (k+r) + �(�(k+r)q �pr +
1

2
��2pr);(3.9)

�q = �k+rq + ��pr ;(3.10)

vq = vk+rq + ��pr ;(3.11)

where � and � are related, respectively, to vq and �q in the (k + r)th tableau.

Before proving this theorem we have to show that the equations from (3.9) to (3.11) imply

that the function value will not increase by any change of �pr . This is shown in the following

theorem.

Theorem 3.2. The change in �pr in theorem 3.1 will not increase the function value.
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Proof: There are three cases to consider :

The �rst case is when � > 0. In this case there are two cases. We consider �rst the case

when � � 0. Since �
(k+r)
q < 0 (3.9) implies that the increase of �pr will decrease f until it is

blocked by vpr+1 (pr+1 =2 I(k+1) since from (3.11) vq increases with the increase of �pr). In the

second case when � > 0 the increase of �pr causes f to decrease until �pr reaches �
�
(k+r)
q

�
. This

is the value at which �q " 0 (from (3.10)). However , it might happen that a slack basic variable

di�erent from vq might block this increase before �pr reaches �
�
(k+r)
q

� .

The second case is when � < 0. We consider two cases here also. When � � 0 the decrease

of �pr will decrease f until it is blocked by vpr+1 , (pr+1 =2 I(k+1) for the same reason as

above). When � < 0 the decrease of �pr causes f to decrease until �pr reaches �
�
(k+r)
q

�
. As

above, this decrease will either be blocked by a basic slack variable di�erent from vq or restore

complementarity by increasing �q to zero.

The third case is when � = 0. In this case f stays �xed at f (k+r). The proof is thus complete.

Note that, the third case in the above proof leaves a question to be asked. If both � and �

are zero, what happens in the next iteration if no blockage to the change in �pr takes place.

This blockage is only guaranteed when f is decreasing. Fortunately , when � = 0 , � cannot be

zero. This will be shown later in this section. Now we return to prove theorem 3.1.

Proof of Theorem 3.1 The values of the basic variables x(k+r) , �
(k+r)
1 , �

(k+r)
W , and v

(k+r)
q

are given by

2
6664

G �A
(k)
1 �W 0

�A
(k)T

1 O O eq
�WT O O 0

�aTpr 0T 0T 0

3
7775
2
6664
x(k+r)

�
(k+r)
1

�
(k+r)
W

v
(k+r)
q

3
7775 =

2
664

�g

�b
(k)
1

�bW
�bpr

3
775 :(3.12)

Pre-multiplying (3.12) by

2
664

I O O 0

O I O 0

WT O I 0

aTpr 0T 0T 1

3
775
2
664

H �T O 0

�TT U O 0

O O I 0

0T 0T 0T 1

3
775 ;

we get

2
664

I O �HW �Teq
O I TTW Ueq
O O �WTHW �WTTeq
0T 0T �aTprHW �aTprTeq

3
775
2
6664
x(k+r

�
(k+r)
1

�
(k+r)
W

v
(k+r)
q

3
7775 =(3.13)

2
6664

�Hg + Tb
(k)
1

TTg � Ub
(k)
1

�WTHg +WTTb
(k)
1 � bW

�aTprHg + aTprTb
(k)
1 � bpr

3
7775 :
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Now , suppose �
(k+r)
W and v

(k+r)
q are obtained from�

WTHW WTTeq
aTprHW aTprTeq

�"
�
(k+r)
W

v
(k+r)
q

#
=(3.14)

"
WTHg�WTTb

(k)
1 + bW

aTprHg� aTprTb
(k)
1 + bpr

#
:

Then x(k+r) and �
(k+r)
1 can be found , in terms of �

(k+r)
W and v

(k+r)
q , by

x(k+r) = HW�
(k+r)
W + Teqv

(k+r)
q �Hg+ Tb

(k)
1 ;(3.15)

�
(k+r)
1 = �TTW�

(k+r)
W � Ueqv

(k+r)
q + TTg � Ub

(k)
1 :(3.16)

From (3.16) �
(k+r)
q is given by

�(k+r)q = �eTq T
TW�

(k+r)
W � eTq Ueqv

(k+r)
q(3.17)

+eTq T
Tg � eTq Ub

(k)
1 :

Now the change in �Pr causes these basic variables to change according to

x = x(k+r) � d(k+r)x �pr ;(3.18)

�1 = �
(k+r)
1 � d

(k+r)
� �pr ;(3.19)

�W = �
(k+r)
W � d

(k+r)
W �pr ;(3.20)

vq = v(k+r)q � d(k+r)vq
�pr ;(3.21)

and , writing d
(k+r)
�q

= eTq d
(k+r)
� , (3.19) gives

�q = �(k+r)q � d
(k+r)
�q

�pr ;(3.22)

where d
(k+r)
x , d

(k+r)
� , d

(k+r)
W , and d

(k+r)
vq are given by2

6664
G �A

(k)
1 �W 0

�A
(k)T

1 O O eq

�WT O O 0

�aTpr 0T 0T 0

3
7775
2
6664
d
(k+r)
x

d
(k+r)
�

d
(k+r)
W

d
(k+r)
vq

3
7775 =

2
664
�apr
0

0

0

3
775 :(3.23)

(3.23) can be transformed , as we did for (3.12) , to2
664

I O �HW �Teq
O I TTW Ueq
O O �WTHW �WTTeq
0T 0T �aTprHW �aTprTeq

3
775
2
6664
x(k+r

�
(k+r)
1

�
(k+r)
W

v
(k+r)
q

3
7775 =(3.24)

2
664

�Hapr
TTapr

�WTHapr
�aTprHapr

3
775 :
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Now , suppose d
(k+r)
W and d

(k+r)
vq are obtained from�

WTHW WTTeq
aTprHW aTprTeq

� "
d
(k+r)
W

d
(k+r)
vq

#
=

�
WTHapr
aTprHapr

�
:(3.25)

Then d
(k+r)
x and d

(k+r)
� are recovered , in terms of d

(k+r)
W and d

(k+r)
vq , by

d(k+r)x = HWd
(k+r)
W + Teqd

(k+r)
vq �Hapr ;(3.26)

d
(k+r)
� = �TTWd

(k+r)
W � Ueqd

(k+r)
vq + TTapr :(3.27)

Using (3.27),

d
(k+r)
�q

= �eTq T
TWd

(k+r)
W � eTq Ueqd

(k+r)
vq + eTq T

Tapr :(3.28)

Now , using equations from (3.18) to (3.22) in (3.7) , f changes with �pr according to

f = f (k+r) +
1

2
[(bpr � g

Td(k+r)x � b
(k)T

1 d
(k+r)
� � bTWd

(k+r)
W(3.29)

�v(k+r)q d
(k+r)
�q

� d(k+r)vq �(k+r)q )�pr + d
(k+r)
�q

d(k+r)vq �2pr ]:

We now move to simplify the coe�cient of �pr in the expression for f in the above equation.

Using (3.26) and (3.27) we get

gTd(k+r)x = gTHWd
(k+r)
W + gTTeqd

(k+r)
vq � gTHapr ;(3.30)

b
(k)T

1 d
(k+r)
� = �b

(k)T

1 TTWd
(k+r)
W � b

(k)T

1 Ueqd
(k+r)
vq :(3.31)

+b
(k)T

1 TTapr

From (3.12) we have bW = WTx(k+r) and bpr = aTprx
(k+r), and so , with (3.15) we get

bTWd
(k+r)
W = [WTx(k+r)]Td

(k+r)
W = x(k+r)

T

Wd
k+r)
W(3.32)

�gTHWd
(k+r)
W + b

(k)T

1 TTWd
(k+r)
W + �

(k+r)T

W WTHWd
(k+r)
W

+eTq T
TWd

(k+r)
W v(k+r)q ;

and

bpr = aTprx
(k+r) = �aTprHg + aTprTb

(k)
1(3.33)

+aTprHW�
(k+r)
W + aTprTeqv

(k+r)
q :

Using (3.28) we get

d
(k+r)
�q

v(k+r)q = eTq T
Taprv

(k+r)
q � eTq T

TWd
(k+r)
W v(k+r)q(3.34)

�eTq Ueqd
(k+r)
vq v(k+r)q :

Now combining the equations from (3.30) to (3.34) we get

bpr � gTd(k+r)x � b
(k)T

1 d
(k+r)
� � bTWd

(k+r)
W � v(k+r)q d

(k+r)
�q

=(3.35)

��
(k+r)T )
W WTHWd

(k+r)
W + aTprHW�

(k+r)
W

+eTq Ueqd
(k+r)
vq v(k+r)q � gTTeqd

(k+r)
vq + b

(k)T

1 Ueqd
(k+r)
vq
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From (3.25) we have

WTHWd
(k+r)
W +WTTeqd

(k+r)
vq = WTHapr :(3.36)

Post-multiply the transpose of (3.36) by �
(k+r)
W , and with suitable rearrangement , to get

�d
(k+r)T

W WTHW�
(k+r)
W + aTprHW�

(k+r)
W = eTq T

TW�
(k+r)
W d(k+r)vq :(3.37)

Using (3.37) in (3.35) results in

bpr � g
Td(k+r)x � b

(k)T

1 d
(k+r)
� � b

(T
W d

(k+r)
W � v(k+r)q d

(k+r)
�q

=(3.38)

�(�eTq T
TW�

(k+r)
W � eTq Ueqv

(k+r)
q + eTq T

Tg � eTq Ub
(k)
1 )d(k+r)vq

= ��(k+r)q d(k+r)vq ;

from (3.17). Finally , substituting (3.38) into (3.29) reduces it to

f = f (k+r) + (�d(k+r)vq ) (�k+rq �pr +
1

2
(�d

(k+r)
�q

) �2pr):

Letting � = �d
(k+r)
vq and � = �d

(k+r)
�q

the proof is complete.

We note that the case when r = 1 the matrix W does not appear. However , following the

same steps (see [10]) we can prove the same result. So this case is considered as a special case.

The �rst move from a complementary tableau will de�nitely reduce the function value (as-

suming non-degeneracy). This is quite clear from the fact that moving away from a constraint

corresponding to a negative Lagrange multiplier reduces f locally. It can be proved that , fol-

lowing the same steps of the proof of theorem 3.1 , f changes with vq according to the relation

f = f (k) + (�(k)q vq +
1

2
(�d

(k)
�q
)v2q)

It becomes obvious now, that the expression for f which appeared in theorem 3.1 is more

general between the non-complementary moves. So we can write �(k+r) and �(k+r) for r =

1; 2; 3; ::: in the expressions for f . We now have the following theorem.

Theorem 3.3. If �(k+r) 6= 0 and �(k+r+1) = 0 then �(k+r+1) 6= 0

Proof: The basic variable vpr+1 changes with �pr according to

vpr+1 = v(k+r)pr+1
� d(k+r)vpr+1

�pr :

When the change in �pr is blocked by vpr+1 , the value of �pr in the next iteration will be

�
(k+r+1)
pr =

v
(k+r)
pr+1

d
(k+r)
vpr+1

. This happens when dvpr+1 6= 0. We want to show that d
(k+r+1)
�q

d
(k+r)
vq =

d
(k+r)
vpr+1

. This will prove the theorem.

Using (3.26) , dvpr+1 is given by

d(k+r)vpr+1
= aTpr+1HWd

(k+r)
W + aTpr+1Teqd

(k+r)
vq � aTpr+1Hapr :(3.39)

The system corresponding to (3.25) in the (k + r + 1)th iteration is2
4 WTHW WTHapr WTTeq

aTprHW aTprHapr aTprTeq
aTpr+1HW aTpr+1Hapr aTpr+1Teq

3
5
2
64 d

(k+r+1)
W

d
(k+r+1)
�pr

d
(k+r+1)
vq

3
75 =(3.40)
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4 WTHapr+1

aTprHapr+1
aTpr+1Hapr+1

3
5 :

Thus, in a way similar to (3.27) we get, in terms of d
(k+r+1)
W , d

(k+r+1)
vq , and d

(k+r+1)
�pr

,

d
(k+r+1)
� = �TTWd

(k+r+1)
W � Ueqd

(k+r+1)
vq � TTaprd

(k+r+1)
�pr

+ TTapr+1 ;

and it is reduced to

d
(k+r+1)
� = �TTWd

(k+r+1)
W � TTaprd

(k+r+1)
�pr

+ TTapr+1 ;(3.41)

since �(k+r+1) = �d
(k+r+1)
vq = 0. Now , (3.41) gives

d
(k+r+1)
�q

= �eTq T
TWd

(k+r+1)
W � eTq T

Taprd
(k+r+1)
�pr

+ eTq T
Tapr+1 :(3.42)

Now , multiply both sides of (3.42) by d
(k+r)
vq to get

d
(k+r+1)
�q

d(k+r)vq = �eTq T
TWd

(k+r+1)
W d(k+r)vq(3.43)

�eTq T
Taprd

(k+r+1)
�pr

d(k+r)vq + eTq T
Tapr+1d

(k+r)
vq :

We move on to simplify the expression on the R.H.S. of (3.43). We have

�eTq T
TWd

(k+r+1)
W d(k+r)vq = �d

(k+r+1)T

W [ WTTeqd
(k+r)
vq ] =

�d
(k+r+1)T

W [ WTHapr �WTHWd
(k+r)
W ];

using (3.25). Rewrite the above equation as

�eTq T
TWd

(k+r+1)
W d(k+r)vq = �aTprHWd

(k+r+1)
W +(3.44)

+d
(k+r)T

W WTHWd
(k+r+1)
W :

We also have

�eTq T
Taprd

(k+r+1)
�pr

d(k+r)vq = �[aTprTeqd
(k+r)
vq ]d

(k+r+1)
�pr

= �[aTprHapr � a
T
prHWd

(k+r)
W ]d

(k+r+1)
�pr

;

using (3.25). Rewrite the above equation as

�eTq T
Taprd

(k+r+1)
�pr

d(k+r)vq = �aTprHaprd
(k+r+1)
�pr

(3.45)

+d
(k+r)T

W WTHaprd
(k+r+1)
�pr

:

Add (3.44) and (3.45) to get

�eTq T
TWd

(k+r+1)
W d(k+r)vq � eTq T

Taprd
(k+r+1)
�pr

d(k+r)vq

= �[aTprHWd
(k+r+1)
W + aTprHaprd

(k+r+1)
�pr

]

+d
(k+r)T

W [WTHWd
(k+r+1)
W +WTHaprd

(k+r+1)
�pr

]

= �aTprHapr+1 + d
(k+r)T

W WTHapr+1 ;

using (3.40) with d
(k+r+1)
vq = 0. Thus

�eTq T
TWd

(k+r+1)
W d(k+r)vq � eTq T

Taprd
(k+r+1)
�pr

d(k+r)vq(3.46)

= �aTpr+1Hapr + aTpr+1HWd
(k+r)
W :
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Now, substitute (3.46) in (3.43) to get

d
(k+r+1)
�q

d
(k+r)
vq = �aTpr+1Hapr + aTpr+1HWd

(k+r)
W

+aTpr+1Teqd
(k+r)
vq = d

(k+r)
vpr+1

(3.47)

using (3.39). Hence �(k+r+1) = �d
(k+r+1)
�q

=
d
(k+r)
vp+r

��(k+r)
6= 0 as required.

The above theorem is not applied when �(k+1) = 0. The following theorem caters for that

separately.

Theorem 3.4. Suppose that �
(k)
q < 0 at the kth iteration when the tableau is complementary.

Let the increase of vq be blocked by vp1 . In the coming iteration if �(k+1) = 0 then �(k+r) > 0

Proof: The basic slack variable vp1changes with vq according to

vp1 = v(k)p1
� d(k)vp1

vq:

Since the increase of vq is blocked by vp1 , v
(k)
q becomes

v(k)q =
v
(k)
p1

d
(k)
vp1

;

and this happens when d
(k)
vp1

> 0.

It can be shown that , by solving the systems in the kth and (k + 1)th iterations (similar to

(3.23)) ,

d(k)x = �Teq(3.48)

d
(k+1)
� = TTap1 � Ueqd

(k+1)
vq

:(3.49)

Using (3.48) d
(k)
vp1

= aTp1d
(k)
x = �aTp1Teq. Since d

(k+1)
vq = 0 (3.49) gives

d
(k+1)
�q

= eTq T
Tap1 = aTp1Teq = �d(k)vp1

:

Thus �(k+1) = �d
(k+1)
�q

= d
(k)
vp1

> 0. Hence the proof.

4. The Algorithm

As our method is a feasible-point method , we have to use a method to obtain a starting

feasible point. We are not going to get into the details of this since the literature is full of

methods of this kind (see [9]). The description of the algorithm is given in two parts. Part

1 will describe the steps to be carried out after a complementary tableau. Part 2 shows the

moves to be followed when we are at a non-complementary tableau.

Part 1 : Suppose the kth iteration is complementary. The �rst step is to �nd q 2 I(k) which

solves

min
i2I(k)

�
(k)
i :(4.1)
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If �
(k)
q � 0 , then the algorithm terminates at x(k). If not then the system

M (k)

2
64 d

(k)
x

d
(k)
�

d
(k)
v

3
75 =

2
4 0

eq
0

3
5 ;(4.2)

is solved to obtain d
(k)
x , d

(k)
� , and d

(k)
v . Then p1 is chosen to solve

min
p=2I(k)&d

(k)
vp >0

v
(k)
p

d
(k)
vp

:(4.3)

If

d
(k)
�q

< 0 and
�
(k)
q

d
(k)
�q

�
v
(k)
p1

d
(k)
vp1

;(4.4)

then the next tableau is complementary, and I(k) is updated by removing q , and also the basic

variables are updated. The next iteration is repeated as above. If (4.4) is not satis�ed then I(k)

is updated by adding p1 and removing q . The basic variables will also be updated. The next

iteration will the �rst step in Part 2.

Part 2 : In this part we assume that p1; p2; ::: ; pr were successively added to I(k) before

complementarity is restored. The next step is to solve

M (k+r)

2
6666664

d
(k+r)
x

d
(k+r)
�

d
(k+r)
W

d
(k+r)
vq

d
(k)
v

3
7777775
=

2
66664
�apr
0

0

0
0

3
77775 ;(4.5)

for d
(k+r)
x , d

(k+r)
� , d

(k+r)
W , d

(k+r)
vq , and d

(k)
v . Now de�ne � by

� =

(
1 if ( (d

(k+r)
vq < 0) or (d

(k+r)
vq = 0 and d

(k+r)
�q

< 0) )

�1 if ( (d
(k+r)
vq > 0) or (d

(k+r)
vq = 0 and d

(k+r)
�q

> 0) )

The next step will be to obtain pr+1 which solves

min
p=2I(k)

S
fqg&�d

(k+r)
vp >0

�
v
(k+r)
p

d
(k+r)
vp

:(4.6)

If

�d
(k+r)
�q

< 0 and
�
(k+r)
q

�d
(k+r)
�q

�
v
(k+r)
p1

�d
(k+r)
vp1

;(4.7)

the next tableau will be complementary and in the coming step we move to Part 1, after

updating the basic variables. Otherwise, if (4.7) is not satis�ed, the corresponding tableau will

continue to be non-complementary. Thus we continue as above after updating the basic variables

and updating I(k+r) to I(k+r+1) by adding pr+1.

We now conclude by giving a compact outline of the algorithm.

(a) Given x(1), �
(1)
1 , and v

(1)
2 , set k = 1

(b) Solve (4.1) for q.
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(c) If �
(k)
q � 0 terminate with x(k) as a solution.

Otherwise solve (4.3) for p1.

(d) If (4.4) is satis�ed remove q from I(k),

update the basic variables,

set k = k + 1 , and go to (b).

Otherwise , remove q from I(k),

update the basic variables,

set r = 1 and s = k.

(e) Set k = s + r , and add pr to I(k).

(f) Solve (4.6) for pr+1.

(g) If (4.7) is satis�ed , update the basic variables,

set k = k + 1 , and go to (b).

Otherwise , update the basic variables,

set r=r+1 , and go to (e).

Very detailed work is required to apply this algorithm. It concerns updating factors of the

matrices, such as ZTGZ, where Z is an n � (n � l(k)) matrix satisfying ZTA
(k)
1 = O. This

matrix is involved in using H , T , and U in the computation (see [8] and [9]). In [10] a practical

implementation of this algorithm is made. Fletcher in his book[8] has pointed out that com-

plementarity pivoting-like methods could be promising if e�cient and stable factorizations are

made. This was the base for this work.
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