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Abstract
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random approximation and random �xed point theorems are derived.
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1. Introduction

In 1969, Fan [3] proved a very interesting result that combined �xed point theory with the

study of proximity maps. Its normed space version [3, Theorem 2] is stated as follows:

Let K be a non-empty compact convex set in a normed space X . For any continuous map T

from K into X , there exists a point x in K such that

kx� T (x)k = d(T (x); K):

Fan's theorem has non-trivial implications in the areas of nonlinear analysis, approximation

theory, minimax theorems, and to the burgeoing �eld of the theory of games. The interest in

these problems was revived by the article of Lin [8]. Since then there has appeared a number

of interesting nonstochastic analogues of Fan's theorem (see, for example, the work of Fan [4],

Ha [5], Lin [9], Lin and Yen [12], Singh and Watson [22], etc.). Afterwards, Sehgal and Wa-

ters [20], Sehgal and Singh [19], Papageorgiou [16, 17], Lin [10, 11], Beg and Shahzad [1, 2], Tan

and Yuan [23, 24], and Shahzad [21] studied di�erent random versions of the above theorem.

Lin [10] considered a continuous condensing map de�ned on a separable closed ball in a Banach

space. Recently, Liu [13] extended Lin's result to more general 1-set-contractive random oper-

ators de�ned on a separable weakly compact closed ball in a Banach space. As applications,

he also obtained some random �xed point theorems. The aim of this paper is to give di�erent

stochastic versions of Fan's theorem and to derive, as applications, new random �xed point the-

orems for non-self maps. Instead of considering a separable weakly compact ball as in Liu [13],

we consider a separable closed ball in a Banach space and establish the validity of Fan's theorem

for 1-set contractive random operators de�ned on it.

2. Preliminaries

Throughout this paper, (
, �) denotes a measurable space with � a sigma algebra of subsets

of 
. Let S be a non-empty subset of a Banach space X . We denote by 2S the family of

all subsets of S and by C(S) the family of all non-empty closed subsets of S. A mapping

G : 
 �! 2S n f�g is called measurable if, for each open subset U of S, G�1(U) = f! 2 
 :

G(!) \ U 6= �g 2 �. A mapping � : 
 �! S is said to be a measurable selector of measurable

mapping G : 
 �! 2S n f�g if � is measurable and �(!) 2 G(!) for each ! 2 
. A mapping

T : 
� S �! X is called a random operator if, for any �xed x 2 S, the map T (:; x) : 
 �! X

is measurable. A mapping � : 
 �! S is said to be a random �xed point of a random operator

T : 
 � S �! X if �(!) = T (!; �(!)) for each ! 2 
. Let A be a non-empty bounded subset

of S, and let �(A) = inffc > 0 : A can be covered by a �nite number of sets of diameter

� cg. A mapping T : S �! X is called (1) k-set-contractive if, for each bounded subset A

of S, �(T (A)) � k�(A), where k � 0; (2) condensing if, for each bounded subset A of S with

�(A) > 0, �(T (A)) < �(A); (3) contraction if kT (x) � T (y)k � kkx � yk for each x; y 2 S,

where 0 � k < 1; (4) nonexpansive if kT (x)�T (y)k � kx� yk for each x; y 2 S; (5) generalized
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contraction if, for each x 2 S, there exists a number k(x) < 1 with kT (x)�T (y)k � k(x)kx�yk

for each y 2 S; (6) completely continuous if it maps weakly convergent sequences into strongly

convergent sequences; (7) compact if T (A) is compact whenever A � X is bounded; (8) uniformly

strictly contractive on S relative to X if the map T : X �! X has the property that, for each

x 2 X , there exists a number k(x) < 1 such that kT (x)� T (y)k � k(x)kx� yk for each y 2 S;

(9) LANE ( locally almost nonexpansive) if, for each x 2 S and � > 0, there exists a weak

neighborhood Nx of x in S (depending also on �) such that kT (u) � T (v)k � ku � vk + � for

each u; v 2 Nx.

Let S be a non-empty closed bounded subset of a Banach space X and T : S �! X a

continuous map. (a) Suppose there exists a continuous map V : S � S �! X such that

T (x) = V (x; x) for x 2 S. Then (i) T is of strictly semicontractive type if, for each x 2 S,

V (:; x) is a contraction and the map x �! V (:; x) of S into the space of continuous mappings

of S into X with the uniform metric is compact; (ii) T is of weakly semicontractive type if,

for each x 2 S, V (:; x) is a nonexpansive map of S into X and x �! V (:; x) of S into the

space of continuous mappings of S into X is compact. (b) Suppose there exists a mapping

V : X � S �! X such that T (x) = V (x; x) for x 2 S. Then T is of strongly semicontractive

type relative to X if, for each x 2 S, the mapping V (:; x) is uniformly strictly contractive on

S relative to X and V (x; :) is completely continuous from S to X , uniformly for x 2 S. We

remark that all of these mappings are 1-set-contractive. For more details of such mappings, see

Kirk [6] and Petryshyn [18].

A mapping T : S �! X is called hemicompact if each sequence fxng in S has a convergent

subsequence whenever kxn � T (xn)k �! 0 as n �! 1 . A mapping T : S �! X is said to

satisfy the condition (A) if for any sequence fxng in S and D 2 C(S) such that d(xn; D) �! 0

and kxn � T (xn)k �! 0 (equivalently xn � T (xn) �! 0) as n �! 1, there exists x0 2 D

with x0 � T (x0) = 0. It is easy to see that every continuous hemicompact map satis�es the

condition (A). We also remark that the condition (A) is always true for continuous condensing

mappings. A random operator T : 
 � S �! X is said to be continuous (1-set-contractive,

condensing, compact, generalized contraction, LANE, of semicontractive type, etc.) if the map

T (!; :) : S �! X is so for each ! 2 
.

3. Random approximations

We start with the following simple result.

Lemma 3.1. Let S be a non-empty separable closed bounded subset of a Banach space X and

T : 
�S �! S either a continuous 1-set-contractive or a continuous 1-ball-contractive random

operator for which the condition (A) holds. Then T has a random �xed point.
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Proof. De�ne a mapping G : 
 �! 2X by G(!) = fx 2 S : x = T (!; x)g. By Petryshyn[18,

Theorem 1], G(!) is non-empty for each ! 2 
. For each non-empty closed subset D of S, let

L(D) =

1\
n=1

[
x2Dn

f! 2 
 : d(x; T (!; x))<
2

n
g;

where Dn = fx 2 S : d(x;D) < 1
n
g and d(x;D) = inffd(x; y) : y 2 Dg. We claim that

G�1(D) = L(D). Indeed, it is easy to see that G�1(D) � L(D). Conversely, if ! 2 L(D), then,

for each n, there exists xn such that d(xn; D) < 1
n
and d(xn; T (!; xn)) <

2
n
. It further implies

that d(xn; D) �! 0 and d(xn; T (!; xn)) �! 0 as n �! 1. An application of the condition

(A) yields x0 � T (!; x0) = 0 for some x0 2 D. Hence ! 2 G�1(D) and so G�1(D) = L(D).

Also G�1(D) = L(D) 2 � and G is measurable. Since G has closed values, it follows from the

Kuratowski and Ryll-Nardzewski selection theorem [7] that there exists a measurable mapping

� : 
 �! S such that �(!) 2 G(!) for each ! 2 
. It is obvious that � is a random �xed point

of T .

Using the arguments analogous to those in [13] we now establish the following lemma which

plays an important role in the sequel.

Lemma 3.2. Let S be a closed ball with center at the origin and radius r in a Banach space X.

If T : S �! X is a continuous 1-set-contractive mapping satisfying the condition (A), then the

mapping H � RT : S �! S also satis�es the condition (A), where R : X �! S is de�ned by

R(x) =

�
x if kxk � r
rx
kxk

if kxk � r:

Proof. Let fxng be any sequence in S andD 2 C(S) such that d(xn; D)�! 0, kxn�H(xn)k �!

0 (that is, xn �H(xn) �! 0) as n �! 1.

If there exists a subsequence fxmg of fxng such that kT (xm)k � r for all m, then H(xm) =

T (xm). Hence there exists x0 2 D such that x0�T (x0) = 0. But x0�H(x0) = x0�R(T (x0)) =

x0 � T (x0) = 0.

If there exists an integer N such that kT (xn)k > r for n � N , then H(xn) = rT (xn)

kT (xn)k
.

Since fxng is bounded and T is 1-set-contractive, fkT (xn)kg is bounded. And so there exist

a subsequence fkT (xk)kg of fkT (xn)kg and a real number L > 0 such that kT (xn)k �! L an

k �! 1. Since kT (xk)k > r for all k, L � r. Thus xk �
r
L
T (xk) = (xk �

rT (xk)

kT (xk)k
) + ( rT (xk)

kT (xk)k
�

r
L
T (xk)) = (xk�H(xk))+( 1

kT (xk)k
�

1
L
)rT (xk) �! 0 as k �! 1. If L = r, then xk�T (xk) �! 0

as k �! 1 (in other words kxk�T (xk)k �! 0 as k �! 1). An application of the condition (A)

yields x0�T (x0) = 0 for some x0 2 D. Therefore x0�H(x0) = x0�R(T (x0)) = x0�T (x0) = 0.

If L > r, then ( r
L
)T is a r

L
-set-contractive mapping with r

L
< 1. Set yk = xk �

r
L
T (xk). Then

�(fykg) = 0. Since xk = yk +
r
L
T (xk), it follows that �(fxkg) = 0 and so there exists a

subsequence fxlg of fxkg such that xl �! x0. It further implies by the continuity of T that

x0 2 D and x0�
r
L
T (x0) = 0. Again, since kT (xl)k �! L as l �! 1, we have kT (x0)k = L > r.

Thus x0 �H(x0) = x0 �
rT (x0)

kT (x0)k
= x0 �

r
L
T (x0) = 0. Hence H satis�es the condition (A).
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Theorem 3.3. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
�S �! X a continuous 1-set-contractive random operator for which

the condition (A) holds. Then there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Proof. Let R : X �! S be a map de�ned by

R(x) =

�
x if kxk � r
rx
kxk

if kxk � r:

By Nussbaum[15, Corollary 1], R is a continuous 1-set-contractive map. De�ne F : 
�S �! S

by F (!; x) = R(T (!; x)). Then F is a 1-set-contractive random operator. By Lemma 3.2,

F (!; :) satis�es the condition (A) for each ! 2 
. Therefore, by Lemma 3.1, F has a random

�xed point � : 
 �! S. It remains to show that this measurable map � satis�es the desired

property. For any ! 2 
,

k�(!)� T (!; �(!))k= kF (!; �(!))� T (!; �(!))k

= kR(T (!; �(!)))� T (!; �(!))k

=

(
kT (!; �(!))� T (!; �(!))k if kT (!; �(!))k � r

k
rT (!;�(!))

kT (!;�(!))k
� T (!; �(!))k= kT (!; �(!))k� r if kT (!; �(!))k � r:

Thus, for any x 2 S, we obtain

k�(!)� T (!; �(!))k � kT (!; �(!))k� r

� kT (!; �(!))k� kxk � kT (!; �(!))� xk:

Hence

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Remark 3.4. As in the proof of [13, Theorem 2.1], the measurable map � : 
 �! S of Theoem

3.3 has the following properties:

For any ! 2 
, if kT (!; �(!))k � r, then �(!) 2 Sr = fx 2 X : kxk = rg and

�(!) =
rT (!; �(!))

kT (!; �(!))k
; k�(!)� T (!; �(!))k= kT (!; �(!))k� r > 0;

if kT (!; �(!))k � r, then � is the random �xed point of T .

Corollary 3.5. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
 � S �! X a continuous condensing random operator. Then there

exists a measurable map � : 
 �! S such that
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k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Proof. Since every continuous condensing map satis�es the condition (A), this corollary follows

immediately from Theorem 3.3.

Remark 3.6. Corollary 3.5 slightly generalizes Lin[10, Theorem1].

Corollary 3.7. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X, B : 
 � S �! X a random contraction, and C : 
 � S �! X a continuous

compact random operator. If T = B + C, then there exists a measurable map � : 
 �! S such

that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Proof. Since B : 
 � S �! X is a random contraction and C : 
 � S �! X is a continuous

compact random operator, T = B + C : 
 � S �! X is a continuous condensing random

operator and so satis�es the condition (A). The corollary just follows from Theorem 3.3.

Theorem 3.8. Let S be a separable closed ball with center at the origin and radius r in a

reexive Banach space X, B : 
�S �! X a uniformly strictly contractive random operator on

S relative to X, and C : 
� S �! X a continuous compact random operator. If T = B + C,

then there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Proof. It is clear that T is a 1-set-contractive random operator. We claim that T satis�es the

condition (A). Fix ! 2 
 arbitrarily. Let fxng be any sequence in S and D 2 C(S) such that

d(xn; D) �! 0 and kxn � T (!; xn)k �! 0 (that is, xn � T (!; xn) �! 0) as n �! 1. Since

fxng is bounded and C is compact, C(!; xn) �! y as n �! 1, and hence xn � B(!; xn) =

xn � T (!; xn) + C(!; xn) �! y or xn � F (!; xn) �! 0 as n �! 1, where F : 
 � S �! X

is a uniformly strictly contractive random operator given by F (!; x) = B(!; x) + y. Since X is

reexive, there exists a subsequence fxmg of fxng such that xm �! x0 weakly as m �! 1. It

follows, from Kirk [6], that fxmg is a Cauchy sequence which necessarily converges strongly to

x0. The continuity of T further implies that x0 2 D and x0 � T (!; x0) = 0. Hence T satis�es

the condition (A) and so, by Theorem 3.3, there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.
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Theorem 3.9. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X, T : 
�S �! X a random operator. Moreover, T satis�es one of the following

conditions: (i) T is of strictly semicontractive type; (ii) T is of weakly semicontractive type and

sati�es the condition (A). Then there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Proof. If T satis�es (i), then, by Petryshyn[18, Lemma 3.2] T is k-set-contractive with k < 1. To

prove the theorem, it su�ces to show that T satis�es the condition (A). Fix ! 2 
 arbitrarily.

Let fxng be any sequence in S and D 2 C(S) such that d(xn; D) �! 0 and kxn�T (!; xn)k �! 0

(equivalently xn�T (!; xn) �! 0) as n �! 1. Then, as in the proof of [18, Theorem 3.1], fxng

is precompact and so we may assume that xn �! x0 in S. It further implies that x0 2 D and

x0�T (!; x0) = 0. Hence, by Theorem 3.3, there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

If T satis�es (ii), then, by Petryshyn[18, Lemma 3.2] T is 1-set-contractive. Hence this

theorem follows from Theorem 3.3.

Corollary 3.10. Let S be a separable closed ball with center at the origin and radius r in a

reexive Banach space X and T : 
 � S �! X a continuous strongly semicontractive type

random operator relative to X. Then there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Proof. Since T is of stongly semicontractive type relative to X , it is of semicontractive type.

It follows, from Petryshyn[18, Lemma 3.2 and p.338], that T is 1-set-contractive. Moreover, T

satis�es the condition (A). Indeed, �x ! 2 
 arbitrarily. Let fxng be any sequence in S and

D 2 C(S) such that d(xn; D) �! 0 and kxn � T (!; xn)k �! 0 as n �! 1. Then, by Kirk[6,

Theorem 2], xn �! x0 in S and so x0 2 D with x0�T (!; x0) = 0. By Theorem 3.3, there exists

a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Corollary 3.11. Let S be a separable closed ball with center at the origin and radius r in

a reexive Banach space X, B : 
 � S �! X a continuous LANE random operator, and

C : 
�S �! X a completely continuous random operator. If T = B+C satis�es the condition

(A), then there exists a measurable map � : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)
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for each ! 2 
.

Proof. It follows, fromNussbaum[14], that T is 1-set-contractive. Therefore, the corollary follows

from Theorem 3.3.

Using the fact that every continuous hemicompact map satis�es the condition (A), and em-

ploying the proof of Theorem 3.3, we have the following random approximation theorem.

Theorem 3.12. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
�S �! X a continuous 1-set-contractive random operator such that

the random operator RT : 
 � S �! S is hemicompact.. Then there exists a measurable map

� : 
 �! S such that

k�(!)� T (!; �(!))k= d(T (!; �(!)); S)

for each ! 2 
.

Remark 3.13. The assumption that (I � RT (!; :))(S) is closed for each ! 2 
 in Tan and

Yuan[24, Theorem 4.1] is superuous.

4. Applications to Random Fixed Point Theory

Adopting the method of Liu[13, Theorem 3.1], we can prove the following theorems and

corollaries as applications of our random approximation theorems. We omit their proofs.

Theorem 4.1. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
�S �! X a continuous 1-set-contractive random operator for which

the condition (A) holds. Moreover, T satis�es any one of the following conditions:

1. For each ! 2 
, each x 2 Sr = fx 2 X : kxk = rg with kT (!; x)k > r, there exists y,

depending on ! and x, in IS(x) = fx+ c(z � x) : z 2 S; c > 0g such that ky � T (!; x)k <

kx� T (!; x)k.

2. T is weakly inward ( that is, for each ! 2 
, T (!; x) 2 IS(x) for x 2 Sr).

3. x 6= �T (!; x) for each ! 2 
 and x 2 Sr with kT (!; x)k > r and 0 < � < 1.

4. kx� T (!; x)k 6= kT (!; x)k� r for each ! 2 
 and x 2 Sr with kT (!; x)k> r.

5. For each ! 2 
 and x 2 Sr with kT (!; x)k > r, there exists � 2 (1;1) such that

kT (!; x)k�� r� � kT (!; x)� xk�.

6. For each ! 2 
 and x 2 Sr with kT (!; x)k > r, there exists � 2 (0; 1) such that

kT (!; x)k� � r� � kT (!; x)� xk�.

Then T has a random �xed point.

Corollary 4.2. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
� S �! X a continuous condensing random operator. Moreover, T

satis�es any one of the six conditions of Theorem 4.1. Then T has a random �xed point.
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Corollary 4.3. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X, B : 
 � S �! X a random contraction, and C : 
 � S �! X a continuous

compact random operator. If T = B +C satis�es any one of the six conditions of Theorem 4.1,

then T has a random �xed point.

Theorem 4.4. Let S be a separable closed ball with center at the origin and radius r in a

reexive Banach space X, B : 
�S �! X a uniformly strictly contractive random operator on

S relative to X, and C : 
 � S �! X a continuous compact random operator. If T = B + C

satis�es any one of the six conditions of Theorem 4.1, then T has a random �xed point

Theorem 4.5. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
� S �! X a continuous random operator of strictly semicontractive

type. Moreover, T satis�es any one of the six conditions of Theorem 4.1. Then T has a random

�xed point.

Theorem 4.6. Let S be a separable closed ball with center at the origin and radius r in a

Banach space X and T : 
� S �! X a continuous random operator of weakly semicontractive

type for which the condition (A) holds. Moreover, T satis�es any one of the six conditions of

Theorem 4.1. Then T has a random �xed point.

Corollary 4.7. Let S be a separable closed ball with center at the origin and radius r in a

reexive Banach space X and T : 
�S �! X a strongly semicontractive type random operator

relative to X. Moreover, T satis�es any one of the six conditions of Theorem 4.1. Then T has

a random �xed point.

Corollary 4.8. Let S be a separable closed ball with center at the origin and radius r in a

reexive Banach space X, B : 
 � S �! X a continuous LANE random operator, and C :


 � S �! X a completely continuous random operator. Moreover, T = B + C satis�es (i) the

condition (A) and (ii) any one of the six conditions of Theorem 4.1. Then T has a random �xed

point.

Remark 4.9. A careful reading of Theorem 3.12 and Theorem 4.8 of Tan and Yuan [24] reveals

that the condition that, for each ! 2 
, (I � RT (!; :))(S) is closed in X is redundant.
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