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Abstract

We consider the construction of explicit solutions of a hierarchy of q-deformed
equations which are (conditionally) quantum conformal invariant. We give two
types of solutions - polynomial solutions and solutions in terms of q-deformations
of the plane wave. We use two q-deformations of the plane wave as a formal
power series in the noncommutative coordinates of q-Minkowski space-time and
four-momenta. One q-plane wave was proposed earlier by the �rst named author
and B.S. Kostadinov, the other is new. The di�erence between the two is that they
are written in conjugated bases. These q-plane waves are used here for the con-
struction of solutions of the massless Dirac equation - one is used for the neutrino,
the other for the antineutrino. It is also interesting that the neutrino solutions are
deformed only through the q-pane wave, while the prefactor is classical. Thus, we
can speak of a de�nite left-right asymmetry of the quantum conformal deformation
of the neutrino-antineutrino system.
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1. Introduction

One of the purposes of quantum deformations is to provide an alternative of the reg-
ularization procedures of quantum �eld theory. Applied to Minkowski space-time
the quantum deformations approach is also an alternative to Connes' noncommuta-
tive geometry [1]. The �rst step in such an approach is to construct a noncommu-
tative quantum deformation of Minkowski space-time. There are several possible
such deformations, cf. [2], [3], [4], [5], [6], [7], [8]. We shall follow the deformation
of [5] which is di�erent from the others, the most important aspect being that it is
related to a deformation of the conformal group.

The �rst problem to tackle in a noncommutative deformed setting is to analyze
the behavior of the wave equations analogues. Thus, we start here with the study of
a hierarchy of deformed equations derived in [9] with the use of quantum conformal
symmetry. The hierarchy is parametrized by a natural number a. In fact, the
case a = 1 corresponds to the q-d'Alembert equation, while for each a > 1 there
are two couples of equations involving �elds of conjugated Lorentz representations
of dimension a. For instance, the case a = 2 corresponds to the massless Dirac
equation, one couple of equations describing the neutrino, the other couple of equa-
tions describing the antineutrino, while the case a = 3 corresponds to the Maxwell
equations.

In [9] the solution spaces were given only via their transformation properties
under Uq(sl(4)) and quantum conformal symmetry. However, no explicit solutions,
which are important for the applications, were given. This was started in [10] with
the construction of solutions of the q-d'Alembert equation. Two classes of solutions
were given: polynomial ones and a deformation of the plane wave. It is a formal
power series in the noncommutative coordinates of q-Minkowski space-time and
four-momenta. This q-plane wave has analogous properties to the classical one.
In particular, it has the properties of q-Lorentz covariance, and it satis�es the q-
d'Alembert equation on the q-Lorentz covariant momentum cone. On the other
hand, this q-plane wave is not an exponent or q-exponent, cf. [11]. Thus, it di�ers
conceptually from the classical plane wave and may serve as a regularization of the
latter. In the same sense it di�ers from the q-plane wave in the paper [12], which
is not surprising, since there is used di�erent q-Minkowski space-time (from [2], [3],
[4] and di�erent q-d'Alembert equation both based only on a (di�erent) q-Lorentz
algebra, and not on q-conformal (or Uq(sl(4))) symmetry as in our case.

In the present paper we give polynomial solutions for all equations of the hi-
erarchy. We give also another q-deformation of the usual plane wave written in
a conjugated basis with respect to the �rst q-plane wave derived in [10]. We give
solutions of the massless Dirac equation involving the two conjugated q-plane waves
- one for the neutrino, the other for the antineutrino. It is also interesting that the
neutrino solutions are deformed only through the q-pane wave, while the prefactor
is classical. Thus, we can speak of a de�nite left-right asymmetry of the quantum
conformal deformation of the neutrino-antineutrino system.
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2. Preliminaries

First we introduce new Minkowski variables:

x� � x0 � x3 ; v � x1 � ix2 ; �v � x1 + ix2 ; (1)

which, (unlike the x�), have de�nite group-theoretical interpretation as part of a
coset of the conformal group SU(2; 2) (or of SL(4) with the appropriate conjugation)
[5]. The d'Alembert equation in terms of these variables is:

u ' = (@� @+ � @v @�v) ' = 0 ; (2)

while the Minkowski length is: L = x�x+ � v�v = x20 � ~x2.

In the q-deformed case we use the noncommutative q-Minkowski space-time of
[5] which is given by the following commutation relations:

x�v = q�1vx� ; x��v = q�1�vx� ;

x+x� � x�x+ = �v�v ; �vv = v�v ; (� � q � q�1) ;
(3)

with the deformation parameter being a phase: jqj = 1. The q-Minkowski length is:

Lq = x�x+ � q�1v�v : (4)

It commutes with the q-Minkowski coordinates and has the correct classical limit
Lq=1 = L. Relations (3) are preserved by the anti-linear anti-involution ! acting
as :

!(x�) = x� ; !(v) = �v ; !(q) = �q = q�1 ; (!(�) = ��) ; (5)

from which follows also that !(Lq) = Lq .

The solution space (for q-d'Alambert) consists of formal power series in the
q-Minkowski coordinates:

' =
X

j;n;`;m2ZZ+

�jn`m 'jn`m ; 'jn`m = '̂jn`m; ~'jn`m (6a)

'̂jn`m = vj xn
�
x`+ �vm (6b)

~'jn`m = �vm x`+ xn
�
vj = !('̂jn`m) (6c)

The solution spaces (6) are representation spaces of the quantum algebra
Uq(sl(4)). The latter is de�ned, (cf. [13]), as the associative algebra over CI with
unit element 1U , 'Chevalley' generators k

�

i , X
�

i , i = 1; 2; 3, and nontrivial relations
([x]q � (qx � q�x)=�) :

kikj = kjki ; kik
�1
i = k�1i ki = 1U ; kiX

�

j = q�cijX�

j ki ; (7a)

[X+
i ;X

�

j ] = �ij
�
k2i � k�2i

�
=� ; (7b)�

X�

i

�2
X�

j � [2]qX
�

i X
�

j X
�

i + X�

j

�
X�

i

�2
= 0 ; ji� jj = 1 : (7c)
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Further we suppose that q is not a nontrivial root of unity. The action of
Uq(sl(4)) on '̂jn`m was given in [14], (cf. also [10]). Using those formulae we can
�nd also the action on ~'jn`m :

�(k1) ~'jn`m = q(j�n+`�m)=2 ~'jn`m ; (8a)

�(k3) ~'jn`m = q(�j�n+`+m)=2 ~'jn`m ; (8b)

�(X+
1 ) ~'jn`m = q�2+(�j+n+`�m)=2 [n]q ~'j+1;n�1;`m +

+ q�2+(�j+n�`+m)=2 [m]q ~'jn;`+1;m�1 ; (9a)

�(X+
3 ) ~'jn`m = � q(�j�n+`+m)=2 [j]q ~'j�1;n;`+1;m �

� q(�3j�n+3`+m)=2 [n]q ~'j;n�1;`;m+1 ; (9b)

�(X�

1 ) ~'jn`m = q1+(j�n+`�m)=2 [j]q ~'j�1;n+1;`m +

+ q1+(�j+n+`�m)=2 [`]q ~'jn;`�1;m+1 ; (10a)

�(X�

3 ) ~'jn`m = � q1+(j+3n�`�3m)=2 [`]q ~'j+1;n;`�1;m �

� q1+(j+n�`�m)=2 [m]q ~'j;n+1;`;m�1 (10b)

We have written only the action of X�

j ; kj for j = 1; 3 since we shall use only
those. (Note that the representation formulae in [14] are for general holomorphic
representations of Uq(sl(4)) characterized by three integers (r1; r2; r3), (which here
are (0;�1; 0)), and the functions depend in general on two additional variables z; �z.)

Next we need the q-d'Alembert equation:

u q ' =
X

j;n;`;m2ZZ+

�jn`m u q 'jn`m = 0 ; (11a)

u q '̂jn`m = q1+n+2m+2j+`[n]q[`]q '̂j;n�1;`�1;m �

� qn+j+`+m[j]q[m]q '̂j�1;n;`;m�1 (11b)

u q ~'jn`m = qn+`[n]q[`]q ~'j;n�1;`�1;m �

� qn+j+`+m+1[j]q[m]q ~'j�1;n;`;m�1 (11c)

(for (11b) cf. [9], [10]).

Remark: Equation (11) may be rewritten in a form closer to the q = 1 in (2) by
introducing q-di�erence operators. For this we �rst de�ne the operators:

M̂�

� ' =
X

j;n;`;m2ZZ+

�jn`m M̂�

� 'jn`m ; � = �; v; �v ; (12a)

T�� ' =
X

j;n;`;m2ZZ+

�jn`m T�� 'jn`m ; � = �; v; �v ; (12b)

and M̂�

+ , M̂�

�
, M̂�

v , M̂�

�v , resp., acts on 'jn`m by changing by �1 the value of
j; n; `;m, resp., while T�+ , T�

�
, T�v , T��v , resp., acts on 'jn`m by multiplication

by q�j ; q�n; q�`; q�m, resp. Using the above we de�ne the q-di�erence operators
as follows:

D̂� ' =
1

�
M̂�1

�

�
T� � T�1�

�
' : (13)
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Using (12) and (13) then (11b; c) may be rewritten as:�
q D̂� D̂+ Tv T�v � D̂v D̂�v

�
Tv T� T+ T�v '̂ = 0 (14a)�

D̂� D̂+ � D̂v D̂�v Tv T�v

�
T� T+ ~' = 0 (14b)

Note that the operators in (12), (13), (14) for di�erent variables commute, i.e.,
using these one is technically passing to commuting variables. Note that keeping the
normal ordering it is straightforward to interchange commuting and noncommuting
variables. }

3. q-Plane Waves

We want to q-deform the plane wave. Clearly, the most general q-deformation is:

(exp(k � x))q =

1X
s=0

1

[s]q!
fs ; (15)

where fs is a homogeneous polynomial of degree s in both sets of variables,
i.e., q-momenta (kv; k�; k+; k�v) and q-Minkowski coordinates (v; x�; x+; �v), such
that (fs)jq=1 = (k � x)s. Thus, we set f0 = 1. One may expect that fs for
s > 1 would be equal or at least proportional to (f1)

s, but the outcome would be
that this is not the case. In order to proceed systematically we have to impose the
conditions of q-Lorentz covariance and the q-d'Alembert equation.

The complexi�cation of the q-Lorentz subalgebra of the q-conformal algebra is
generated by k�j , X

�

j , j = 1; 3. Using (9a; b), (10a; b) it is easy to check that:

�(X�

j ) Lq = 0 ; =) �(X�

j ) (Lq)
s = 0 ; j = 1; 3: (16)

Since (k �x)s is a scalar as (Lq)
s, then also the q-deformations fs should be scalars,

and thus also should obey (16). In order to implement this we suppose that the
momentum components are also non-commutative obeying the same rules (3) as
the q-Minkowski coordinates, and that they commute with the coordinates. Also
the ordering of the momentum basis will be the same for the coordinates. Taking
all this into account one can see that a natural expression for fs is:

fs =
X

a;b;n 2ZZ+

�sa;b;n
(�1)s�a�b

�q(a � n+ 1) �q(b � n+ 1) �q(s� a � b + n+ 1) [n]q!
�

� ks�a�b+nv kb�n
�

ka�n+ kn�v v
n xa�n

�
xb�n+ �vs�a�b+n ;

(17)
where some factors are introduced that are obvious from the correspondence with
the case q = 1. (The expression in (17) does not involve terms that would vanish
for q = 1. Actually, one may see that such expressions would lead to noncovariant
momenta light-cone.) In order to implement q-Lorentz covariance we impose the
conditions:

�(X�

j ) fs = 0; j = 1; 3 : (18)
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For this calculation we suppose that the q-Lorentz action on the noncommutative
momenta is given by (8a; c), (9a; c), (10a; c). This was done in [10] and the following
result for � was found:

�sa;b;n = qn(s�2a�2b+2n) + a(s�a�1) + b(�s+a+b+1) �s0;0;0 ; (19)

where �
�s0;0;0

��1
=

sX
p=0

q(s�p)(p�1)+p

[p]q! [s � p]q!
: (20)

The functions fs obey the q-d'Alambert equation if the momenta are on the q-light
cone:

Lkq = k�k+ � q�1 kvk�v = 0 : (21)

We turn now to the conjugated case. The q-plane wave now is:

gexpq(k � x) =

1X
s=0

1

[s]q!
~fs

~fs =
X
a;b;n

~�sa;b;n
(�1)s�a�b

�q(a � n+ 1) �q(b � n+ 1) �q(s� a � b + n+ 1) [n]q!
�

� kn�v k
a�n
+ kb�n

�
ks�a�b+nv �vs�a�b+nxb�n+ xa�n

�
vn

(22)

For q-Lorentz covariance we impose the conditions:

�(X�

j )
~fs = 0; j = 1; 3 : (23)

We use the commutation relations for the momenta components as for as the q-
Minkowski coordinates, and that momenta commute with the coordinates. We also
have to use the twisted derivation rule [14] :

�(X�

j )  �  
0 = �(X�

j )  � �(k�1j )  0 + �(kj)  � �(X�

j )  
0 ;

 = kn�v k
a�n
+ kb�n

�
ks�a�b+nv ;  0 = �vs�a�b+nxb�n+ xa�n

�
vn :

(24)

The four conditions (23) bring eight relations between the coe�cients ~� , how-
ever only three are independent, namely, the relations:

~�sa;b;n = q2n+2a�b�2�s ~�sa�1;b;n ; (25a)

~�sa;b;n = q2n�a�2b+2+s ~�sa;b�1;n ; (25b)

~�sa;b;n = q2a+2b�4n+2�s ~�sa;b;n�1 ; (25c)

solving which we �nd the following solution:

~�sa;b;n = qn(2a+2b�2n�s) + a(a�s�1) + b(s�a�b+1) ~�s0;0;0 (26)
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i.e., for each s � 1 only one constant remains to be �xed. Next we impose the
q-d'Alembert equation:

u q
~fs = 0 ; (27)

which holds trivially for s = 0; 1. For s � 2 we substitute (17) to obtain that
(27)holds i� the momentum operators are on the q-Lorentz covariant q-light cone
(cf. (4)):

Lkq = k�k+ � q�1 kvk�v = 0 : (28)

Now it remains only to �x the coe�cient �s0;0;0. We note that for q=1 it holds:

(k � x)jk ! x = (x � x) = L ; (29)

and thus we shall impose the conditions:

( ~fs)jk ! x = (Lq)
s : (30)

A tedious calculation shows that:�
~�s0;0;0

�
�1

=

sX
p=0

q(p�s)(p�1)+p

[p]q! [s� p]q!
: (31)

Note that
�
~�s0;0;0

�
�1

jq=1 = 2s=s!, as expected.

4. Polynomial solutions for nonzero spin

As we mentioned for a 2 IN +1 there are two couples of equations involving �elds
of conjugated Lorentz representations of dimension a. One of the couples is [9]:

fqa[a� 1�Nz]qD̂vT� � D̂�D̂zg TzTvT+ '̂ = 0 (32)

fqa[a� 1�Nz]qD̂+T�T�vTv � D̂�vD̂zg TzTvT+ '̂ = 0 (33)

The solutions are polynomials in z of degree a � 1 and formal power series in the
q- Minkowski coordinates:

'̂ =
X

i;j;n;l;m2ZZ+

pijnlm zivjxn
�
xl+�v

m (34)

Substituting (34) in (32) and (33) we obtain two recurrence relations:

pi+1;j;n+1;lm = qa+n
[a � i � 1]q[j + 1]q
[i+ 1]q[n+ 1]q

pi;j+1;nlm (35)

pi+1;jnl;m+1 = qa+j+n+m
[a� i� 1]q[l+ 1]q
[i+ 1]q[m+ 1]q

pijn;l+1;m (36)

Solving (35) and (36) we obtain, respectively:

pijnlm = qi(a+n�1)�
i(i�1)

2
[a� 1]q![j + i]q![n� i]q!

[a� i� 1]q![i]q![j]q![n]q!
p0;j+i;n�i;lm (37)
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pijnlm = qi(a+j+n+m�1)
[a � 1]q![l + i]q![m� i]q!

[a� i� 1]q![i]q![l]q![m]q!
p0jn;l+i;m�i (38)

Combining (37) and (38) we obtain:

pnmdbc = qn(a+d+c+
n
2�

1
2 )+m(c+m+n) [a� 1]q![b]q![d]q![c]q!

[a� n� 1]q![n]q![m]q![d�m]q!
�

�
1

[b � n�m]q![c+ n+m]q!
p00dbc

(39)

Accordingly, the solution of (32) and (33) is given using (34) as follows (since p00dbc
are constants):

'̂dbc =

min(d;b)X
m=0

a�1X
n=0

qn(a+d+c+
n
2�

1
2 )+m(c+m+n) [a� 1]q![b]q![d]q![c]q!

[a� n� 1]q![n]q![m]q![d�m]q!
�

�
1

[b� n�m]q![c+ n+m]q!
znvmxd�m

�
xb�n�m+ �vc+n+m

(40)
Formula (40) is valid also for noncommutative coordinates. For commuting coordi-
nates it may be written in more compact form as follows:

'̂dbc = xd
�
xb+�v

c F
q
D

�
�b; 1� a;�d; c+ 1; qa+d+c�

1
2
z�v

x+
; qc

v�v

x+x�

�
(41)

where F
q
D is a q-deformation of a double hypergeometric function:

F
q
D[a; b1; b2; c; z1; z2] =

1X
n=0

1X
m=0

q
n2

2 +m2+nm(a)qn+m(b1)
q
n(b2)

q
m

(c)qn+m[n]q![m]q!
zn1 z

m
2 (42)

which for q = 1 is given by [15], (f-la 5.7.1.6). For a = 1 these solutions coincide
with the results of [10].

We pass now to the other couple of equations [9]:

([a�N�z � 1]qD̂+T�v � qaD̂vD̂�zT�) T�T�v '̂
0 = 0 (43)

([a �N�z � 1]qD̂�v � qaD̂�D̂�zT
2
v T�) T�v '̂

0 = 0 (44)

The solutions are polynomials in �z of degree a � 1 and formal power series in the
q-Minkowski coordinates:

'̂0 =
X

i;j;n;l;m2ZZ+

pijnlm vmxn
�
xl+�v

j �zi (45)

Substituting (45) in (43) and (44) we obtain two recurrence relations:

pi+1;jnl;m+1 = q�a+j�n�m
[a� i� 1]q[l + 1]q
[i+ 1]q[m+ 1]q

pijn;l+1;m (46)

9



pi+1;j;n+1;l;m = q�a�n�2m
[a � i � 1]q[j + 1]q
[i+ 1]q[n+ 1]q

pi;j+1;nlm (47)

The solution of (46) and (47) is:

pnmd0b0c0 = q�n(a+d
0+c0+n

2�
1
2 )+m(c0+m+n) [a� 1]q![b

0]q![d
0]q![c

0]q!

[a� n� 1]q![n]q![m]q![d0 �m]q!
�

�
1

[b0 � n�m]q![c0 + n+m]q!
p00d0b0c0

(48)

Accordingly, the solution of (43) and (44) is given by:

'̂0d0b0c0 =

min(d0;b0)X
m=0

a�1X
n=0

q�n(a+d
0+c0+n

2�
1
2 )+m(c0+m+n) [a� 1]q![b

0]q![d
0]q![c

0]q!

[a� n� 1]q![n]q![m]q![d0 �m]q!
�

�
1

[b0 � n�m]q![c0 + n+m]q!
vc

0+m+nxd
0
�m

�
xb

0
�n�m

+ �vm�zn =

= xd
0

�
xb

0

+�v
c0 F 0

q
D

�
�b0; 1� a;�d0; c0 + 1; q�(a+d+c�

1
2 )
z�v

x+
; qc

0 v�v

x+x�

�
(49)

where another deformation of the same double hypergeometric function as above is
used:

F 0
q
D[a

0; b01; b
0

2; c
0; z1; z2] =

1X
n=0

1X
m=0

q
�n2

2 +m2+nm(a0)qn+m(b
0
1)
q
n(b

0
2)
q
m

(c0)qn+m[n]q![m]q!
zn1 z

m
2 (50)

The �rst formula in (49) is valid also for noncommutative coordinates. For a = 1
these solutions coincide with (40), (41), and all reduce to the result of [10].

5. Solutions of the massless q-Dirac equation in terms of q-plane waves

As it was shown in [9] if a function satis�es (32) and (33) or (43) and (44) then it
satis�es also the q-d'Alambert equation. Thus, it is justi�ed to look for solutions
in terms of q-plane waves.

Here we shall restrict to the case a = 2. In this case the relevant equations
are:

fq2[1�Nz]qD̂vT� � D̂�D̂zg TzTvT+ '̂ = 0 (51)

fq2[1�Nz]qD̂+T�T�vTv � D̂�vD̂zg TzTvT+ '̂ = 0 (52)

([1 �N�z]qD̂+T�vT
�1
v � q2D̂vD̂�zT�) T�T�v '̂

0 = 0 (53)

([1�N�z]qD̂�v � q2D̂�D̂�zT
2
v ) T�v '̂

0 = 0 (54)

obtained by setting a = 2 in equations (32), (33), (43), (44). The functions '̂,
'̂0 are polynomials of �rst degree in z, �z, respectively, and can be written as:

'̂ = '̂0 + z'̂1 ; '̂0 = '̂00 + �z'̂01 (55)
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We note that the above equations are a q-deformation of the massless Dirac
equation. Indeed, for q = 1 they can be rewritten in the two-component form of
the massless Dirac equation. It is well known that the latter splits into independent
equations for the neutrino �(�) and the antineutrino �(+) :

(@x0 � (�1@x1 + �2@x2 + �3@x3)) �(�)(x) = 0 (56)

where �k are the Pauli matrices:

�1 =

�
0 1
1 0

�
; �2 =

�
0 �i

i 0

�
; �3 =

�
1 0
0 �1

�
(57)

It is easy to see that �(�) are expressed through our functions (for q = 1) as:

�(+) = 1
2

�
'̂0
�'̂1

�
; �(�) = 1

2

�
'̂01
'̂00

�
: (58)

Thus our �eld '̂ corresponds to the antineutrino, while '̂0 corresponds to the
neutrino.

We start �rst with the q-deformation of the neutrino equations (53) and (54).
We shall look for solutions in terms of the q-plane wave (17):

'̂0 =

1X
s=0

1

[s]q!
 0s (59)

where  0s are the analogues of fs , so we shall solve:

([1�N�z]qD̂+T�vT
�1
v � q2D̂vD̂�zT�) T�T�v  

0

s = 0 (60)

([1�N�z]qD̂�v � q2D̂�D̂�zT
2
v ) T�v  

0

s = 0 (61)

Furthermore we shall make the following Ansatz:

 0s = (�k+ + �k� + 
kv + �k�v + �z(�0k+ + �0k� + 
0kv + �0k�v)) fs (62)

where �; �; 
; �; �0; �0; 
0; �0 are constants to be determined. We substitute (62) in
(60) and (61) for commutative Minkowski coordinates and noncommutative mo-
menta on the q-light cone. Solving we �nd that:

� = 0; 
 = 0; �0 = 0; �0 = 0; �0 = ��; 
0 = �� (63)

Thus, the general solution of (60) and (61) is:

 0�;�s = (�k+ + �k�v � (�k� + �kv)�z) fs (64)

and so the two independent solutions are given in terms of the q-plane wave:

 0(1) = (k+ � kv�z) expq(k � x) (65a)

 0(2) = (k�v � k��z) expq(k � x) (65b)
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Let us stress that the prefactors do not depend on q, i.e., they coincide with the
classical ones (which, of course, are obtained by a much shorter calculation).

Now we pass to the antineutrino �eld:

'̂ =

1X
s=0

1

[s]q!
 s (66)

where we shall solve the q-deformed equations:

fq2[1�Nz]qD̂vT� � D̂�D̂zg TzTvT+  s = 0 (67)

fq2[1�Nz]qD̂+T�T�vTv � D̂�vD̂zg TzTvT+  s = 0 (68)

Analogously to the above we shall write:

 s = (�k+ + �k� + 
kv + �k�v + z(�0k+ + �0k� + 
0kv + �0k�v)) ~fs (69)

where ~fs is from the conjugated q-plane wave. [If we use the other basis the
prefactors will depend on s and we would not be able to express the solutions in
terms of a q-plane wave.] Now the general solution of (67) and (68) is:

 �;
s = (�k+ + 
kv � q4z(�k�v + 
k�)) ~fs (70)

and so the two independent solutions of (51) and (52) are:

~ (1) = (k+ � q4k�vz) gexpq(k � x) (71a)

~ (2) = (kv � q4k�z) gexpq(k � x) (71b)

Note that unlike the neutrino case, the antineutrino prefactors are q-deformed.
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