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Abstract

We construct induced representations of the multiparameter Hopf superalgebras
Uug(glim/n)) and Uyg(sl(m/n)). The first superalgebra we constructed earlier as the
dual of the multiparameter quantum deformation of the supergroup GL(m/n). The second
superalgebra is a Hopf subalgebra of the first for a special choice of the parameters. The
representations are labelled by m + n integer numbers, respectively m +n —1 complex
numbers, and act in the space of formal power series of (m 4+ n)(m +n — 1)/2 non-
commuting variables, of which mn are odd and the rest are even. These variables
generate a g-deformation of a flag supermanifold of the supergroup GL(m/n), respectively

SL(m/n).



1. Introduction

The extension of the activity on quantum groups to the field of supersymmetry was started
with the paper of Manin [1], where the standard multiparametric quantum deformation
of the supergroup GL(m/n) was introduced. These deformations of GL(m/n) were fur-
ther studied in, e.g., [2], [3], [4], [3], [6], [7], [8], [9], [10], [11]. (For the non-standard
two-parameter deformations of GL(1/1) we refer to [12], [13], [14].) In the case of one-
parametric deformation the superalgebra U,(gl(m/n)) in duality with GL,(m/n) and its
quantum subsuperalgebra U,(sl(m/n)) were studied in, e.g., [15], [16], [17], [18], [19], [20],
21), (2], 23], [24], [25], [26], [27], (28], (29, [30), [31]. [32], [33], [34], [35. However, there
was not much study of the multiparameter deformations of U(gl(m/n)) and U(sl(m/n))
and their interrelations, namely, two-parameter deformations were obtained for m =n =1
in [36], [5], [8], and multiparameter deformations of U(sl(m/n)) were obtained in [37],
and of U(sl(m/1)) in [38]. However, until recently the superalgebra in duality with the
standard multiparameter deformation GL,q(m/n) was not known. This dual Hopf super-

algebra, which we denote as U = Uyuq(gl(m/n)), was found in [39]. There were also
found the conditions on the parameters for which ¢/ has as Hopf subsuperalgebra the
multiparameter deformation U’ = Uuqg(sl(m/n)). (For m = n = 1 the latter holds
always.)

In the present paper we construct the induced holomorphic representations of & and
U'. The representations are labelled by m+n integer numbers, respectively m+n—1 com-
plex numbers and act in the space of formal power series of (m +n)(m +n —1)/2 non-
commuting variables, of which mn are odd and the rest are even. These variables generate
a ¢-deformation of a flag supermanifold of the supergroup GL(m /n), respectively SL(m/n).
The construction is achieved by using the Gauss decomposition of the generators of the
multiparameter matrix quantum supergroup A = GLyuq(m/n). We use it to give a new
basis of A which we use as expansion basis for our functions and which has convenient prop-
erties w.r.t. the right action of &/. Namely, we impose the conditions of right covariance
[40] in order to eliminate the dependence of our functions on the strictly upper diagonal
generators in the Gauss decomposition, while the dependence on the diagonal generators
in the Gauss decomposition is fixed for all functions. These fixed powers of the diagonal
generators are the integer numbers which parametrize our representations. For u = q =1
our representations coincide with the holomorphic representations induced from the upper
diagonal Borel subsupergroup B of G = GL(m/n) and acting on the coset G/G*, where
G is the strictly upper diagonal supergroup of G. That is why we call our representations
induced. Further, we enforce the conditions under which ¢’ is a Hopf superalgebra. Then
we can set the superdeterminant to unity and consider the representations of U’. Finally,
we eliminate also the dependence on the diagonal generators of the Gauss decomposition.
This is done invariantly, so that the representation parameters remain in the matrix ele-
ments. For u = q = 1 these latter representations coincide with the standard holomorphic
representations induced from B and acting on the coset GG/B. These representations can
be extended to arbitrary complex values of the m +n — 1 representations parameters.

The paper is organized as follows. In Section 2 we recall the multiparameter matrix
quantum supergroup A and the dual multiparameter Hopf superalgebra . In Section 3
we give the left and right actions of ¢ on A. In Section 4 we give the Gauss decomposition
of the generators of 4 and a new basis of 4. In Section 5 we give the explicit construction
of the induced representations of ¢« and U’. Section 6 contains an Outlook. There are also
three Appendices.



2. Multiparameter deformation of GL(m/n) and the dual superalgebra

The multiparameter quantum deformation A = GL,q(m/n) of the supergroup GL(m/n)
was introduced first in [1], and later, in a slightly different form, in [11]. It is generated by
the elements of a quantum supermatrix M :

Ai;  DBia
M= = (&7 ) 1)

where I.J =1,..m+mn; .5 =1,....mand o, = m+1,...,m + n, which obey the
following commutaion relations:

TinTrr 1)IN+IL+NL(—UZ)I]) TriTrn , for N <L ,

= (-
T[NTJN = (—1)NI+NJ+IJ(—UZ)NQ TJNT[N 5 for 1 < J 5
= (_

p T TN 1)(I+L)(J+N)q TinTrr,, for I<J, N<L,

(—) ML) g Ty Trn — (up)™ TinTyr = (=) NTEANE (G — o™ Trp Tyn
for I<J,N<L
(T[N)Z =0, for f—I—N::[

_ 4NL 1

2 7

u qrJj

(2.2)
where ~ denotes the parity, which for the indices is defined by: f:/gif I=1=1,...m
and [ =1if I =a=m+1,..,m+n. Further, we define the parity Ty, of the generators
Try through the parity of the indices, namely we set: Ty = (f—l— ]V) (mod 2). Thus,
the supermatrix M is in the so-called standard form, so that the elements of A and D are
even and those of B and C' are odd. We shall not need explicitly the basis of A which
was introduced in [39], but we shall use the fact that it is homogeneous, i.e., each element
of the basis has a definite parity.

Considered as a superbialgebra, A has the following comultiplication 04 and counit
ea [1):

m+n

6aTry) = Z Tiv ©@Tng = (Tra)qy @ (Tra) (2.3a)
N=1

ca(Trs) =61 (2.3b)

where in (2.3a) we have used Sweedler’s notation for the co-product of an element a :
dala) = a@y @ aezy. We also recall that for a superbialgebra the coproduct preserves the
parity, (cf., e.g., [39]). In particular, @ = (@) + d(2)) (mod 2).

The Hopf superalgebra U = Uyq(gl(m/n)) which is in duality with GL,q(m/n) was
found in [39]. Naturally ¢« is a multiparameter deformation of the superalgebra
U(gl(m/n)). We have shown that as a commutation algebra we have the classical struc-
ture, namely, a splitting in two subalgebras: U = U’ @ Z, where U’ is isomorphic to
the standard one-parametric deformation U,(sl(m/n)), and Z is central in U for m # n.
However, as a coalgebra U can not be split in this way, as only Z is a Hopf subalgebra,
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while U’ is not a Hopf subalgebra unless m = n = 1 or some special relations between
the parameters exist. These special relations were established in [39] and used to obtain
explicit multiparameter Hopf superalgebra deformations of U(sl(m/n)) which we use
here.

Let us denote the Chevalley generators of sl(m/n) by Hip, X;E I =1,....m+

n — 1. Then we take for the ‘Chevalley’ generators of U’ : K; = u%H1/2, Kj_l =
u_dIHI/Z, in,le,...,m—l—n—l, d1:...:dm:—dm+1:...:—dm+n:1,
with the following algebra relations
KKy = KjK;, K/K;' = K;'K; = 1y (2.4a)
KXt = vt XEK,; (2.4b)
I,rZ o I,’—z
X7 X7] = dry ol T L (2.4¢)
I
XEXE = XEXE |1-J|>1 (2.4d)
(adXE)PXT =1 |[I-J|=1 (2.4¢)
[[XE, X Ju . [ X2, X Jus s = 0, =+ (2.4f)

where ¢y is the Cartan matrix of sl(m/n) and \f = d;\, (A =u —u™1).

Further Z is generated by K = u®'/? with K/ = K (m # n), K' = K if
m =n. Here K is the standard central generator of gl(m/n), being given in the defining
matrix representation by 1,,4+,. The generator K is not used for m = n since then it
belongs also to the Cartan subalgebra of sl(m/m)), (being a linear combination of the Hy).
For m =n we introduce the generator K which belongs to the Cartan subalgebra of
gl(m/m), but not to the subsuperalgebra sl(m/m). In the defining matrix representation
Krr = diéry.

The Hopf structure of U is given by [39]:

Su(KE) = Ko Ki (2.5a)
u(XH) = xfor® + Py oxt (2.5b)
wu(Xp) =X 0o + o' axy (2.5¢)
cu(KE) =1y cu(XE) =0 (2.5d)
w(Kr) =K', qu(X]) = —uFrrde)2xE (2.5¢)
ulK) =Kok, k) =1, wk) = K™ (2.6)
where

m+n R

Pro= ()" ] @ . o =Kx¥p;? (2.74)
S=1
Qrr = qi’uij'zl 7 e (2.70)
qifa+1 ’ [=a>m
u = 1/u, ;7 = qry/u’
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1 i <m
qz,z-1|—1
Qriv1 = § @pors I'=m (2.7¢)
) I=a>m
qa,a-|—1
0 { quIS_:l S<I-1 (2 7d)
Is = arils .
qII-I;' 75 I —I_ 2 S S
m m-+n
q = (H QIs) H Q7) (2.7€)
s=1 a=m-+1
m+n—1
He = Y djH;,  Hppn =0 (2.7f)
J=S
and for m # n we have:
| (K — Ko) (2.8)
= . 0 )
m+n—1
Ko = ZJH + Y (B-2m)H
B=m+1
while for m = n we have:
N 1 .
K' = 5 (K — Kp) (2.9)
N 2m—1
Ky = Id[H[.
I=1
We have also:
ou(Pr) =ProPr  u(Qr) = Qo Qr (2.10a)
ceu(Pr) =lu cu(Qr) = lu (2.100)
w(Pr) =P, w(Qr) = Qf (2.10¢)

Note that from the generators in, Kr, K,only XZI are odd, while the rest are
even.

As we said we shall also use the conditions on the deformation parameters that de-
couple K’ from P and Q, namely
g = 1. (2.11)

If (2.11) holds then U’ is a Hopf subalgebra of U [39]. Note that for m =n =1 (2.11)
holds always.

The bilinear form giving the duality between ¢ and A is given by [39]:

<IX’[,TJL> = udl((sIJ a d1+1 011, J)/z(SJL (212@)
(XH.Ts) = Uf/ZQEIIﬁCSIJ(SJH,L (2.12b)
(X7, Ty) = (=) uI=202Q 25, 6,1 1 (2.12¢)

6



from which follows:

<7D}/27TJL> = }/JZ(SJL (2.12d)
d
(QV2 Typ) = o™ T At 12 (2.12¢)
Finally:
(K, Tyrr) = w25, m #n (2.13a)
(K, Tyrr) = w25, m=n (2.13b)

where I =1 if I = m and 0 otherwise.

The pairing between arbitrary elements of & and A follows from the properties of the
duality pairing. The pairing (2.12) is standardly supplemented with

(y,14) = euly) . (2.14)

3. Left and right actions of U/ and U’

We begin by defining two actions of the dual algebra ¢ on A. First we introduce (as in
[41]) the left regular representation of U by:

m+n
)T = Y (), Tin) Tng = (3.1a)
= <7u(y)a(TIL)(1)> (TIL)(z) (3.10)

where in the second line we have used (2.3a). From (3.1) we find the explicit action of the
generators of U :

d
F(I”I)TJL = udl(dlil 01415 = 6IJ)/2TJL (3_2@)
F(X;—)TJL = _u(I+d1+d1+1)/2Q;ljfl(sjjTj+17L (32[))
F(XI_)TJL = — (_1)fu(f—3d1—d1+1)/2Q}éZ(SI—i_l’JTJ_l’L (320)

=P} = Q) T (3.2d)
d
w(QY) Ty = o Tty T gy (3.2¢)
Finally:
T(K)Tr, = T m #n (3.3a)
T(K)Tr, = wPT m=n (3.30)

The above is supplemented with the following action on the unit element of A:
T(K)la = 14, n(XE)14 =0, 7Kg = 14. (3.4)
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In order to derive the action of #(y) on A we shall use the general form [42], which is the
same as (3.10) but for an arbitrary element ¢ of A :

(Y = (uly) Y)Y (3.5)

So the action on the product of two homogeneous elements may be calculated using the
properties of pairing, the graded tensor product, coproduct and antipode, namely,

(1 @Yz, 1 @b2) = (= 1)2 (y1, 1) (y2,¥2) (3.6a)
(a@b)(c@d) = (-1)%ac®bd (3.60)
5(61) = (=12 P00 4y by © by ey (3.6¢)
Y(ab) = (=1)*5(b)y(a) (3.6d)
We find using (3.5) and (3.6):
r(y)dd = (—1)%0 G (x(y2))0) (7(ya))¥) (3.7)

Thus we have for the generating elements y = KI,XIi, (note that in all cases we have

Y)Yy = 0) :

m(Kr)py = (7(K1)¢) m(K1)Y (3.8a)
r(XH)ge = (-1 (x(P}/*)g) m(XF )6 +
+ (r(XF)e) 7(P7?)0 (3.8b)
(X))ot = (—1) (m(Q}/)6) m(X[ ) +
+ (r(X7)e) 7(Q7 ) (3.8¢)
From (3.8a) follows:
n(P1*)e0 = (=(P*)o) =(P}/*)0 (3.84)
n(Q %) = (n(Q}*)e) m(Q)* ) (3.8¢)
For K we have:
(K)ot = (w(K)o) w(K)¥ (3.9)
Applying the above rules one obtains:
A(K)(Typ )" = "Gz oy = 002y (3.10)
(PN To)" = Q) (Ton)" (3.100)
R(QY)(Typ)r = u" T Oty = ) g,y (3.10¢)
T(X)(a)" = —u= Pug™ 2] 8ri(a) " Tisn (3.11a)
H(XF)(dag)" = —u'q " [n]ubra(das)" dati s (3.110)



(X7 ) an)" =— U_lq_(n_z)/z[n]u51+1,jaj—1,l(aﬂ)"_l (3.12a)
F(X;)(daﬁ)n - (_1)Iu_31/zul_1q/_(n_2)/2[n]u(sf—l—l,aTa—l,ﬂ(daﬁ)n_l (3.12[))

where ' = u™!, ¢ = u?q = u?/qs 141 and [n], = (v —u~")/\. For K we have
m(K)WTr)™ = u™*(Ti)", m#n (3.13a)

(KN Trp)™ = u "2 (T, m=n (3.13b)

Next we introduce the right action of ¢ following [41] (cf. also [43], where it is called
left action and denoted by 7;7), but taking into account the graded structure:

m+n

mr(y)TrL = Z(—l);a Tin (y, Tnr) (3.14a)
= (—1)P T (Tr)y (0, (Trn) o) (3.14b)

where y € U.
From (3.14) we find the explicit right action of the generators of U :

rr(KNTyp = o0~ argors) Py (3.15q)
rR(XP)Ton = brpan (~1) T oI2QTYE Ty (3.150)
Tr(XT)VTy = 67y (— 110+ o0 d=2dn2gl2 o (3.15¢)

From (3.15a) follows:
mr(PYTi = QY T (3.15d)
rR(QY) Ty, = o1 T Tt g2 (3.15¢)

Finally:

r(K)Tr, = WPT m #n (3.16a)
r(K)Tr, = Wt PT; m=n (3.160)

The above are supplemented with the following action on the unit element of A:
mR(K)la = 1a, 7r(XFE)14 = 0, 7r(K)la = 14 (3.17)

In order to derive the action 7r(y) on A we shall use the general form [42], which is the
same as (3.14b) but for an arbitrary homogeneous element ¢ of A :

)Y = (—1)7°0 gy (g, 1)) (3.18)
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So the action of an arbitrary homogeneous element y € ¢/ on the product of two homo-

geneous elements of A is given by:

mr(y)or = (—1)700Hv@Cetvm) g0y (yq), b)) ba) Wy te) = (3.19)

= (—1):5‘17(2) (Tr(Y(1))®) TR (Y(2) )Y

Thus we have for the generating elements y = K7, in,

TrR(Kr) oY = (nr(K1)o) mr(K1)
rr(X{)ow = (rr(X])o) mr(P )0 +

For K we have

Using this we find:

. n ndr(6rn — 7o L—6741.0)/2 n
FR(I&[)(TJL) = Uu 191z 141 r+1.1)/ (TJL)

7r(P ) Tn)" = Qi (Tys)"

FR(Q}/Z)(TJL) —u I( IL dI-|—1 I+ 7L) IL/Z(TJL)

mr(X ) @)™ = w2 ]S aag,-1 (aj)" !

TR(XT)(das)" = w2 DD 0] 81 5T 51 (dag

Tr(X7)(a)" = (=D ! 2u" g2 ], 61 (i) Ty 4

TR(X7)(dag)” = 0"V g™ [0]u61 5(dap)" " da, 41
For K we have

mr(K)(Trp)" = u™*(T5)" m#n
TR(K)NTy)" = w ™/ 2(T)" m=n

10
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(3.20d)
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(3.22¢)

(3.23a)
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(3.24a)
(3.24b)

(3.25a)
(3.250)



4. Basis via Gauss decomposition

Until here we have used implicitly the basis for A given in [39], however, it is not suitable
for the construction of the induced representations following [40], [41]. From the latter
references we know that the suitable basis is via the use of a Gauss decomposition. The
point is that we shall use right covariance [40] to reduce the number of variables on which
our functions depend. Right covariance with respect to the raising generators X}" means
that their right action will annihilate our functions. It so happens that this right action
will annihilate automatically the 'lower triangular’ and ’'diagonal’ entries of the Gauss
decomposition. Thus, right covariance eliminates dependence on the 'upper triangular’
entries of the Gauss decomposition. Right covariance with respect to the Cartan generators
means that their right action will be scalar on our functions. For this it is sufficient that the
right action of the Cartan generators will be scalar on the "lower triangular’ and ’diagonal’
entries of the Gauss decomposition.

We give the simple cases m =n =1 and m =2,n =1 in Appendix A and Appendix
B, resp. Below we treat the general case.

The matrix T in (2.1) may be written as

r=(e5) = (=)0 6 ) @3

H =D - CA™'B (4.2a)
E =47'B, F = CcA™! (4.2b)

where

and A™! is the inverse of the quantum matrix A. Furthermore, the quantum matrices A
and H may be decomposed as follows

A = ALApAy (4.3a)
H = H HpHy (4.3b)

where the index L indicates the strictly lower triangular matrix (with units on the main
diagonal), D for the diagonal matrix and U for the strictly upper triangular matrix (with
units at the main diagonal). Then, the quantum supermatrix T may be decomposed as

follows
(A B _ (A, O Ap 0 Ay A
(2 o) - (¥ )Y a) (Y a) e
where
AN =ApFE = AUA_IB (4.5@)
I =FA, = CA™'A, (4.5b)

In fact, the elements of the quantum matrix A are even and their commutation rela-
tions are that of GLyuq(m), so we can get its Gauss decomposition directly from [41]. For

11



this we have to suppose that the principal minor determinants of A:

D, = Z €(p)aip(ry - - Arp(r)

pES,
= Z e’(,o)ap(l)l clppyr s T SM (4.6)
pES,
ko
ep) = ] <7”;2)”(”> (4.7a)
j<k
p(3)>p(k)
-1
é(p) = () (470
g 9p(k)o()
p(3)>p(k)

are invertible; note that Dy, is just the quantum determinant of A (we will denote it by
Dy4). Further, for the ordered set I = {1y < ... < i,} and J = {j1 < ... < j,}, let £} be
the r-minor determinant with respect to rows I and columns .J such that:

fg = Z el(p)aip(l)]‘l e A g, (48)

pES,
Note that 1! = D;. Then one has as in [41] (1 <4, k,l < m)
a;; = YirDprUg (4.9)

where Yj are elements of Ay, Dy are elements of Ap and Uy are those of Ay, They are
given explicitly by:

k—1
Vi =[]+ ety (4.10a)
s=1 sk
Dy = DyD;', (Do =1) (4.100)
U = Dy & (4.10¢)

Now let us calculate the right action of X}" on Yy and Dy . From (3.20b) we deduce
that

mr(XF)ov = (rr(X7)¢) 7r(PY2) 0 + (zr(P; /%) ¢) mr(XT) (4.11)

where ¢ is an arbitrary product of aj; with 1 < 5.1 < m. Then, using (3.15b,d) one can
prove by a direct calculus that:

Tr(X)EY = 0, forL ={1,...1},¥N (4.12)
and in particular case we have
mr(X)D; = 0. (4.13)
Then using (4.11) we get
rr(X)Y; = 0, #ar(X{)Dy = 0 (4.14)



To calculate the right action of X7 on T', we first introduce the left and right quantum
cofactor matrices A;; and Agj associated to A:

e(poi) )
A = Z (o) A1p(1) -+ Gij o Oy p(m) (4.15a)
p(i)=]
€' (po’) §
A;]‘ = Z T /] Ap(1)1 -+ - Aij oo Ap(m)m (4.15[))
€ (U]‘)

where o; and 0'} denote the cyclic permutations:

o; = {i,...1}, oF = {j,...m} (4.16)

and the notation # in (4.15) indicates that x is to be omitted. Then one can show that

Y aijAr; =) Alajr = 6D (4.17)

and obtain the left and right inverse of A as

M;; = D' Al = A;i DL (4.18)
One can calculate the following
mr(PY* D4 = [] Q1 Da (4.190)
s=1
(P03 = ] Q"3 (4.195)
s=1
(P )My = Q7P My, (4.19¢)

Now we have to calculate the right action on Fy;. First, using (4.11), (4.18) and (4.19b),
we note:

TR(X )My = — }ferEhﬁuMHl,l (4.20)
and then we get:
TR(X]) Far = 7r(X[) CojMj =
= (wr(X]) Cag) 7r(P}*) Myt +
+ (=D (ra(PU) Cog) mr(XT) M =0 (421)
It remains now to calculate the right action of X}" on the lower triangular matrix Hy,

and the diagonal one Hp. Note that the defining commutation relations of GLyq(m/n) in
(2.2) are in fact the explicit of the following super-RTT equation:

(_1)N(N+L)RIJMNTMNTNL _ (_1)M(J—|—N)TIMTJNRMNNL (4‘22)
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where the finite-dimensional R-matrix is given by

~ — 2
RV ny = §L53A(—u®) 6" + 017 (—1) g1 + 9”(—1)”:—} + 086107 (1—u?) (4.23)
IJ
where 617 =1 if I >J and 0 otherwise. (For n =0 and ¢ = u, Vi, the above
relations will reduce to the RTT relations for GL,(m), [44].) On the other hand, starting
from (4.22) one can prove that the matrix H satisfies the same super-RTT equation with
all indices are odd. This is proved in [45]. So the elements of H satisfy the defining
commutation relations of GLyq (n). Further one can prove that the right action on H is
as follows:

dr

Tr(Ki)has = u"T 0@ e a2y, (4.24a)
(X hay = {gi/ZQI_,II{l—Zl(SI—I—l,ﬁha,ﬁ—l 7 gigi (4.24D)
TR(X] Yhap = 515qu/ﬁth5+1 — Spmut ho,m+1 Emg, (4.24¢)
Tr(K)hag = {Z,ll//zz};afﬁ: 211: ﬁfﬁ (4.24d)
wr(P1Yhap = QY5 has (4.24¢)
R(QY Vhas = u"OTTISRD grAy (4.24f)

Now, one can get the Gauss decomposition of H in the same way as it was done for
the quantum matrix A. For this we have to suppose that the principal minor determinant

of H:

Go = Z g(/)) hm—l—lp(m—l—l) s hap(a)

PESa—m
= Z gl(p) hp(m—l—l)m—l—l"'hp(a)oz 5 m—l— ]_ S (8% S m—l—n (425)
PESa—m
~90(8)p(a)
o) = ] (%) (4.26a)
a<lf
p(a)>p(6)
. 1
¢ = 1 (—) (4.260)
a<p Do (B)p(a)
p(a)>p(6)

are invertible; note that G4, is just the quantum determinant of H (we will denote it
by Dy ). Further, for the ordered set I = {a; < ... < a,}and J = {0 < ... < 8.}, let
f’IJ be the r-minor determinant with respect to rows I and columns J such that:

I ~
flj = Z 6/(,0) hap(l)ﬂ1 .. .hap(T)gT (4.27)
pES,

Note that f’ziiz = (4. Then one has (m+ 1 < a,8,y <m+n):
hay = ZapGppVpy (4.28)
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where Z,g are elements of Hy,, G s are elements of Hp and Vs, are elements of Hy. They
are given explicitly by

51

Zap = ] ¢y oag! (4.29a)
v=mt1 DB

Gos = GsG3l, (Gm=1) (4.290)

Vey =Gy 5/211 y 15 (4.29¢)

Now let us calculate the right action of X}" on Zap and Gao . Using (3.20b) and
hap = 0 (mod2) we get:

TR(X{ hapt = (7r(X])has) TR(PY ) + (7R(P7*Yhag) mr(X] )0 (4.30)
from which we deduce
TR(XP)op = (mr(X))mr(Pr )0 + (rr(P;1*)6) mr(X7 ) (4.31)

where ¢ is an arbitrary product of hog with m + 1 < o, < m + n. Then, one can prove
in the same way as for A that:

rr(XF)ET =0, for L={m+1,...a}, VN (4.32)
and in particular case we have
Tr(X)Ga = 0. (4.33)
Then using (4.31) we get
TrR(X ) Zag = 0, wr(X[)Gsg = 0. (4.34)

Finally, we write down the superdeterminant:

m+n
s=1 a=m-+1
for which we also obtain:
TrR(X)F = 0. (4.36)

Thus, we have proved that the right action of X}" on the strictly lower and diagonal
matrices in the Gauss decomposition of 7' is zero. On the other hand the right action of of
X}" on the strictly upper diagonal matrices in the Gauss decomposition of T is nontrivial.

We have now for the right action of the Cartan generators:

rr(K)EN =un/2eN L ={1,...1} VYN (4.370)
rr(KDE Y = uftm/2y0a2¢ Y L= {m+1,...a} YN (4.37b)
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from which follows

FR(I&’])D]‘ = u(slj/zD]‘, FR(I&’I)Gﬁ = u61m/2u/615/2Gﬁ (4.38(1)
FR(I&’I)Y}I = Y}‘l, FR(I&’])Zag = Zaﬁ (438[))

we have also
FR(I&’I)PQI = T (439)

Now we give the action of K in both cases m # n and m = n.

For m # n we have

TR(K)YDa = u™*Da, 7r(K)M; = uw2M; (4.40a)
rr(K)EN =u'2eN, L={1,...1} YN (4.400)
rr(K)EY = uP=m2gN L= {m+1,...8} YN (4.40¢)

from which it follows
mr(K)D; :uj/sz, r(K)Gg = u(ﬁ_m)/ng (4.41a)
mr(K)Y; =Y, wr(K)Tai=Tu 7r(K)Zapg = Zap (4.41b)

For m = n we have

Tr(K)Da :um/sz, r(K)Mj; = u_l/zMjl (4.42a)
rr(K)EN ='2el, L ={1,...1} YN (4.42b)
rr(K)EY =/ B=mi2eN L= {m 41,8} VN (4.42¢)

from which it follows
mr(K)D; = uw/?D;, wr(K)Gs = o'P~™/2G, (4.41a)
mr(K)Y; =Y, wr(K)Tai=Tu 7r(K)Zapg = Zap (4.41b)

Thus, we have shown that right action of the Cartan generators is scalar on all entries
of the Gauss decomposition.

The generators Yj;,I'ai,Zsa are the g-analogues of the strictly lower triangular
supermatrices of GL(m/n), while the generators Uj;, Ajo, Vap are the g-analogues of the
strictly upper triangular supermatrices of GL(m/n). The generators D;;,Goq,F are
the g-analogues of the diagonal supermatrices of GL(m/n). In the following we shall need
their commutation relations. Since these are rather lengthy they are given in Appendix C.

Clearly one can replace the basis of A in terms of T;;, with a basis in terms of X7 ;7 =
(lflj,raj,Z5a) with (L > J), D;, G, (Oz <m+n-— 1), F,and Wy = (Ujl,A]‘a,Vaﬁ).

More precisely, the basis will be given as follows:

fﬁ,k,w - (Y21)v21 (Ym7m_1)vm,m_1 (Pm—l—l,l)vm-l—l’l (Pm+n7m)vm+n’m X

Um42,m+1 Um4n,m4+n—1 X

X (Zm+2 m+1) .. (Zm+n,m+n—1)
Dl)kl ... (Dm)km (Gm+1)km+1 ... (Gm+n_1)km+"_1 (f)km‘l'" X

m4n—1,m+n Wm41,m+2 X

<
( m+n—1 m—l—n) .. (Vm—l—l,m—l—Z)
(Am m—l—n) momtn (A17m+1)w1’m+1 (Um—l m)wm_l’m ce (Ulz)w12 (444)

)

ﬁi{vjj|1§J<I§m—|—n}, vigE Ly, ve; <1
E:{k1|1§1§m—|—n}, kre Z
u?:{wjj|1§I<J§m—|-n}, wry € Zy , wing <1
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and we are using the normal ordering similar to [41], namely, we first put the elements Y;;
in lexicographic order, (i.e., if ¢ < k then Y;; is before Yj¢ and Y, is before Yy;), then the
elements I'y; in lexicographic order, then the elements Z,3 in lexicographic order, then
the elements D; and F, then the elements V, 3 in antilexicographic order, (i.e., if a > ~
then Vi, is before V.5 and V;, is before V;,), then the elements A;, in antilexicographic
order, finally, the elements U;; in antilexicographic order. Note that the basis includes the
unit element of A :

f07070 == ]__A (445)

Finally, we should note that the commutation relations in Appendix C are given in antic-
ipation of this basis.

5. Representations of ¢/ and U’

We have already seen that the basis introduced in (4.44) has the necessary right covariance
properties we mentioned earlier. Thus, we consider a candidates for our representation
spaces the formal power series:

v = E Ho ko To ko - togw €T (5.1)
ki€ Z vai,wia €{0,1}
Vi Uga,Wij ,Wap EZ 4

We impose now right covariance with respect to X}"; l.e., we require:
+ —
mr(X7)e = 0. (5.2)
This means that our functions ¢ do not depend on Wy, since (5.2) is fulfilled automat-

ically for the other elements of the basis, as we saw in the previous Section. Thus, the
function obeying (5.2) are:

= > fok Jok> Mok = Mokos Jok = foio (5.3)
kl€Z7 Uai€{071}
Vjivpa €44

Next we impose right covariance with respect to K; and K:

Tr(Kr)e = udI”/zc,o (5.4a)
mr(K)e =u?0 if m#n (5.4b)
mr(K)e =u?0 if m=n (5.4¢)

where r; and 7,7 are parameters to be specified below. Using the following:

mr(K)F =F (5.5a)
mR(K)F =u™™WR2F if m+£n (5.5b)
r(K)F =u™F if m=n (5.5¢)
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and the actions of K5 and K on the new generators and their products we find:

Tr(Kr)p = wlk125 for I<m—4n-—1,1 #m (5.6a)
l m4n—1
Tr(Km)e = u? (bt p=mt1 ks ) © (5.60)
l m - m4n—1 —m m—n .
Tr(K)e = u? (307 kst 3o (=) kst (m—m) by ¢ if m#n  (5.6¢)
l m S m4n—1 —m m .
Tr(K)e = u? <Ei=1]kj pmmya (BT ka2 bt e if m=n (5.6d)
Comparing the right covariance (5.4) the direct calculations (5.6) we obtain:
kr =ry, for I<m+4n—-1,1#m (5.7a)
m+n—1
B=m+1
m m+n—1
Po= gkit Y (B—mkg+ (m—n)kmin =
j=1 B=m+1
m+n—1
= Z]r] + Z —2m)rg + (m —n)kmyn , if m#n (5.7¢)
B=m+1
2m—1
f:Z]k— Z ﬁ—m)kg—l—kazm:
f=m+1
2m—1
= Z Jdyry+2mkey , if m=n (5.7d)
J=1
This means that r;, 7,7 € Z and there is no summation in kj; also we have:
1 m m+n—1
k = ;— T — — i :
win = Y i Y (o) mEa (550
=1 B=m+1
1 2m—1
kom = %(F— Z Jdry) if m=n (5.80)
J=1
Thus, the reduced functions obeying (5.2) and (5.4) are
w = Z te fo =i, Hs = Moo fo = fopo (5.9a)
Uai€{071}
vjivea €L 4
= = (D))" ...(Dm_1)”m—l(Dm)é(GmH)”m“ o (Ggn—1) ™= (F) (5.9D)
7 ={ri,. .., Tmyn—1,7(or 1)}
where
m+n—1
§=r,; — Z 8 (5.10a)
B=m+1
A (P = L gy = Y po i (B = 2m)rg) if m#n
t = (5.100)
ﬁ(f— 2m ljdjrj) if m=n
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Next we shall give the U representation (left) action = on . Besides the action of
the "Chevalley’ generators KI,X;E,IC we shall give for the readers convenience also the

action of Py, Qr though it follows from that of Kj;. We have:

m(Kp)Y; = U(6I+1’l_51+1’j_6Il+6”)/2Yl‘ (5.11a)
T(XD)Yy = —u Tt 2002 QU 8 1(81m Tt tm + (1 — 81m)Yig,j) +
~1/2 —1/2 qi.i+1954+1.1 (1=61,541)
+ u@Q Q@ (%) 01 Y41,V +
j
+ uQ; YAQ QA QT o %
X {ﬂYl,j—l -Y; ;1Y) (5.11b)
q5—1,549;1
(XY = - _ZQl/zQ}/Z _5”514-1 1Yi-1, (5.11¢)
m(K)Yy; =Y (5.11d)
(P, = QY (5.11¢)
F(Q}/Z)Yl]‘ ) N 51+1J—511+51J)Q1/2Q—1/2Ylj (5.11f)
W(I/’I)Paj —u I(d1+1 (8141,a—0141,5)— 51a+51J)/2Paj (5.12@)
71-(‘XP}F)I‘Q] = _u_le_ljlejl/z(SIoz a+1,]‘|‘
T u(1+d1+d1+1)/2Q_1Ile_1/2(q]d-l-;qJ-l-l o )(1 54 j+1)5” %
ja
X (1= 0jm)Yj415 — SjmDmy1,m)laj +
+ QT HQI QT AQT P X
X {ﬂra,j—l —Y;;i-1lq;} (5.120)
45—1,5495a
(X7 )aj = — (—1)IU(I_?)dI_d”“)I/ZQHZU_‘;U5I+1,a X
X {ba,m+1Ymj + (1 —da,m+1)la-1,;} (5.12¢)
_ JTo; fm#En
T(K)ly; = { uTh; i m=n (5.12d)
(P *)Ta; = Q1. Q1} T, (5.12¢)
F(Q}/Z)Paj —w I(d1+1 (0r41,a—0141,j)—01a+01;) 1/2Q_1/2 (5.12f)
R(ED)Zgy = u" T OO Sy (5130

(X Zga = —u' Q700 "1 25410 +

+ QT 1/2 Q—l/z(qa at19ot1, By(1=85a41)

T+1
qaﬁ
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f+ﬂ-\1 2f  (I+d;+d 2,—1/2 ~1/2 =1/2 ~—1/2
+ (-1 It drtde)/ Qri119r5 @ra—1 Ia/ 0r4+1,a X

qa
s} {2 (51T + (1= 0rm) Zg.01) —

qa 1aqaﬁ
- 5Im m—+1, mZﬁa_(l_(SIm)Za,a—lzﬂa} (5136)
(X7 )Zga = —u'” 2Q1/2Q1/2 "0ta gy 52510 (5.13¢)
m(K)Zga = Zpa (5.13d)
(P Zsa = Q13" Q1l Zsa (5.13¢)
F(Q}/?)Zﬁa — I(d1+1(51+1l3 5I+1 a) 51/3+51a)Q1/2 _1/2Zﬁa (513f)
n(K;)D; =u~°1/?D; (5.14a)
W(X}")Dj - (I+d1+d1+1)/2Q II{I—ZIHQI/Z(SIJX
X (5jmfm+1,m+(1—5jm)Yj+1,j)Dj (5.14b)
©(X;)D; =0 (5.14¢)
m(K)D; =u"?/*D; (5.14d)
~(P}*)D; = HQ‘”2 (5.14¢)
m(Q)*)D; = _‘”JHQ”2 ‘ (5.14f)
m(K1)Gg = u70m+os)/2q (5.15a)
B—1
F(X;_)Gﬁ — (I+d1+d1+1)/2Q }fl{ H Q}ézéjﬁZﬂ+17ﬂ+
a=m-+1
+ H Q{26 1m T ms1.m}Gy (5.15b)
a=m-+2
(X7 )G =0 (5.15¢)
u=B=mI2Gs i m£n
m(K)Gg = { ’—<ﬁ—m>/2Gﬁ P (5.15d)
n(P*)Gs = H Q%G (5.15¢)
a=m-+1

7(Q))Gy = ulormtine) H QL Gy (5.15)

a=m-+1
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(K F =F (5.16a)

(XDF = (5.16b)

(X, )F =0 (5.16¢)

A(K)F = JuTEE i m#n (5.16)
umF m=n

n(PYHF = F (5.16¢)

n(Q/F = F (5.16f)

Now we note that from (5.14), (5.15), (5.16) we have the important consequence
that the degrees of variables D;, Gz, F are not changed by the action of . Thus, the
parameters r; and 7 (or r) indeed characterize the action of U, i.e., we have obtained
representations of .

e Thus, by formulae (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), we have given the
induced representations of U labelled by the m + n integer numbers r; and 7 (or 7)
and acting in the space of formal power series of (m + n)(m +n —1)/2 non-commuting
variables, of which the mn variables I'y; are odd and the variables Y;; and Z,g are
even.

Remark: For u = q = 1 our representations coincide with the holomorphic representations
induced from the upper diagonal Borel subsupergroup B of G = GL(m/n) and acting on
the coset G/GT, where G is the strictly upper diagonal supergroup of G. That is why
we call our representations induced.

To obtain our representation more explicitly one is using these formulae together with
the rules (3.8) and (3.9). In particular, we see that:

m(K)e = {“_,:/2“9; i m f " (5.17a)

YT e M f D (5.17b)
Uai€{071}
vjivea €L 4

We notice from (5.16) that U’ acts trivially on F. Thus, the action of ¢’ involves
only the parameters r;, I < m+n—1. On the other hand by (5.17) we see that the action
of K involves only the parameter # (#' = 7 if m # n ,#' =7 if m = n). Thus we can
consistently also from the representation theory point of view restrict to SL,q(m/n), i.e.,
we set

F=F"1 =14. (5.18)

Note that in order to enforce this condition it is also necessary that F commutes with all
generators, and the conditions for this which follow from the explicit commutation relation
in Appendix C are just conditions (2.11).
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With (5.18) enforced the dual algebra is U’ = Uyq(sl(m/n)).

functions for the U’ action are:

— —0

¢ = > po fo =%
Uai€{071}
Vjivpa €44

-0 - T Tm—1 18 Tm+1 Trmdn—1
=0 = D DI DG LG

Thus, the reduced

(5.19a)

(5.190)

e Thus, by formulae (5.11), (5.12), (5.13), (5.14), (5.15), we have given the induced
representations of U’ labelled by the m +n — 1 integer numbers r;y. Foru =q =1
our representations coincide with the standard holomorphic representations induced from

B and acting on the coset G/B.

To obtain the representations more explicitly one is using these formulae together with

the rules (3.8). In particular, we have:

W(I&’I)(lej)k — k(51+1,l_51+1,j_5Il+51j)/2(1/'l4)k
r(X)()F = =Tt 2o A QYT e (v
X (5lm m—+1,m + (]— - 5lm)lfl—|—1,]) +

(5.20a)

. ‘ (1=61,541)
+ uQElijQ(k 2)/2 ‘<%,J+1%+1,l> 51, +1](Yz]) +

qj1
+ UQI_,II{i—lek/z(QJ L )k~] 107415 X
X {ﬂYl,j—l(Yu)k_l —Y;j-1(Y1)"}
q;-1,595!
m(X7)(Yi)F = _2Q1/2Qk/2 ROy Sy Yo (V)R
(P (VL) = @y Qi) (i)

F(Q}/Z)(Y'l])k — k(51+1l 51+1J—511+51J)Qk/2Q_k/2(Y'lj)k

d
W(I&’I)(Zﬁa)k — ukdl(ﬁ(51+1,/3_51+1,a)_51/3+51a)/2(Z6a)k

_ k— _
T(XF)(Zsa)* = — o/ Qr QYT P esd1s(Zpa) T prra +

n UIQI_IIle(k 2)/2 Q(M)(l p,at1)§, 7
’ qaﬂ

Tait1 (F —1/2 k/2~
+ (=1)I Ty, (Hdﬁd”l)/zQL]éﬂQw Crér41,a X

qa 1
$ {2 (51 (qmms1) Tom +
qa 1 aqaﬂ

QQ— Net —
+ (1= 0 (Z ) Zga1)(Za) ! -

!

- 5Im(Qm,m+1)kPm+1,m(Zﬁa)k -

— (1= S (RN k 7 1 (Z0)t)

U/
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(5.200)

(5.20¢)
(5.20d)
(5.20¢)

(5.21a)

a—l—l,a(Zﬁa)k +

(5.210)



T(X7)(Zga)t = =/ 72QY Qw0 s 1811 5 Z5-1,0(Zga) T
1/2 —k/2 k/2
m(P1 ) Zsa)* = Q15 Q1 (Z50)

Ta

(Ql/z)(Zﬁa)k _ kd](dI_I_ (Or41,8—0141,0)— 51/3+51a)Qk/2 _k/z(Zﬁa)k

where

Giiv1)FV2E),, T=i<m
Coai)FTV 2K, fT=a>m
Giiv)TTRE),, HT=i<m
Toair) TR, fT=a>m

|
|

(
(
(
(

n(Kp)(Dj)" = u™"u/2(D))"

j—1
~(X7) (D)) = <f+df+df+1>/2c2‘}f1HQ’}?&;%

X (8 jmDmat,m + (1= 8jm)Yjg1,5) (D))"

(X7 )(Dj)" =0

w(Py*)(D,)* = H@"“”

m(Q)*)(D;)F = umhr HQ'“/Q

(Kp)(Gg)* = uf 0t 2 ()t
-1

T(XF)(Gg)F = —uTHdrtdnn/2g7 }fff{ II Q61575115 +

a=m-+1

+ H Qk/Z(SIm m—l—l m}(Gﬁ)

a=m-+2

=(P}*)(Gs)t = H Qi (Gt

a=m-+1

QUG = kit ] QUG

a=m-+1
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(5.21¢)
(5.21d)

(5.21€)

(5.22a)

(5.220)

(5.23a)

(5.23b)
(5.23¢)

(5.23d)

(5.23€)

(5.24a)

(5.24b)

(5.24¢)

(5.24d)

(5.24€)



As a consequence we have, e.g.,

1 1
W(I&’I)S«Q — u—§d17’1 § ugvji(51+1,j—51+1,i—51j+5u) %
kae{ovl}
Vjivpa €44
L d<d1(5 5 )5+5>1 d<d1(5 5 )5+5> (5:25)
SUykdr| g — (0141, =0141,0)—015+01a 5Vea dr| g —(0r41,=0141,0)—0151010a
X u I+41 U I+41 %
—0
X o fo =5

Finally, since the action of U’ is not affecting the degrees of D; and Gp, we may
introduce (as in [40], [41]) the restricted functions:

Y = Z to fo (5-26)

Uai€{071}
Vjivpa €44
using the intertwining operator:
¢ =T¢ = ¢|lDi=G.=14 (5.27)

We denote the representation space of ¢ by Cr, the representation space of ¢ by g},
and the representation acting on ¢ by 7. Thus, the operator 7 acts from Cr to Cr.
The properties of C; follow from the intertwining requirement for Z [40]:

I = Inr. (5.28)
In particular, we have:
Y AR —Larr E Loji (0141,j—0141,i —0r1;+61:)
F(I&I)go = u 2 w2t ¥ X J N
kae{ovl}
Vjivpa €44
1 (5.29)
dy 1 dy
5Uvk dr <m(51+1,,6—51+1,a)—51,6+51a> 5vsadr <d1+1 (51+1,;3—51+1,a)—51,6+51a>
X U U X
X py fo

e We finish by noting that the functions ¢ have the important advantage that the
representation action 7 can be extended to arbitrary complex r;. This is seen, e.g., from

(5.29).

6. Outlook

The representations constructed in this paper will have many applications. The most
interesting ones seem to be connected with the case of the multiparameter quantum con-
formal supergroup which is a real form of U’ for m =4, i.e., Uyq(sl(4/N)). In this case
the non-commuting variables Y;; contain a deformation of Minkowski space (as in [46])
which together with the variables T'y; will give a deformation of N-extended Minkowski
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superspace. Following [47] we shall analyze the reducibility of our representations and
construct intertwining differential operators on them.
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national Center for Theoretical Physics. V.K.D. was supported in part by the Bulgarian
National Research Foundation under contract ®-643.

Appendix A. Basis for the case m=n=1

Here we give separately the simplest case m =n =1, i.e., GLy4(1/1). We have:

T ()= )6 )6 o

where we suppose now that there exists an element ™! :

A =a, D =d— ca'b (A.2a)
A=a'd, I' = ca™? (A.2b)

The commutation relation between the old generators are

ab = pba, db = pbd
ac = qca, de = qed
pbe = —qcb, =t =0 (4-3)

ad — da = (¢7' — pbe
The superdeterminant is given by:
D = ad' — bd ted™! (A4)

It is central and group-like element, and we suppose that it has an inverse (D)~!. The
commutation relations between the new generators {A, D, A, T'} are

AA = pAA, DA = pAD
AT = ¢T'4, DT = ¢I'D
AT = —TA, A2 =T2 =0
AD = DA

(A.5)

One extends the algebra with inverse elements A™! and D™! of A and D, respectively.
The superdeterminant is now given by

D = AD™! (A.6)

The coalgebra structure is given by

S(A) = A9 A + AA®TA
§(D) = D@D + DA@TD (A7)
S(A) = 1@A + A@A™'D '
) =Tl + DA'@T
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One can also calculate the coproduct of the inverses A™! and D™1:

S(A™YH) =A7tgA™t - AAT @ ATIT (A.8a)
§(D'y =D'@D™' — AD'@D7'T (A.8b)
The counit and the antipode are given by:
ea(A) =ea(D) =1 (A.9a)
ea(A) =eql) =0 (A.9b)
ya(A) = ATTAT 44(D) = ATIDT (A.9¢)
14(A) = —AD, 4u(T) = DI (A.94)
where
A=1 — ¢ 'ADT (A.10)

Now let us write explicitly the right action on the old and new basis. For the basis

{a,d,b,c} we have:

WR(KI)C‘ Z) :u1/2<‘c‘ Z) (A.1la)
WR(P}/Z)@ Z) :uq1/2<‘c‘ Z) (A.11D)
7l 1/2)@ Z) Zq‘m(i Z) (A.1le)
m(&*)(i Z) Z(uq)_1/2<8 i) (A.11d)
m(X;)(‘c‘ Z) = —(uq)1/2<z 8) (A.1le)
me) (40) = (Ut ) (A11f)

On the new basis we have:
WR(IQ)(? g) - ( ul/24 1/2D> (A.124)
WR(Pll/Z)(? g) = (uql/zA uq1/2D> (A.120)
g }”)(? g) = ( A _1/2D> (A.12¢)
m(&*)(? g) - ( ) (A.12d)
) (7 5) = ( ?/%;{jjﬁ g eps) (4120
) (1 5) = (0t ) (A.12)

Finally the right action on A™! is given by

DA =0, mn(XTAT = AT A =
13
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Appendix B. Basis for the case m=2,n=1

Now let us take the case of m =2, n = 1. The quantum matrix may be decomposed as

al a1 613 1 0 0 All 0 0 1 U192
T = a1 a9 623 = Z21 1 0 0 A22 0 0 1
€31 €32 ds3 Y31 Y32 1 0 0 D33 0 0

where we have to suppose that there exist Al_ll and A2_21 :

-1
A =an Agy = axy — a210q1 412
-1 -1
U2 = a7 12 , 221 = Q21044
-1 -1 -1
513 = dqq bis 523 = A22 (523 — 21044 513)
-1 -1 -1
Y31 = €31447 , Y32 = (032 — €310 Glz)Agg

D33 = d33 - ’7311411513 - ’7321422523-

The commutation relations between these generators are

Aniure = puizdig, Az = pBisdii,
uqfBa3Ain — (up) tA11023 = 0,

U1 Asy = (ZA22U127 P513A22 = qA225137
Ao 23 = pfPazAag, ’

uqDsszu1z — (up) tuizDsz = 0,
B13Dss = u?qDs3 /3, B23D33 = u?qDs3fas ,

A11221 = (]22114117 A11’731 = (]’7311411,
uqys2Ain — (up) tAiiys = 0,

291492 = pA22221, PA22’731 = q731A22,
A22’732 = (]’73214227

Y

uqDs3z21 — (up) tz21D33 = 0,

v31D33 = UZPD33’731, v32D33 = UZPD33’7327
[A11, Ag] = [A11, Dss] = [Ax, D33] = 0,
w1213 = hBizuiz, Br13f2s = —gPasPus,
gBasury — uizfas = u(lu—u")Biz, (B13)? = (B23)® = 0
£21731 — 9_1’731221, 31732 — —h_1’732’731,

32221 — h z217Y32 = u_l(u—u_l)%h (’731)2 = (’732)2 =0

[Ulz ) 221] = [Ulz ) ’731] = [Ulz ) ’732] =0,
(13 221] = [Ba3 , 221] = 0,

Bi3yz1 +v31513 = Bisves + 23813 = 0
B23v13 + V13023 = (2323 + 23823 = O,
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where ¢ = q12g23/q13 and h = g/u?. The superdeterminant is now given by
D = A1 4D (B.11)
It satisfies the following commutation relations with the new generators:

u12D = ¢ Duqo, Dz = qrzaD ( )
BisD = §1G2Dbis, Dyt = G1dpysiD (B.125)
523D = (fzpﬁzs, D’732 = (]~2’732D (B-12C)
AD = DA, A2D = DAss, D33D = DDs3s ( )

The action of the right action on the new basis is as follows:

Ay ouwiz B WO /2 Ay 0220 /2y, g Orera=0n) /23,
TrR(Kr) | 221 A2 fos = 221 wP12=0141,2)/2 4, u0r+1,2)/2 3,
v31 Y3z Dss 31 V32 ur+1.3/2 Dgg
(B.13a)
Ay ouwiz B 1/2A11 _I/ZQ}ézuU I_11/2 1/2513
WR(P}/Z) 291 Aga Paz | = Z91 Q}22A22 }éz _1/2523 )
31 Y2 Dss 31 32 Q}32D33
(B.130)
Ay ouwiz B

(91/2) zo1 Ay B3 =
Y31 Y32 D33

u511QI_11/2A11 udr2— 2511)Q1/2 _1/2 w0141, 3—511)Q1/2 _1/2ﬁ13

Ui2
= 221 w(0r2=dr41, 2)Q121/2A22 61"'12@ L/2 1/2523 )
V31 V32 ulr+L SQI; ’Ds3
(B.13¢)
A uie 513 0 U5I+1,2 U1/2h1/251+1,3U12
TRIXT) | 221 Az B2z | = |0 0 w5140 3 (B.13d)
v31 Y32 Dss 0 0 0

Appendix C. Commutation relations of the new basis

We first give the commutation relation between the generators {Yj;, I'ai, Zga, Uij, Aia,
Vag. The indices used below obey 1+ < j <k <l <mandm+1<a<f<y<
d throughout the Appendix. We also use the notation:

qry qr
_ ! _
pr; = S5 Prr = n (C.1)

We start with the generators Yj;,I'ai, Zgo of the lower triangular’ subsuperalgebra:
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qij 45k

C.2a
YijYieo = dir Y3 Y ( )
ViV — q"quky}‘yk‘ (C.2b)
kit je — ] 14 ke
4ik
Y. Y., = pijpjkY}‘iij + u_l(u—u_l)Yki (C.QC)
jdji 4
Pik
ViV, = LRy oy, (C.2d)
ok qi;4;51 o )
) . ~ o o |
4t YiiYie = p”—?]lYkin]‘ + u T u—u )Y, Y (C.2¢
qjkqkl pil o
qikdj1 ‘
YinY;: = q”qjijink
TV = Lidey 1., (C.3q)
at+ gt - . 1 a
QZa
ilfje -1 DI, C.3b)
Pa]Yt]z = p;ij Y]zra] + u (u_u )Paz (
Toily; = Lhdhey, T (C.3¢)
arh Gijqja o
dia Poz]Ykz = pl]p]aYkzFaj + u (u_u )Yk]Paz ( .
qikqka Pia (C ; )
4ikd5o 3¢
PakY}z = qiaq‘;kytjirak
ZsaYii = ZlaZiﬁYﬂZﬁa (C.4)
1845
Pl = —flep (C.5a)
ajl ai q;a
Tplai = —Lodabp po. (C.5b)
Bl an Gis . )
Tpla; = —Ledelp D (C.5¢
qij4;8
! !
U por. = LR S R O A (C.5d)
q/ q/ Bit ai ng
- azﬂ (C.5¢)
(Tai)* = 0
! !
Tkata (C.6a)
Zgalpr = ’“;Cﬁﬁrﬁkzﬁa
! !
PraPa o — Tt (C.6D)
Zgal“ak = k/ 6PakZ5a + u (u U )ng
kp



dkafa~

Zsalop = Tk Z 50 (C.6¢)
k95~
! ! !
on_ g T = Pelorp gz w f — el p 7 (C6d)
ZygTap = Wllevp 7 (C.6¢)
dk~qap
9035
Z’YﬁZ’YOZ = aq’ ’YZ,YQZ,Yﬁ (C?a)
ay
Uop
ZoaZsa = = ZyaZna (C.7)
ay
PagP;
Zy3Zp0 = aﬁ/ 67Z5QZ75 + u'_l(u’—u’_l)Zya (C.7¢)
Pa~y
ZsaZny = 01 7 75, (C.7d)
qapqss
! ! !
D070 = LB g ges b ou' N — W) 25 75 (C.7¢)
@ &
Z&yzﬂa = ;]Z;ZZ ZﬂaZ5'y (C7f)
asqpy
Next we consider the generators U;j, Ajq, Vas of the 'upper triangular’ subsuperal-
gebra:
Ui U = MUMUU‘ (C.8a)
Pik
UiUjr = PisPik Uir Uk (C.8b)
Pik
UijUjk = Qiéijk U]‘kUi]‘ — u(u—u_l)Uik (C.SC)
UijU = MUMUU (C.8d)
PilPjk
Pl UikU]‘l = MUJ‘IUZ‘]C — u(u—u_l)MUij” (C.Se)
PjkPkl qit PikPkl
UaUjp = PiiPt U;rUs (C.8f)
Pik Pkl
PijPja
UijNia = ;‘] AiaUij (C.9a)
Uijhjo = L2102 N U — u(u—u")A,s (C.90)
tjidja = dio jaliy T .
UijAka = ilkij: AkaUij (C.9¢)
ta Py
Pio 1 v _ ij%a \ 1 =y AL TT
Py UirNjo = " AU w(u —u” ) Ao Uj (C.9d)
g «@ T
Ujphia = DEPRe pL U (C.9¢)
PiiPjo
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UijVag = Zeliby r (C.10)

PigPja
! !
NiaAjo = —%Amma (C.11a)
NiaNig = pl;p;ﬁ/\zﬁ/\ (C.11b)
Nighjo = 5”?’2/\ Aig (C.11c)
45958 Pjs PijP;s
NioNjg = — ANigANijo — ulu —u™ Ajalig C.11d
dig iB PiaDag B ( )pzapaﬁ ( )
(Aia)? = 0 (C.11¢)
ArgVag = p’“;paﬁv 5k (C.124)
kg
AraVag = q’m,q“ﬁ Vaghra — u'(u' —u'™) Agg (C.12b)
A5
ApaViy = PEBPov v ny (C.12¢)
Pk~Pas
! ! !
v N ygVay = Tadavy n 0! — ety BRelor o (124)
ApyVag = Eelory oag, (C.12¢)
PrgPs~
! !
Vaﬁva'y - %Vayvaﬁ (C]_?)CL)
ay
VasVsy = i“ﬁiﬁg Vi Vas (C.13b)
avP~y
Vaﬁvﬁ’y _ qaqﬁQﬁ’yvﬁ’yVﬁ . ul(ul_u/—l)‘/a’Y (C]_?)C)
ay
VagVis = iiazig‘s VsV (C.13d)
adPBy
Pg(s qa6q66 1ot PapPps
Vay Vs = VisVary — u'(u' —u'™1) Vs Vas  (C.13e)
Pogh!
Vay Vey = o ﬁwvﬂvvcw (C.13f)
ay

Now we give the commutation relations of the diagonal’ generators D;;, Gqo, F with
the ’off-diagonal’ ones:
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D;;Y;
Dj;Yji
DiiYr;
DjjYki
DirYy

DIy
DT

Djjlai

D;iZsa

Ui; Dy;
UijDj;
Uk Dy

UirDjj
Ui Dy
NiaDi;
AiaDyjj
AjaDy;

VapDi

GaaYtji
Gaarai

Gaarﬂi

4;; YjiDii
u
—YjiDjj

i
“LYi;Dii
dik

qijqjk YeiDi;
q]lekak
Qik

Gia TaiDi;
qij PajDii

QZQ

Q0 ail/jj
Gia

ZgaDi;
qig

U
—D;;U;;
qij

—1
4;; Dj;Uij
i
=L DU
dik

U
qij 45k
45k

22 Dir Uy
dik

DjjUi

DiiMNio
Gia

Giia 774V
dis
—LDiiMja
Gia

g

2 D;iVags
qip

q;
ﬂl/tjiGoza
Qia

12

—PaiGaa

!
[1e4

PﬁiGaa
Giaqap
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(C.14a)

(C.14b)

(C.14¢)

(C.14d)

(C.14e)

(C.14f)
(C.14¢)

(C.14R)

(C.141)

(C.15a)

(C.15b)
(C.15¢)

(C.15d)

(C.15¢)
(C.15f)

(C.15¢9)
(C.15h)

(C.151)

(C.16a)
(C.16b)

(C.16¢)



GosTai = 28T iGys (C.16d)

qip
GaaZsa =4 apZsaGaa (C.16¢)
ul2
GpsZpa = ——ZpaGpp (C.16f)
af
GoaZyy = 207 .G
aalyp = —Zy8Gaa (C.169)
oy
2
GssZva = ——Z.0Gss (C.16h)
qapqds~
G Zsa = 27 7,.Go (C.167)
oy
UijGaa = UG oull; (C.17a)
Gia
AiaGaa :q/i_alGaaAia (Cl?b)
MNiaGps = 22 G4500 (C.17¢)
qip
2
AisGaa = ———Gaalis (C.17d)
Giaqap
ul2
VaﬂGaa = ,—Gaavaﬂ (Cl?@)
a8
VasGap = ¢ 03GpsVas (C.17f)
q
VagGary = LG Vap (C.17¢)
oy
2
VanGap = ———GpsVas (C.17h)
qapqds~
VisGan = @00V, (C.175)
oy

Using (C.14), (C.15), (C.16), (C.17) we obtain the commutation relations of
Ga

D; = [[;=, Dy, = [I5=mi1 Gas-

7—1

FY;i = H%) Y F (C.18a)
a—1

Flai = qs> Toi F (C.18b)
S=1
B—1

FZsa = ij) Zsa F (C.18¢)
Y=o
j—1

Uij,; F = (js> FU;; (C.18d)



a—1
Aiaf - ( QS> fAia (0186)
Vag F = ( %) F Vap (C.18f)
Y=«

Finally the elements of the strictly lower triangular generators Yj;,I'a:i, Z3o super-

commute the strictly upper triangular generators Uj;, Aja, Vag. Analogously, the diagonal
elements D;;, Goo, F commute with each others.
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