United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

A NON-ABELIAN TENSOR PRODUCT OF LEIBNIZ ALGEBRAS

Allahtan Victor Gnedbaye¹ Université de N'Djaména, Faculté des Sciences Exactes et Appliquées, Département de Mathématique et d'Informatique, B.P. 1027, N'Djaména, Tchad and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to compare the first order Milnor-type Hochschild homology of an associative algebra (non-necessarily commutative) to its classical Hochschild homology.

> MIRAMARE – TRIESTE September 1998

EXT-2000-022 01/09/1998

¹ E-mail: gnedbaye@ictp.trieste.it (until July 1999).

Introduction. Let \mathfrak{g} be a Lie algebra and let M be a representation of \mathfrak{g} , seen as a right \mathfrak{g} -module. Given a \mathfrak{g} -equivariant map $\mu: M \to \mathfrak{g}$, one can endow the \mathbb{K} -module M with a bracket $([m, m'] := m^{\mu(m')})$ which is not skew-symmetric but satisfies the Leibniz rule of derivations:

$$[m, [m', m'']] = [[m, m'], m''] - [[m, m''], m']$$

Such objects were baptized *Leibniz algebras* by Jean-Louis Loday and are studied as a noncommutative variation of Lie algebras (see [8]). One of the main examples of Lie algebras comes from the notion of *derivations*. For the Leibniz algebras, there is an analogue notion of *biderivations* (see [7]).

The aim of this article is to "integrate" the Leibniz algebra of biderivations by means of a non-abelian tensor product of Leibniz algebras as it is done for Lie algebras.

In the classical case, D. Guin (see [5]) has shown that, given crossed Lie \mathfrak{g} -algebras \mathfrak{M} and \mathfrak{N} , the set of derivations $\operatorname{Der}_{\mathfrak{g}}(\mathfrak{M},\mathfrak{N})$ has a structure of pre-crossed Lie \mathfrak{g} -algebra. Moreover the functor $\operatorname{Der}_{\mathfrak{g}}(\mathfrak{N},-)$ is right adjoint to the functor $-\otimes_{\mathfrak{g}}\mathfrak{N}$ where $-\otimes_{\mathfrak{g}}-$ is the non-abelian tensor product of Lie algebras defined by G. J. Ellis (see [3]). D. Guin uses these objects to construct a non-abelian (co)homology theory for Lie algebras, which enables him to compare the K-modules $\operatorname{HC}_1(A)$ and $\operatorname{K}_2^{M \ add}(A)$ where A is an arbitrary associative algebra. We give a non-commutative version of his results, in the sense that Leibniz algebras play the role of Lie algebras, the additive Milnor K-theory $\operatorname{K}_*^{M \ add}(A)$ (resp. the cyclic homology $\operatorname{HC}_*(A)$) being replaced by the Milnor-type Hochschild homology $\operatorname{HH}_*^M(A)$ (resp. the classical Hochschild homology $\operatorname{HH}_*(A)$).

To this end, we introduce the notion of (pre)crossed Leibniz g-algebra as a simultaneous generalization of notions of representation and two-sided ideal of the Leibniz algebra \mathfrak{g} . Given crossed Leibniz g-algebras \mathfrak{M} and \mathfrak{N} , we equip the set $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M},\mathfrak{N})$ of biderivations with a structure of pre-crossed Leibniz g-algebra. On the other hand, we construct a *non-abelian tensor product* $\mathfrak{M} \star \mathfrak{N}$ of Leibniz algebras with mutual actions on one another. When \mathfrak{M} and \mathfrak{N} are crossed Leibniz g-algebras, this tensor product has also a structure of crossed Leibniz galgebra. It turns out that the functor $-\star_{\mathfrak{g}}\mathfrak{N}$ is left adjoint to the functor $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N}, -)$. Another characterization of this tensor product is the following. If the Leibniz algebra \mathfrak{g} is perfect (and free as a \mathbb{K} -module), then the Leibniz algebra $\mathfrak{g} \star \mathfrak{g}$ is the universal central extension of \mathfrak{g} (see [4]). We give also low-degrees (co)homological interpretations of these objects, which yield an exact sequence of \mathbb{K} -modules

$$\begin{array}{rcl} A/[A,A]\otimes\operatorname{HH}_{1}(A) & \oplus & \operatorname{HH}_{1}(A)\otimes A/[A,A] \to \mathfrak{HL}_{1}(A,\operatorname{L}(A)) \to \mathfrak{HL}_{1}(A,[A,A]) \to \\ & \to & \operatorname{HH}_{1}(A) \to \operatorname{HH}_{1}^{M}(A) \to [A,A]/[A,[A,A]] \to 0 \end{array}$$

where L(A) is the K-module $A \otimes A/im(b_3)$ equipped with a suitable Leibniz bracket (see section 1.2).

Throughout this paper the symbol \mathbb{K} denotes a commutative ring with a unit element and \otimes stands $\otimes_{\mathbb{k}}$.

CONTENTS

INTRODUCTION

- 1. Prerequisites on Leibniz Algebras
- 2. CROSSED LEIBNIZ ALGEBRAS
- 3. BIDERIVATIONS OF LEIBNIZ ALGEBRAS
- 4. Non-Abelian tensor product of Leibniz Algebras
- 5. Adjunction theorem
- 6. COHOMOLOGICAL CHARACTERIZATIONS
- 7. The Milnor-type Hochschild Homology References

1. Prerequisites on Leibniz algebras

1.1. Leibniz algebras. A Leibniz algebra is a K-module \mathfrak{g} equipped with a bilinear map $[-,-]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$, called bracket and satisfying only the Leibniz identity

$$[x, [y, z]] = [[x, y], z] - [[x, z], y]$$

for any $x, y, z \in \mathfrak{g}$. In the presence of the condition [x, x] = 0, the Leibniz identity is equivalent to the so-called *Jacobi identity*. Therefore Lie algebras are examples of Leibniz algebras.

A morphism of Leibniz algebras is a linear map $f: \mathfrak{g}_1 \to \mathfrak{g}_2$ such that

$$f([x, y]) = [f(x), f(y)]$$

for any $x, y \in \mathfrak{g}_1$. It is clear that Leibniz algebras and their morphisms form a category that we denote by (Leib).

A two-sided ideal of a Leibniz algebra \mathfrak{g} is a submodule \mathfrak{h} such that $[x, y] \in \mathfrak{h}$ and $[y, x] \in \mathfrak{h}$ for any $x \in \mathfrak{h}$ and any $y \in \mathfrak{g}$. For any two-sided ideal \mathfrak{h} in \mathfrak{g} , the quotient module $\mathfrak{g}/\mathfrak{h}$ inherits a structure of Leibniz algebra induced by the bracket of \mathfrak{g} . In particular, let ([x, x]) be the two-sided ideal in \mathfrak{g} generated by all brackets [x, x]. The Leibniz algebra $\mathfrak{g}/([x, x])$ is in fact a Lie algebra, said *canonically associated* to \mathfrak{g} and is denoted by \mathfrak{g}_{Lie} .

Let \mathfrak{g} be a Leibniz algebra. Denote by $\mathfrak{g}' := [\mathfrak{g}, \mathfrak{g}]$ the submodule generated by all brackets [x, y]. The Leibniz algebra \mathfrak{g} is said to be *perfect* if $\mathfrak{g}' = \mathfrak{g}$. It is clear that any submodule of \mathfrak{g} containing \mathfrak{g}' is a two-sided ideal in \mathfrak{g} .

1.2. Examples. Let M be a representation of a Lie algebra \mathfrak{g} (the action of \mathfrak{g} on M being denoted by m^g for $m \in M$ and $g \in \mathfrak{g}$). For any \mathfrak{g} -equivariant map $\mu : M \to \mathfrak{g}$, the bracket given by $[m, m'] := m^{\mu(m')}$ induces a structure of Leibniz (non-Lie) algebra on M. Observe that any Leibniz algebra \mathfrak{g} can be obtained in such a way by taking the canonical projection $\mathfrak{g} \to \mathfrak{g}_{Lie}$ (which is obviously \mathfrak{g}_{Lie} -equivariant).

Let A be an associative algebra and let $b_3: A^{\otimes 3} \to A^{\otimes 2}$ be the Hochschild boundary that is, the linear map defined by

$$b_3(a \otimes b \otimes c) := ab \otimes c - a \otimes bc + ca \otimes b, \ a, b, c \in A.$$

Then the bracket given by

$$[a \otimes b, c \otimes d] := (ab - ba) \otimes (cd - dc), \ a, b, c, d \in A,$$

defines a structure of Leibniz algebra on the K-module $L(A) := A^{\otimes 2}/im(b_3)$. Moreover, we have an exact sequence of K-modules

$$0 \to \operatorname{HH}_1(A) \to \operatorname{L}(A) \xrightarrow{b_2} A \to \operatorname{HH}_0(A)$$

where $HH_*(A)$ denotes the Hochschild homology groups and $b_2(x, y) = [x, y] := xy - yx$ for any $x, y \in A$.

1.3. Free Leibniz algebra. Let V be a K-module and let $\overline{T}(V) := \bigoplus_{n \ge 1} V^{\otimes n}$ be the reduced tensor module. The bracket defined inductively by

$$[x,v] = x \otimes v, \text{ if } x \in \overline{\mathrm{T}}(V) \text{ and } v \in V$$
$$[x,y \otimes v] = [x,y] \otimes v - [x \otimes v,y], \text{ if } x,y \in \overline{\mathrm{T}}(V) \text{ and } v \in V,$$

4

satisfies the Leibniz identity. The Leibniz algebra so defined is the *free Leibniz algebra* over V and is denoted by $\mathcal{F}(V)$ (see [8]). Observe that ones has

$$v_1 \otimes v_2 \otimes \cdots \otimes v_n = [\cdots [[v_1, v_2], v_3] \cdots], \forall v_1, \cdots, v_n \in V.$$

Moreover, the free Lie algebra over V is nothing but the Lie algebra $\mathcal{F}(V)_{Lie}$.

2. Crossed Leibniz algebras

2.1. Leibniz action. Let \mathfrak{g} and \mathfrak{M} be Leibniz algebras. A *Leibniz action* of \mathfrak{g} on \mathfrak{M} is a couple of bilinear maps

$$\mathfrak{g} \times \mathfrak{M} \to \mathfrak{M}, \ (g,m) \mapsto {}^{g}\!m \quad \text{and} \quad \mathfrak{M} \times \mathfrak{g} \to \mathfrak{M}, \ (m,g) \mapsto m^{g}$$

satisfying the axioms

i) $m^{[g,g']} = (m^g)^{g'} - (m^{g'})^g$, ii) $^{[g,g']}m = ({}^gm)^{g'} - {}^g(m^{g'})$, iii) ${}^g({}^g'm) = -{}^g(m^{g'})$, iv) ${}^g[m,m'] = [{}^gm,m'] - [{}^gm',m]$, v) $[m,m']^g = [m^g,m'] + [m,m'{}^g]$, vi) $[m,{}^gm'] = -[m,m'{}^g]$

for any $m, m' \in \mathfrak{M}$ and $g, g' \in \mathfrak{g}$. We say that \mathfrak{M} is a *Leibniz* \mathfrak{g} -algebra. Observe that the axiom i) applied to the triples (m; g, g') and (m; g', g) yields the relation

$$m^{[g,g']} = -m^{[g',g]}.$$

2.2. Examples. Any two-sided ideal of a Leibniz algebra \mathfrak{g} is a Leibniz \mathfrak{g} -algebra, the action being given by the initial bracket.

A K-module M equipped with two operations of a Leibniz algebra \mathfrak{g} satisfying the axioms i), ii) and iii) is called a *representation of* \mathfrak{g} (see [8]). Therefore representations of a Leibniz algebra \mathfrak{g} are abelian Leibniz \mathfrak{g} -algebras.

2.3. Crossed Leibniz algebras. Let \mathfrak{g} be a Leibniz algebra. A *pre-crossed Leibniz* \mathfrak{g} -algebra is a Leibniz \mathfrak{g} -algebra \mathfrak{M} equipped with a morphism of Leibniz algebras $\mu : \mathfrak{M} \to \mathfrak{g}$ such that

$$\mu({}^{g}m) = [g, \mu(m)] \text{ and } \mu(m^{g}) = [\mu(m), g]$$

for any $g \in \mathfrak{g}$ and $m \in \mathfrak{M}$. Moreover if the relations

 $^{\mu(m)}m' = [m, m']$ and $m^{\mu(m')} = [m, m'], \forall m, m' \in \mathfrak{M},$

hold, then (\mathfrak{M}, μ) is called a *crossed Leibniz* \mathfrak{g} -algebra.

2.4. Examples. Any Leibniz algebra \mathfrak{g} , equipped with the identity map $\mathrm{id}_{\mathfrak{g}}$, is a crossed Leibniz \mathfrak{g} -algebra.

Any two-sided ideal \mathfrak{h} of a Leibniz algebra \mathfrak{g} , equipped with the inclusion map $\mathfrak{h} \hookrightarrow \mathfrak{g}$, is a crossed Leibniz \mathfrak{g} -algebra.

Let $\alpha : \mathfrak{c} \to \mathfrak{g}$ be a central extension of Leibniz algebras (i.e., a surjective morphism whose kernel is contained in the centre of \mathfrak{c} , see [4]). Define operations of \mathfrak{g} on \mathfrak{c} by

$${}^{g}c := [\alpha^{-1}(g), c] \text{ and } c^{g} := [c, \alpha^{-1}(g)]$$

where $\alpha^{-1}(g)$ is any pre-image of g in \mathfrak{c} . Then (\mathfrak{c}, α) is a crossed Leibniz g-algebra.

Proposition 2.1. For any pre-crossed Leibniz g-algebra (\mathfrak{M}, μ) , the image $\operatorname{im}(\mu)$ (resp. the kernel $\operatorname{ker}(\mu)$) is a two-sided ideal in \mathfrak{g} (resp. \mathfrak{M}). Moreover, if (\mathfrak{M}, μ) is crossed, then $\operatorname{ker}(\mu)$ is contained in the centre of \mathfrak{M} .

Proof. Let *m* be an element of \mathfrak{M} . For any $g \in \mathfrak{g}$, we have

$$[\mu(m), g] = \mu(m^g) \in im(\mu)$$
 and $[g, \mu(m)] = \mu({}^gm) \in im(\mu).$

Thus, $\operatorname{im}(\mu)$ is a two-sDided ideal in \mathfrak{g} . Assume that $m \in \ker(\mu)$; then for any $m' \in \mathfrak{M}$, we have

$$\mu([m,m']) = [\mu(m),\mu(m')] = 0 = [\mu(m'),\mu(m)] = \mu([m',m]).$$

Therefore ker(μ) is a two-sided ideal in \mathfrak{M} . Moreover if the Leibniz action of \mathfrak{g} on \mathfrak{M} is crossed, then we have

$$[m, m'] = {}^{\mu(m)}m' = 0 = m'{}^{\mu(m)} = [m', m]$$

for any $m \in \ker(\mu)$ and $m' \in \mathfrak{M}$. Thus $\ker(\mu)$ is contained in the centre of \mathfrak{M} .

2.5. Morphism of pre-crossed Leibniz algebras. Let \mathfrak{g} be a Leibniz algebra and let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g} -algebras. A morphism from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) is a Leibniz algebra morphism $f: \mathfrak{M} \to \mathfrak{N}$ such that

$$f({}^{g}m) = {}^{g}(f(m)), \ f(m^{g}) = (f(m))^{g} \text{ and } \mu = \nu f$$

for any $m \in \mathfrak{M}$ and $g \in \mathfrak{g}$. A morphism of crossed Leibniz \mathfrak{g} -algebras is the same as a morphism of pre-crossed Leibniz \mathfrak{g} -algebras. It is clear that pre-crossed (resp. crossed) Leibniz \mathfrak{g} -algebras and their morphisms form a category that we denote by (**pc-Leib**(\mathfrak{g})) (resp. (**c-Leib**(\mathfrak{g}))).

Proposition 2.2. Let $f : (\mathfrak{M}, \mu) \to (\mathfrak{N}, \nu)$ be a crossed Leibniz g-algebra morphism. Then (\mathfrak{M}, f) is a crossed Leibniz \mathfrak{N} -algebra via the Leibniz action of \mathfrak{N} on \mathfrak{M} given by

$${}^nm := {}^{\nu(n)}m \quad and \quad m^n := m^{\nu(n)}, \ \forall \ m \in \mathfrak{M}, n \in \mathfrak{N}.$$

Proof. One easily checks that \mathfrak{M} is a Leibniz \mathfrak{N} -algebra. For any $m, m' \in \mathfrak{M}$ and $n \in \mathfrak{N}$, we have

$$f({}^{n}m) = f({}^{\nu(n)}m) = {}^{\nu(n)}f(m) = [n, f(m)],$$

$$f(m^{n}) = f(m^{\nu(n)}) = f(m)^{\nu(n)} = [f(m), n];$$

thus (\mathfrak{M}, f) is a pre-crossed Leibniz \mathfrak{N} -algebra. Moreover we have

thus (\mathfrak{M}, f) is a crossed Leibniz \mathfrak{N} -algebra.

2.6. Exact sequences. We say that a sequence

$$(\mathfrak{L},\lambda) \stackrel{\alpha}{\to} (\mathfrak{M},\mu) \stackrel{\beta}{\to} (\mathfrak{N},\nu)$$

is *exact* in the category $(\mathbf{pc-Leib}(\mathfrak{g}))$ (resp. $(\mathbf{c-Leib}(\mathfrak{g}))$ if the sequence

$$\mathfrak{L} \xrightarrow{\alpha} \mathfrak{M} \xrightarrow{\beta} \mathfrak{N}$$

is exact as sequence of Leibniz algebras.

Proposition 2.3. If the sequence

$$(\mathfrak{L},\lambda) \stackrel{lpha}{\to} (\mathfrak{M},\mu) \stackrel{eta}{\to} (\mathfrak{N},\nu)$$

is exact in the category $(\mathbf{pc-Leib}(\mathfrak{g}))$ (resp. $(\mathbf{c-Leib}(\mathfrak{g}))$), then the map λ is zero. Moreover if the Leibniz \mathfrak{g} -algebra (\mathfrak{L}, λ) is crossed, then the Leibniz algebra \mathfrak{L} is abelian.

Proof. Indeed, since $\beta \alpha = 0$, we have $\lambda = \nu \beta \alpha = 0$. From whence ker $(\lambda) = \mathfrak{L}$, and by Proposition 2.1, it is clear that the Leibniz algebra \mathfrak{L} is abelian.

3. Biderivations of Leibniz algebras

In this section, we fix a Leibniz algebra \mathfrak{g} .

3.1. Derivations and anti-derivations. Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz galgebras. A *derivation* from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) is a linear map $d : \mathfrak{M} \to \mathfrak{N}$ such that

$$d([m, m']) = d(m)^{\mu(m')} + {}^{\mu(m)}d(m'), \ \forall \ m, m' \in \mathfrak{M}.$$

An anti-derivation from (\mathfrak{M},μ) to (\mathfrak{N},ν) is a linear map $D:\mathfrak{M}\to\mathfrak{N}$ such that

$$D([m, m']) = D(m)^{\mu(m')} - D(m')^{\mu(m)}, \ \forall \ m, m' \in \mathfrak{M}.$$

3.2. Examples. Let (\mathfrak{N}, ν) be a crossed Leibniz \mathfrak{g} -algebra and let n be any element of \mathfrak{N} . By the axiom iii) (resp. i)) of 2.1, the linear map

$$\mathfrak{g} \to \mathfrak{N}, \ g \mapsto {}^{g}\!n \quad (\text{resp. } \mathfrak{g} \to \mathfrak{N}, \ g \mapsto -n^{g})$$

is a derivation (resp. an anti-derivation) from $(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}})$ to (\mathfrak{N}, ν) .

3.3. Biderivations. Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g} -algebras. We denote by Bider_{\mathfrak{g}}($\mathfrak{M}, \mathfrak{N}$) the free \mathbb{K} -module generated by the triples (d, D, g), where d (resp. D) is a derivation (resp. an anti-derivation) from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) and g is an element of \mathfrak{g} such that

$$u(d(m)) = \mu(m^g), \ \nu(D(m)) = -\mu({}^gm), \ ^hd(m) = {}^hD(m), \ D(m^h) = -D({}^hm)$$

for any $h \in \mathfrak{g}$ and $m \in \mathfrak{M}$.

Proposition 3.1. If the Leibniz \mathfrak{g} -algebra (\mathfrak{N}, ν) is crossed, then there is a Leibniz algebra structure on the \mathbb{K} -module $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ for the bracket defined by

$$\left[\left(d, D, g \right), \left(d', D', g' \right) \right] := \left(\delta, \Delta, \left[g, g' \right] \right)$$

where

$$\delta(m) := d'(m^g) - d(m^{g'}) \quad and \quad \Delta(m) = -D(m^{g'}) - d'({}^g\!m), \ \forall \ m \in \mathfrak{M}$$

Proof. Let us show that the maps δ and Δ are respectively a derivation and an antiderivation. Indeed, for any $m, m' \in \mathfrak{M}$, we have

$$\begin{split} \delta([m,m']) &= d'([m,m']^g) - d([m,m']^{g'}) \\ &= d'([m^g,m']) + d'([m,m'^g]) - d([m^{g'},m']) - d([m,m'^{g'}]) \\ &= d'(m^g)^{\mu(m')} + {}^{\mu(m^g)}d'(m') + d'(m)^{\mu(m'^g)} + {}^{\mu(m)}d'(m'^g) \\ &- d(m^{g'})^{\mu(m')} - {}^{\mu(m^{g'})}d(m') - d(m)^{\mu(m'^{g'})} - {}^{\mu(m)}d(m'^{g'}) \\ &= (d'(m^g) - d(m^{g'}))^{\mu(m')} + {}^{\mu(m)}(d'(m'^g) - d(m'^{g'})) + {}^{\nu(d(m))}d'(m') \\ &+ d'(m)^{\nu(d(m'))} - {}^{\nu(d'(m))}d(m') - d(m)^{\nu(d'(m'))} \\ &= \delta(m)^{\mu(m')} + {}^{\mu(m)}\delta(m') + [d(m), d'(m')] \\ &+ [d'(m), d(m')] - [d'(m), d(m')] - [d(m), d'(m')] \\ &= \delta(m)^{\mu(m')} + {}^{\mu(m)}\delta(m') \end{split}$$

 and

$$\begin{split} \Delta([m,m']) &= -D([m,m']^{g'}) - d'({}^{g}\![m,m'] \\ &= -D([m^{g'},m']) - D([m,m'^{g'}]) - d'([{}^{g}\!m,m']) + d'([{}^{g}\!m',m]) \\ &= -D(m^{g'})^{\mu(m')} + D(m')^{\mu(m^{g'})} - D(m)^{\mu(m'g')} + D(m'^{g'})^{\mu(m)} \\ &- d'({}^{g}\!m)^{\mu(m')} - {}^{\mu({}^{g}\!m)} d'(m') + d'({}^{g}\!m')^{\mu(m)} + {}^{\mu({}^{g}\!m')} d'(m) \\ &= (-D(m^{g'}) - d'({}^{g}\!m))^{\mu(m')} - (-D(m'{}^{g'}) - d'({}^{g}\!m'))^{\mu(m)} + D(m')^{\nu(d'(m))} \\ &- D(m)^{\nu(d'(m'))} + {}^{\nu(D(m))} d'(m') - {}^{\nu(D(m')))} d'(m) \\ &= \Delta(m)^{\mu(m')} - \Delta(m')^{\mu(m)} + [D(m'), d'(m)] \\ &- [D(m), d'(m')] + [D(m), d'(m')] - [D(m'), d'(m)] \\ &= \Delta(m)^{\mu(m')} - \Delta(m')^{\mu(m)}. \end{split}$$

On the other hand, we have

$$\nu(\delta(m)) = \nu(d'(m^g)) - \nu(d(m^{g'})) = \mu((m^g)^{g'}) - \mu((m^{g'})^g) = \mu(m^{[g,g']}),$$

$$\nu(\Delta(m)) = -\nu(D(m^{g'})) - \nu(d'({}^gm)) = \mu({}^g(m^{g'})) - \mu(({}^gm)^{g'}) = -\mu({}^{[g,g']}m),$$

$${}^{h}\delta(m) = {}^{h}d'(m^{g}) - {}^{h}d(m^{g'}) = {}^{h}D'(m^{g}) - {}^{h}D(m^{g'})$$

= $-{}^{h}D'({}^{g}m) - {}^{h}D(m^{g'}) = -{}^{h}d'({}^{g}m) - {}^{h}D(m^{g'})$
= ${}^{h}\Delta(m),$

$$\Delta({}^{h}m) = -D(({}^{h}m){}^{g'}) - d'({}^{g}({}^{h}m))$$

= $-D({}^{[h,g']}m) - D({}^{h}(m{}^{g'})) + d'({}^{g}(m{}^{h}))$
= $D((m{}^{h}){}^{g'}) + d'({}^{g}(m{}^{h})) = -\Delta(m{}^{h}).$

Therefore the triple $(\delta, \Delta, [g, g'])$ is a biderivation from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) . Moreover, let (d, D, g), (d', D', g') and (d'', D'', g'') be biderivations from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) . We set

$$\begin{aligned} (\delta, \Delta, [g', g'']) &\coloneqq [(d', D', g'), (d'', D'', g'')], \\ (\delta_0, \Delta_0, g_0) &\coloneqq [(d, D, g), (\delta, \Delta, [g', g''])], \\ (\delta', \Delta', [g, g']) &\coloneqq [(d, D, g), (d', D', g')], \\ (\delta_1, \Delta_1, g_1) &\coloneqq [(\delta', \Delta', [g, g']), (d'', D'', g'')], \\ (\delta'', \Delta'', [g, g'']) &\coloneqq [(d, D, g), (d'', D'', g'')], \\ (\delta_2, \Delta_2, g_2) &\coloneqq [(\delta'', \Delta'', [g, g'']), (d', D', g')]. \end{aligned}$$

It is clear that $g_0 = g_1 - g_2$. For any $m \in \mathfrak{M}$, we have

$$\begin{aligned} (\delta_1 - \delta_2)(m) &= d''(m^{[g,g']}) - \delta'(m^{g''}) - d'(m^{[g,g'']}) + \delta''(m^{g'}) \\ &= d''((m^g)^{g'}) - d''((m^{g'})^g) - d'((m^{g''})^g) + d((m^{g''})^{g'}) \\ &- d'((m^g)^{g''}) + d'((m^{g''})^g) + d''((m^{g'})^g) - d((m^{g'})^{g''}) \\ &= d''((m^g)^{g'}) - d'((m^g)^{g''}) - d(m^{[g',g'']}) \\ &= \delta(m^g) - d(m^{[g',g'']}) = \delta_0(m) \end{aligned}$$

and

$$\begin{aligned} (\Delta_1 - \Delta_2)(m) &= -\Delta'(m^{g''}) - d''([g,g']m) + \Delta''(m^{g'}) + d'([g,g'']m) \\ &= D((m^{g''})^{g'}) + d'(g(m^{g''})) - d''((gm)^{g'}) + d''(g(m^{g'})) \\ &- D((m^{g'})^{g''}) - d''(g(m^{g'})) + d'((gm)^{g''}) - d'(g(m^{g''})) \\ &= -D(m^{[g',g'']}) - d''((gm)^{g'}) + d'((gm)^{g''}) \\ &= -D(m^{[g',g'']}) - \delta(gm) = \Delta_0(m). \end{aligned}$$

Therefore the K-module $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M},\mathfrak{N})$ is a Leibniz algebra.

Let us equip the set $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M},\mathfrak{N})$ with a Leibniz action of \mathfrak{g} .

Proposition 3.2. Let (\mathfrak{M}, μ) (resp. (\mathfrak{N}, ν)) be a pre-crossed (resp. crossed) Leibniz \mathfrak{g} -algebra. The set $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ is a pre-crossed Leibniz \mathfrak{g} -algebra for the operations defined by

$${}^{h}(d, D, g) := ({}^{h}d, {}^{h}D, [h, g]) \quad and \quad (d, D, g)^{h} := (d^{h}, D^{h}, [g, h])$$

where

$${^{h}d}(m) = d(m^{h}) - d(m)^{h}, \ {^{h}D}(m) := {^{h}d}(m) - d{^{h}m},$$

 $(d^{h})(m) := d(m)^{h} - d(m^{h}), \ (D^{h})(m) := D(m)^{h} - D(m^{h}).$

Proof. Everything can be smoothly checked and we merely give an example of these verifications. By definition we have

For any $m \in \mathfrak{M}$ we have

$$\begin{aligned} (\delta_1 - \delta_2)(m) &= d'(m^{[h,g]}) - ({}^hd)(m^{g'}) - d(m^{[h,g']}) + ({}^hd')(m^g) \\ &= d'((m^h)^g) - d'((m^g)^h) - d((m^{g'})^h) + d(m^{g'})^h \\ &- d((m^h)^{g'}) + d((m^{g'})^h) + d'((m^g)^h) - d'(m^g)^h \\ &= (d'((m^h)^g) - d((m^h)^{g'})) - (d'(m^g) - d(m^{g'}))^h \\ &= \delta(m^h) - \delta(m)^h = ({}^h\delta)(m) \end{aligned}$$

and

$$(\Delta_{1} - \Delta_{2})(m) = - ({}^{h}D)(m^{g'}) - d'([{}^{h,g]}m) + ({}^{h}D')(m^{g}) + d([{}^{h,g'}]m)$$

$$= - {}^{h}D(m^{g'}) + d({}^{h}(m^{g'})) - d'(({}^{h}m)^{g}) + d'({}^{h}(m^{g}))$$

$$+ {}^{h}D'(m^{g}) - d'({}^{h}(m^{g})) + d(({}^{h}m)^{g'}) - d({}^{h}(m^{g'}))$$

$$= {}^{h}(D'(m^{g}) - D(m^{g'})) - (d'(({}^{h}m)^{g}) - d(({}^{h}m)^{g'}))$$

$$= {}^{h}\delta(m) - \delta({}^{h}m) = ({}^{h}\Delta)(m).$$

Thus we get

$${}^{h}[(d, D, g), (d', D', g')] = [{}^{h}(d, D, g), (d', D', g')] - [{}^{h}(d', D', g'), (d, D, g)].$$

Now we can state the fundamental result which is a consequence of Propositions 3.1 and 3.2.

9

Theorem 3.3. For any pre-crossed (resp. crossed) Leibniz g-algebra (\mathfrak{M}, μ) (resp. (\mathfrak{N}, ν)), the Leibniz g-algebra Bider $\mathfrak{g}(\mathfrak{M}, \mathfrak{N})$ is pre-crossed for the morphism

$$\rho : \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N}) \to \mathfrak{g}, \ (d, D, g) \mapsto g.$$

3.4. Remarks. For any element g of \mathfrak{g} , the linear map $\operatorname{ad}_g : h \mapsto [h,g]$ (resp. $\operatorname{Ad}_g : h \mapsto -[g,h]$) is a derivation (resp. an anti-derivation) of the Leibniz algebra \mathfrak{g} . In the classical sense (i.e., without "crossing", see [7]) the couple $(\operatorname{ad}_g, \operatorname{Ad}_g)$ is called *inner biderivation* of \mathfrak{g} . Therefore the pre-crossed Leibniz \mathfrak{g} -algebra Bider $\mathfrak{g}(\mathfrak{M}, \mathfrak{N})$ can be seen as the set of biderivations from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) over inner biderivations of \mathfrak{g} .

On the other hand, given a pre-crossed Leibniz \mathfrak{g} -algebra (\mathfrak{M}, μ) , one easily checks that the map $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, -)$ is a functor from the category of crossed Leibniz \mathfrak{g} -algebras to the category of pre-crossed Leibniz \mathfrak{g} -algebras.

4. Non-abelian tensor product of Leibniz algebras

4.1. Leibniz pairings. Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual Leibniz actions on one another. A *Leibniz pairing* of \mathfrak{M} and \mathfrak{N} is a triple (\mathfrak{P}, h_1, h_2) where \mathfrak{P} is a Leibniz algebra and $h_1: \mathfrak{M} \times \mathfrak{N} \to \mathfrak{P}$ (resp. $h_2: \mathfrak{N} \times \mathfrak{M} \to \mathfrak{P}$) is a bilinear map such that

$$\begin{aligned} h_1(m, [n, n']) &= h_1(m^n, n') - h_1(m^{n'}, n), \\ h_2(n, [m, m']) &= h_2(n^m, m') - h_2(n^{m'}, m), \\ h_1([m, m'], n) &= h_2(^mn, m') - h_1(m, n^{m'}), \\ h_2([n, n'], m) &= h_1(^nm, n') - h_2(n, m^{n'}), \\ h_1(m, ^{m'}n) &= -h_1(m, n^{m'}), h_2(n, ^{n'}m) &= -h_2(n, m^{n'}), \\ h_1(m^n, ^{m'}n') &= [h_1(m, n), h_1(m', n')] &= h_2(^mn, m'^{n'}), \\ h_1(^nm, n'^{m'}) &= [h_2(n, m), h_2(n', m')] &= h_2(n^m, ^{n'}m'), \\ h_1(m^n, n'^{m'}) &= [h_1(m, n), h_2(n', m')] &= h_2(^mn, n'^{m'}), \\ h_1(m^n, n'^{m'}) &= [h_2(n, m), h_2(n', m')] &= h_2(n^m, n'^{m'}), \\ h_1(^nm, m'^{n'}) &= [h_2(n, m), h_1(m', n')] &= h_2(n^m, m'^{n'}), \end{aligned}$$

for any $m, m' \in \mathfrak{M}$ and $n, n' \in \mathfrak{N}$.

4.2. Example. Let \mathfrak{M} and \mathfrak{N} be two-sided ideals of a same Leibniz algebra \mathfrak{g} . Take $\mathfrak{P} := \mathfrak{M} \cap \mathfrak{N}$ and define

$$h_1(m,n) := [m,n]$$
 and $h_2(n,m) := [n,m].$

Then the triple (\mathfrak{P}, h_1, h_2) is a Leibniz pairing of \mathfrak{M} and \mathfrak{N} .

4.3. Non-abelian tensor product. A Leibniz pairing (\mathfrak{P}, h_1, h_2) of \mathfrak{M} and \mathfrak{N} is said to be *universal* if for any other Leibniz pairing $(\mathfrak{P}', h'_1, h'_2)$ of \mathfrak{M} and \mathfrak{N} there exists a unique Leibniz algebra morphism $\theta : \mathfrak{P} \to \mathfrak{P}'$ such that

$$\theta h_1 = h'_1$$
 and $\theta h_2 = h'_2$.

It is clear that a universal pairing, when it exists, is unique up to a unique isomorphism. Here is a construction of the universal pairing as a *non-abelian tensor product*.

Definition-Theorem 4.1. Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual Leibniz actions on one another. Let V be the free \mathbb{K} -module generated by the symbols m * n and n * m where $m \in \mathfrak{M}$ and $n \in \mathfrak{N}$. Let $\mathfrak{M} * \mathfrak{N}$ be the Leibniz algebra quotient of the free Leibniz algebra generated by V by the two-sided ideal defined by the relations

- i) $\lambda(m*n) = \lambda m*n = m*\lambda n$, $\lambda(n*m) = \lambda n*m = n*\lambda m$,
- *ii)* (m+m')*n = m*n + m'*n, (n+n')*m = n*m + n'*m, m*(n+n') = m*n + m*n', n*(m+m') = n*m + n*m',
- *iii)* $m * [n, n'] = m^n * n' m^{n'} * n, \ n * [m, m'] = n^m * m' n^{m'} * m,$ $[m, m'] * n = {}^m\!n * m' - m * n^{m'}, \ [n, n'] * m = {}^n\!m * n' - n * m^{n'},$
- *iv*) $m * {}^{m'}n = -m * n{}^{m'}, n * {}^{n'}m = -n * m{}^{n'},$
- $\begin{array}{l} v) & m^n * {}^{m'}n' = [m*n,m'*n'] = {}^m\!n*m'{}^{n'}, \\ & m^n*n'{}^{m'} = [m*n,n'*m'] = {}^m\!n*{}^{n'}m', \\ & {}^n\!m*n'{}^{m'} = [n*m,n'*m'] = n^m*{}^{n'}m', \\ & {}^n\!m*{}^{m'}n' = [n*m,m'*n'] = n^m*{}^{m'}m' \\ \end{array}$

for any $\lambda \in \mathbb{K}$, $m, m' \in \mathfrak{M}$, $n, n' \in \mathfrak{N}$. Define maps

$$h_1: \mathfrak{M} \times \mathfrak{N} \to \mathfrak{M} \star \mathfrak{N}, \ h_1(m,n) := m * n$$

and

$$h_2: \mathfrak{N} \times \mathfrak{M} \to \mathfrak{M} \star \mathfrak{N}, \ h_2(n,m) := n * m$$

Then the triple $(\mathfrak{M} \star \mathfrak{N}, h_1, h_2)$ is the universal Leibniz pairing of \mathfrak{M} and \mathfrak{N} and called the non-abelian tensor product (or tensor product for short) of \mathfrak{M} and \mathfrak{N} .

Proof. It is straightforward to see that the triple $(\mathfrak{M} \star \mathfrak{N}, h_1, h_2)$ so-defined is a Leibniz pairing of \mathfrak{M} and \mathfrak{N} . For the universality, notice that if $(\mathfrak{P}, h'_1, h'_2)$ is another Leibniz pairing of \mathfrak{M} and \mathfrak{N} , then the map θ is necessarily given on generators by

$$\theta(m*n) = h'_1(m,n)$$
 and $\theta(n*m) = h'_2(n,m)$

for any $m \in \mathfrak{M}$ and $n \in \mathfrak{N}$.

As an illustration of this construction, we give now a description of the non-abelian tensor product when the actions are trivial.

Proposition 4.2. If the Leibniz algebras \mathfrak{M} and \mathfrak{N} act trivially on each other, then there is an isomorphism of abelian Leibniz algebras

$$\mathfrak{M}\star\mathfrak{N}\cong\mathfrak{M}_{a\,b}\otimes\mathfrak{N}_{a\,b}\ \oplus\ \mathfrak{N}_{a\,b}\otimes\mathfrak{M}_{a\,b}$$

where $\mathfrak{M}_{ab} := \mathfrak{M}/[\mathfrak{M}, \mathfrak{M}]$ and $\mathfrak{N}_{ab} := \mathfrak{N}/[\mathfrak{N}, \mathfrak{N}]$.

Proof. Recall that the underlying \mathbb{K} -module of the free Leibniz algebra generated by V is

$$\overline{\mathrm{T}}(V) = V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes n} \oplus \cdots$$

Since the actions are trivial, the definition of the bracket on $\overline{T}(V)$ and the relations v) enable us to see that $\mathfrak{M}\star\mathfrak{N}$ is an abelian Leibniz algebra and that the summands $V^{\otimes n}$ (for $n \geq 2$) are killed. Relations i) and ii) of 4.1 say that the K-module $\mathfrak{M}\star\mathfrak{N}$ is the quotient of $\mathfrak{M}\otimes\mathfrak{N}\oplus\mathfrak{N}\otimes\mathfrak{M}$ by the relations iii). These later imply that $\mathfrak{M}\star\mathfrak{N}$ is the abelian Leibniz algebra $\mathfrak{M}_{ab}\otimes\mathfrak{N}_{ab}\oplus\mathfrak{N}_{ab}\otimes\mathfrak{M}_{ab}$. \Box

4.4. Compatible Leibniz actions. Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual Leibniz actions on one another. We say that these actions are *compatible* if we have

for any $m, m' \in \mathfrak{M}$ and $n, n' \in \mathfrak{N}$.

4.5. Examples. If \mathfrak{M} and \mathfrak{N} are two-sided ideals of a same Leibniz algebra, then the actions (given by the initial bracket) are compatible.

Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz g-algebras. Then one can define a Leibniz action of \mathfrak{M} on \mathfrak{N} (resp. of \mathfrak{N} on \mathfrak{M}) by setting

$${}^{m}n := {}^{\mu(m)}n \text{ and } n^{m} := n^{\mu(m)}$$

(resp. ${}^{n}m := {}^{\nu(n)}m \text{ and } m^{n} := m^{\nu(n)}$).

If the Leibniz g-algebras (\mathfrak{M}, μ) and (\mathfrak{N}, ν) are crossed, then these Leibniz actions are compatible.

4.6. First crossed structure. Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual compatible actions on one another. Consider the operations of \mathfrak{M} on $\mathfrak{M} \star \mathfrak{N}$ given by

$${}^{m}(m'*n') := [m,m']*n' - {}^{m}n'*m', \ {}^{m}(n'*m') := {}^{m}n'*m' - [m,m']*n', (m*n)^{m'} := [m,m']*n + m*n^{m'}, \ (n*m)^{m'} := n^{m'}*m + n*[m,m']$$

and those of \mathfrak{N} on $\mathfrak{M} \star \mathfrak{N}$ given by

$${}^{n}(m'*n') := {}^{n}m'*n' - [n,n']*m', \ {}^{n}(n'*m') := [n,n']*m' - {}^{n}m'*n', (m*n)^{n'} := m^{n'}*n + m*[n,n'], \ (n*m)^{n'} := [n,n']*m + n*m^{n'}$$

for any $m, m' \in \mathfrak{M}$ and $n, n' \in \mathfrak{N}$. Then we have

Proposition 4.3. With the above operations, the map

$$\mu: \mathfrak{M} \star \mathfrak{N} \to \mathfrak{M}, \ m * n \mapsto m^n, \ n * m \mapsto {}^n m$$
$$(resp. \ \nu: \mathfrak{M} \star \mathfrak{N} \to \mathfrak{N}, \ m * n \mapsto {}^m n, \ n * m \mapsto n^m)$$

induces on $\mathfrak{M} \star \mathfrak{N}$ a structure of crossed Leibniz \mathfrak{M} -algebra (resp. \mathfrak{N} -algebra).

Proof. Once again everything can be readily checked thanks to the compatibility conditions. For example we have

$${}^{\mu(m*n)}(m'*n') = {}^{m^{n}}(m'*n') = [m^{n},m']*n' - {}^{(m^{n})}n'*m'$$
$$= {}^{(m^{n})}n'*m' - m^{n}*n'{}^{m'} - {}^{(m^{n})}n'*m'$$
$$= m^{n}*{}^{m'}n = [m*n,m'*n']$$

for any $m, m' \in \mathfrak{M}$ and $n, n' \in \mathfrak{N}$.

4.7. Second crossed structure. Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g} -algebras, equipped with the mutual Leibniz actions given in Examples 4.5. One easily checks that the operations given by

$${}^{g}(m*n) := {}^{g}\!\!m*n - {}^{g}\!\!n*m, \; {}^{g}\!(n*m) := {}^{g}\!\!n*m - {}^{g}\!\!m*n, \\ (m*n)^{g} := m^{g}*n + m*n^{g}, \; (n*m)^{g} := n^{g}*m + n*m^{g},$$

define a Leibniz action of \mathfrak{g} on $\mathfrak{M} \star \mathfrak{N}$.

Proposition 4.4. Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz g-algebras. Then the map $\eta : \mathfrak{M} \star \mathfrak{N} \to \mathfrak{g}$ defined on generators by

 $\eta(m*n):=[\mu(m),\nu(n)]\quad and\quad \eta(n*m):=[\nu(n),\mu(m)],$

conferes to $\mathfrak{M} \star \mathfrak{N}$ a structure of pre-crossed Leibniz g-algebra. Moreover, if one of the Leibniz g-algebras \mathfrak{M} or \mathfrak{N} is crossed, then the Leibniz g-algebra $\mathfrak{M} \star \mathfrak{N}$ is crossed.

Proof. It is immediate to check that the map η passes to the quotient and defines a Leibniz algebra morphism. Moreover we have

$$\begin{split} \eta({}^g(m*n)) &= \left[\mu({}^gm), \nu(n)\right] - \left[\nu({}^gn), \mu(m)\right] \\ &= \left[\left[g, \mu(m)\right], \nu(n)\right] - \left[\left[g, \nu(n)\right], \mu(m)\right] \\ &= \left[g, \left[\mu(m), \nu(n)\right]\right] = \left[g, \eta(m*n)\right]; \\ \eta({}^g(n*m)) &= -\eta({}^g(m*n)) = -\left[g, \eta(m*n)\right] \\ &= -\left[g, \left[\mu(m), \nu(n)\right]\right] = \left[g, \left[\nu(n), \mu(m)\right]\right] = \left[g, \eta(n*m)\right]; \\ \eta((m*n)^g) &= \left[\mu(m^g), \nu(n)\right] + \left[\mu(m), \nu(n^g)\right] \\ &= \left[\left[\mu(m), g\right], \nu(n)\right] + \left[\mu(m), \left[\nu(n), g\right]\right] \\ &= \left[\left[\mu(m), \nu(n)\right], g\right] = \left[\eta(m*n), g\right]; \\ \eta((n*m)^g) &= \left[\nu(n^g), \mu(m)\right] + \left[\nu(n), \mu(m^g)\right] \\ &= \left[\left[\nu(n), g\right], \mu(m)\right] + \left[\nu(n), \left[\mu(m), g\right]\right] \\ &= \left[\left[\nu(n), \mu(m)\right], g\right] = \left[\eta(n*m), g\right]; \end{split}$$

thus $(\mathfrak{M} \star \mathfrak{N}, \eta)$ is a pre-crossed Leibniz g-algebra. Assume that, for instance, the Leibniz g-algebra \mathfrak{M} is crossed. Then we have

$${}^{\eta(m*n)}(m'*n') = {}^{[\mu(m),\nu(n)]}(m'*n') = {}^{\mu(m^{\nu(n)})}(m'*n')$$

$$= {}^{\mu(m^{\nu(n)})}m'*n' - {}^{\mu(m^{\nu(n)})}n'*m'$$

$$= {}^{[m^{\nu(n)},m']}*n' - {}^{\mu(m^{\nu(n)})}n'*m'$$

$$= {}^{\mu(m^{\nu(n)})}n'*m' - {}^{\mu(m')}n'*n'{}^{\mu(m')} - {}^{\mu(m^{\nu(n)})}n'*m'$$

$$= {}^{m^{\nu(n)}}*{}^{\mu(m')}n' = {}^{[m*n,m'*n']}$$

and

$$(m * n)^{\eta(m'*n')} = (m * n)^{[\mu(m'),\nu(n')]} = (m * n)^{\mu(m'^{\nu(n')})}$$

= $m^{\mu(m'^{\nu(n')})} * n + m * n^{\mu(m'^{\nu(n')})}$
= $[m, m'^{\nu(n')}] * n + m * n^{\mu(m'^{\nu(n')})}$
= $\mu(m)n * m'^{\nu(n')} - m * n^{\mu(m'^{\nu(n')})} + m * n^{\mu(m'^{\nu(n')})}$
= $[m * n, m' * n'].$

By the same way, one easily gets

$${}^{\eta(m*n)}(n'*m') = [m*n, n'*m'], \ (m*n)^{\eta(n'*m')} = [m*n, n'*m'],$$

$${}^{\eta(n*m)}(n'*m') = [n*m, n'*m'], \ (n*m)^{\eta(n'*m')} = [n*m, n'*m'],$$

$${}^{\eta(n*m)}(m'*n') = [n*m, m'*n'], \ (n*m)^{\eta(m'*n')} = [n*m, m'*n'].$$

So we have proved that the Leibniz $\mathfrak{g}\text{-algebra}\ \mathfrak{M}\star\mathfrak{N}$ is crossed.

4.8. Remark. It is clear that if (\mathfrak{M}, μ) (resp. (\mathfrak{N}, ν)) is a crossed Leibniz \mathfrak{g} -algebra, then the map $\mathfrak{M} \star -$ (resp. $-\star \mathfrak{N}$) is a functor from the category of pre-crossed Leibniz \mathfrak{g} -algebras to the category of crossed Leibniz \mathfrak{g} -algebras.

Proof. Taking into account Proposition 2.3, let

$$0 \to (\mathfrak{P}, 0) \stackrel{f}{\to} (\mathfrak{Q}, \lambda) \stackrel{g}{\to} (\mathfrak{R}, \gamma) \to 0$$

be an exact sequence of pre-crossed Leibniz $\mathfrak{g}\text{-algebras}.$ Consider the sequence of Leibniz algebras

$$F(\mathfrak{P}) \xrightarrow{F(f)} F(\mathfrak{Q}) \xrightarrow{F(g)} F(\mathfrak{R}) \to 0.$$

It is clear that the morphism F(g) is surjective. Since the map F(f) is a morphism of crossed Leibniz g-algebras, by Proposition 2.2, $(F(\mathfrak{P}), F(f))$ is a crossed Leibniz $F(\mathfrak{Q})$ -algebra; and by Proposition 2.1, the image $\operatorname{im} F(f)$ is a two-sided ideal in $F(\mathfrak{Q})$. By composition we have F(g)F(f) = F(gf) = 0, which yields a factorisation

$$\overline{F(g)}: F(\mathfrak{Q})/\mathrm{im}F(f) \to F(\mathfrak{R}).$$

In fact, the morphism $\overline{F(g)}$ is an isomorphism. To see it, let us consider the map

$$\Gamma: F(\mathfrak{R}) \to F(\mathfrak{Q}) / \operatorname{im} F(f)$$

given on generators by

$$\Gamma(r*n) := g^{-1}(r)*n \mod \operatorname{im} F(f) \text{ and } \Gamma(n*r) := n*g^{-1}(r) \mod \operatorname{im} F(f)$$

where $g^{-1}(r)$ is any pre-image of r in \mathfrak{Q} . Indeed, if q and q' are two pre-images of r, then q - q' = f(p) for some p in \mathfrak{P} . Therefore we have

$$q * m - q' * n = (q - q') * n = f(p) * n = F(f)(p * n) \in \operatorname{im} F(f),$$

$$n * q - n * q' = n * (q - q') = n * f(p) = F(f)(n * p) \in \operatorname{im} F(f);$$

thus the map Γ is well-defined. One easily checks that Γ is a morphism of Leibniz algebras and inverse to $\overline{F(g)}$.

5. Adjunction theorem

In this section we show that, for any crossed Leibniz \mathfrak{g} -algebra (\mathfrak{N}, ν) , the functor $-\star \mathfrak{N}$ is left adjoint to the functor Bider_{\mathfrak{g}} $(\mathfrak{N}, -)$. For technical reasons, we assume that the relations

iv)
$$m * {}^{\mu(m')}n = -m * n^{\mu(m')}, \ n * {}^{\nu(n')}m = -n * m^{\nu(n')}$$

defining the tensor product $\mathfrak{M} \star \mathfrak{N}$ are extended to the relations

$$(iv)'$$
 $m * {}^{g}n = -m * n^{g}, n * {}^{g}m = -n * m^{g}$

for any $m, m' \in \mathfrak{M}$, $n, n' \in \mathfrak{N}$ and $g \in \mathfrak{g}$. To avoid confusion, we denote this later tensor product by $\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}$. For instance, the Leibniz \mathfrak{g} -algebras $\mathfrak{M} \star \mathfrak{N}$ and $\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}$ coincide if the maps μ and ν are surjective. $\operatorname{Hom}_{(\mathbf{pc-Leib}(\mathfrak{g}))}(\mathfrak{M},\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N},\mathfrak{P}))\cong\operatorname{Hom}_{(\mathbf{c-Leib}(\mathfrak{g}))}(\mathfrak{M}\star_{\mathfrak{g}}\mathfrak{N},\mathfrak{P}).$

Proof. Let $\phi \in \text{Hom}_{(\mathbf{pc-Leib}(\mathfrak{g}))}(\mathfrak{M}, \text{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P}))$ and put $(d_m, D_m, g_m) := \phi(m)$ for $m \in \mathfrak{M}$. Notice that we have $g_m = \mu(m)$ thanks to the relation $\rho\phi = \mu$, where ρ : $\text{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P}) \to \mathfrak{g}$ is the crossing morphism. We associate to ϕ the map $\Phi : \mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N} \to \mathfrak{P}$ defined on generators by

 $\Phi(m*n) := -D_m(n) \quad \text{and} \quad \Phi(n*m) := d_m(n), \ \forall \ m \in \mathfrak{M}, n \in \mathfrak{N}.$

Lemma 5.2. The map Φ is a morphism of crossed Leibniz g-algebras.

Conversely, given an element $\sigma \in \operatorname{Hom}_{(\mathbf{c-Leib}(\mathfrak{g}))}(\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}, \mathfrak{P})$, we associate the map $\Sigma : \mathfrak{M} \to \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P})$ defined by

$$\Sigma(m) := (\delta_m, \Delta_m, \mu(m)), \ \forall \ m \in \mathfrak{M},$$

where

$$\delta_m(n) := \sigma(n * m)$$
 and $\Delta_m(n) := -\sigma(m * n), \ \forall \ n \in \mathfrak{N}.$

Lemma 5.3. The map Σ is a morphism of pre-crossed Leibniz g-algebras.

It is clear that the maps $\phi \mapsto \Phi$ and $\sigma \mapsto \Sigma$ are inverse to each other, which proves the adjunction theorem.

Proof of Lemma 5.2. There is a lot of things to check in order to show that the map Φ is well-defined. Let us give some examples of these verifications. For any $m, m' \in \mathfrak{M}$, $n, n' \in \mathfrak{N}$ and $h \in \mathfrak{g}$, we have

$$\begin{split} \Phi({}^{n}m*n'-n*m^{n'}) &= -D_{\nu(n)m}(n') - d_{m^{\nu(n')}}(n) \\ &= -({}^{\nu(n)}D_{m})(n') - ((d_{m})^{\nu(n')})(n) \\ &= -{}^{\nu(n)}D_{m}(n') + d_{m}({}^{\nu(n)}n') - d_{m}(n)^{\nu(n')} + d_{m}(n^{\nu(n')}) \\ &= -{}^{\nu(n)}d_{m}(n') + d_{m}([n,n']) - d_{m}(n)^{\nu(n')} + d_{m}([n,n']) \\ &= d_{m}([n,n']) = \Phi([n,n']*m). \end{split}$$

We also compute

$$\Phi(m * {}^{h}n) = -D_{m}({}^{h}n) = D_{m}(n^{h}) = -\Phi(m * n^{h}),$$

$$\Phi(n * {}^{h}m) = d_{h_{m}}(n) = ({}^{h}d_{m})(n) = -((d_{m})^{h})(n) = -d_{m^{h}}(n) = -\Phi(n * m^{h})$$

and

$$\begin{split} \Phi(m^n * {}^{m'}n') &= -D_{m^{\nu(n)}} \left({}^{\mu(m')}n' \right) = -((D_m)^{\nu(n)}) ({}^{\mu(m')}n') \\ &= -D_m ({}^{\mu(m')}n')^{\nu(n)} + D_m (({}^{\mu(m')}n')^{\nu(n)}) \\ &= -D_m ({}^{\mu(m')}n')^{\nu(n)} + D_m ([{}^{\mu(m')}n', n]) \\ &= -D_m (n)^{\nu({}^{\mu(m')}n')} = D_m (n)^{\lambda(D_{m'}(n'))} \\ &= [D_m (n), D_{m'} (n')] = [\Phi(m*n), \Phi(m'*n')] = \Phi([m*n, m'*n']). \end{split}$$

Now let $m \in \mathfrak{M}$, $n \in \mathfrak{N}$ and $g \in \mathfrak{g}$. One has successively

$$\begin{aligned} \Phi({}^{g}\!(m*n)) &= \Phi({}^{g}\!m*n) - \Phi({}^{g}\!n*m) = -D_{{}^{g}\!m}(n) - d_{m}({}^{g}\!n) \\ &= ({}^{g}\!D_{m})(n) - d_{m}({}^{g}\!n) = -{}^{g}\!D_{m}(n) = {}^{g}\!\Phi(m*n), \end{aligned}$$

$$\Phi({}^{g}(n*m)) = -\Phi({}^{g}(m*n)) = -{}^{g}\Phi(m*n) = {}^{g}D_{m}(n) = {}^{g}d_{m}(n) = {}^{g}\Phi(n*m),$$

$$\Phi((m*n)^g) = \Phi(m^g*n) + \Phi(m*n^g) = -D_{m^g}(n) - D_m(n^g)$$

= - ((D_m)^g)(n) - D_m(n^g) = -D_m(n)^g = $\Phi(m*n)^g$,
$$\Phi((n*m)^g) = \Phi(n^g*m) + \Phi(n*m^g) = d_m(n^g) + d_{m^g}(n)$$

= $d_m(n^g) + ((d_m)^g)(n) = d_m(n)^g = \Phi(n*m)^g$;

$$\lambda \Phi(m * n) = -\lambda(D_m(n)) = \nu(\mu(m)n) = [\mu(m), \nu(n)] = \eta(m * n),$$

$$\lambda \Phi(n * m) = \lambda(d_m(n)) = \nu(n^{\mu(m)}) = [\nu(n), \mu(m)] = \eta(n * m).$$

Therefore the map Φ is a morphism of crossed Leibniz $\mathfrak{g}\text{-algebras}.$

Proof of Lemma 5.3. Let us first show that $\Sigma(m)$ is a well-defined biderivation. For any $n, n' \in \mathfrak{N}$, we have

$$\begin{split} \delta_m(n)^{\nu(n')} &+ {}^{\nu(n)} \delta_m(n') \\ &= \sigma(n*m)^{\nu(n')} + {}^{\nu(n)} \sigma(n'*m) = \sigma((n*m)^{\nu(n')}) + \sigma({}^{\nu(n)}(n'*m)) \\ &= \sigma(n^{\nu(n')}*m) + \sigma(n*m^{\nu(n')}) + \sigma({}^{\nu(n)}n'*m) - \sigma({}^{\nu(n')}m*n') \\ &= 2\sigma([n,n']*m) - \sigma({}^{\nu(n)}m*n' - n*m^{\nu(n')}) \\ &= 2\sigma([n,n']*m) - \sigma([n,n']*m) = \sigma([n,n']*m) = \delta_m([n,n']), \end{split}$$

thus δ_m is a derivation. Moreover, we have

$$\begin{aligned} \Delta_m(n)^{\nu(n')} &- \Delta_m(n')^{\nu(n)} \\ &= -\sigma(m*n)^{\nu(n')} + \sigma(m*n')^{\nu(n)} = \sigma((m*n')^{\nu(n)}) - \sigma((m*n)^{\nu(n')}) \\ &= \sigma(m^{\nu(n)}*n') + \sigma(m*n'^{\nu(n)}) - \sigma(m^{\nu(n')}*n) - \sigma(m*n^{\nu(n')}) \\ &= \sigma(m^{\nu(n)}*n' - m^{\nu(n')}*n) - \sigma(m*^{\nu(n)}n') - \sigma(m*n^{\nu(n')}) \\ &= \sigma(m*[n,n']) - \sigma(m*[n,n']) - \sigma(m*[n,n']) \\ &= -\sigma(m*[n,n']) = \Delta_m([n,n']), \end{aligned}$$

thus Δ_m is an anti-derivation. We have also

$$\begin{split} \lambda(\delta_m(n)) &= \lambda(\sigma(n*m)) = \eta(n*m) = [\nu(n), \mu(m)] = \nu(n^{\mu(m)}),\\ \lambda(\Delta_m(n)) &= -\lambda(\sigma(m*n)) = -\eta(m*n) = -[\mu(m), \nu(n)] = -\nu(^{\mu(m)}n),\\ {}^{h}\!\delta_m(n) &= {}^{h}\!\sigma(n*m) = \sigma({}^{h}\!(n*m)) = -\sigma({}^{h}\!(m*n)) = -{}^{h}\!\sigma(m*n) = -{}^{h}\!\Delta_m(n),\\ \Delta_m({}^{h}\!n) &= -\sigma(m*{}^{h}\!n) = \sigma(m*n^{h}) = -\Delta_m(n^{h}). \end{split}$$

Therefore $\Sigma(m) = (\delta_m, \Delta_m, \mu(m))$ is a biderivation from (\mathfrak{N}, ν) to (\mathfrak{P}, λ) .

For any $h \in \mathfrak{g}$, $m \in \mathfrak{M}$ and $n \in \mathfrak{N}$, we have

$$\binom{h(\Delta_m)}{n} = {}^{h}\Delta_m(n) - \delta_m({}^{h}n) = {}^{h}\sigma(m*n) - \sigma({}^{h}n*m)$$

= $\sigma({}^{h}m*n) = \Delta_{{}^{h}m}(n);$

and obviously $[h, \mu(m)] = \mu({}^{h}m)$, thus we have $\Sigma({}^{h}m) = {}^{h}\Sigma(m)$. On the other side, we have

$$((\delta_m)^h)(n) = \delta_m(n)^h - \delta_m(n^h) = \sigma(n*m)^h - \sigma(n^h*m)$$
$$= \sigma(n*m^h) = \delta_{m^h}(n)$$

and

$$((\Delta_m)^h)(n) = \Delta_m(n)^h - \delta_m(n^h) = -\sigma(m*n)^h + \sigma(m*n^h)$$
$$= -\sigma(m^h*n) = \Delta_{m^h}(n).$$

Since $[\mu(m),h] = \mu(m^h)$, we get $\Sigma(m^h) = \Sigma(m)^h$. By definition of the map Σ , we have $\rho\Sigma(m) = \mu(m)$. Therefore the map Σ is a morphism of pre-crossed Leibniz g-algebras. \Box

6. Cohomological characterizations

6.1. Non-abelian Leibniz cohomology. Let \mathfrak{g} be a Leibniz algebra viewed as the crossed Leibniz \mathfrak{g} -algebra $(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}})$, and let (\mathfrak{M}, μ) be a crossed Leibniz \mathfrak{g} -algebra. Given an element $m \in \mathfrak{M}$, we denote by d_m (resp. D_m) the derivation (resp. anti-derivation) $g \mapsto {}^{g}m$ (resp. $g \mapsto -m^g$) from $(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}})$ to (\mathfrak{M}, μ) , and by $\overline{\mu(m)} := \mu(m) \mod Z(\mathfrak{g})$, where $Z(\mathfrak{g})$ is the centre of \mathfrak{g} . One easily checks that the triple $(d_m, D_m, \overline{\mu(m)})$ is a well-defined element of $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$.

Definition-Proposition 6.1. Let \mathfrak{J} be the \mathbb{K} -module freely generated by the biderivations $(d_m, D_m, \overline{\mu(m)}), m \in \mathfrak{M}$. Then \mathfrak{J} is a two-sided ideal of $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$. The Leibniz algebra $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})/\mathfrak{J}$ is denoted by $\mathfrak{H}^1(\mathfrak{g}, \mathfrak{M})$.

Proof. For any $m \in \mathfrak{M}$ and $(d, D, g) \in \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$, we have

$$[(d, D, g), (d_m, D_m, \overline{\mu(m)})] = (\delta_m, \Delta_m, [g, \overline{\mu(m)}])$$

with

$$\delta_m(x) = d_m([x,g]) - d([x,\overline{\mu(m)}) = {}^{[x,g]}m - d([x,\mu(m)])$$

= ${}^{\mu(d(x))}m - d(x){}^{\mu(m)} - {}^xd(\mu(m))$
= $[d(x),m] - [d(x),m] - {}^xD(\mu(m))$
= $d_{m_1}(x)$

where $m_1 := -D(\mu(m))$,

$$\Delta_m(x) = -D([x, \overline{\mu(m)}]) - d_m([g, x]) = -D([x, \mu(m)]) - {}^{[g, x]}m$$

= $-D(x)^{\mu(m)} - D(\mu(m))^x + {}^{\mu(D(x))}m$
= $-[D(x), m] + D(\mu(m))^x + [D(x), m]$
= $D_{m_1}(x),$

$$\mu(m_1) = -\mu(D(\mu(m))) = [g, \mu(m)] = [g, \mu(m)];$$

thus we have $[(d, D, g), (d_m, D_m, \overline{\mu(m)})] \in \mathfrak{J}$. On the other side, we have

$$[(d_m, D_m, \overline{\mu(m)}), (d, D, g)] = (\delta'_m, \Delta'_m, [\overline{\mu(m)}, g])$$

with

$$\begin{split} \delta'_m(x) &= d([x, \overline{\mu(m)}]) - d_m([x, g]) = d([x, \mu(m)]) - {}^{[x, g]}m \\ &= d(x)^{\mu(m)} + {}^x d(\mu(m)) - {}^{\mu(d(x))}m \\ &= [d(x), m] + {}^x d(\mu(m)) - [d(x), m] \\ &= d_{m_2}(x) \end{split}$$

where $m_2 := d(\mu(m))$,

$$\begin{aligned} \Delta'_m(x) &= -D_m([x,g]) - d([\overline{\mu(m)},x]) = m^{[x,g]} - d([\mu(m),x]) \\ &= m^{\mu(d(x))} - d(\mu(m))^x - {}^{\mu(m)}d(x) \\ &= [m,d(x)] - d(\mu(m))^x - [m,d(x)] \\ &= D_{m_2}(x), \\ \mu(m_2) &= \mu(d(\mu(m))) = [\mu(m),g] = [\overline{\mu(m)},g]; \end{aligned}$$

thus we have $[(d_m, D_m, \overline{\mu(m)}), (d, D, g)] \in \mathfrak{J}$. Therefore the set \mathfrak{J} is a two-sided ideal of Bider_g($\mathfrak{g}, \mathfrak{M}$).

Similarly, given a crossed Leibniz g-algebra (\mathfrak{M}, μ) , one defines

 $\mathfrak{H}^{0}(\mathfrak{g},\mathfrak{M}) \coloneqq \{m \in \mathfrak{M} : {}^{g}\!m = m^{g} = 0, \; \forall \; g \in \mathfrak{g}\}$

that is, the set of invariant elements of \mathfrak{M} . From the relations

$$[m,m'] = m^{\mu(m')} = 0 = {}^{\mu(m')}m = [m',m], \ m \in \mathfrak{K}^0(\mathfrak{g},\mathfrak{M}), \ m' \in \mathfrak{M},$$

it is clear that $\mathfrak{HL}^0(\mathfrak{g},\mathfrak{M})$ is contained in the centre of the Leibniz algebra \mathfrak{M} .

Proposition 6.2. For any exact sequence of crossed Leibniz g-algebras

$$0 \to (\mathfrak{A}, 0) \stackrel{\alpha}{\to} (\mathfrak{B}, \lambda) \stackrel{\beta}{\to} (\mathfrak{C}, \mu) \to 0,$$

there exists an exact sequence of \mathbb{K} -modules

$$0 \to \mathfrak{H}^0(\mathfrak{g},\mathfrak{A}) \to \mathfrak{H}^0(\mathfrak{g},\mathfrak{B}) \to \mathfrak{H}^0(\mathfrak{g},\mathfrak{C}) \xrightarrow{\partial} \mathfrak{H}^1(\mathfrak{g},\mathfrak{A}) \to \mathfrak{H}^1(\mathfrak{g},\mathfrak{B}) \xrightarrow{\beta^1} \mathfrak{H}^1(\mathfrak{g},\mathfrak{C})$$

where β^1 is a Leibniz algebra morphism.

Proof. Everything goes smoothly except the definition of the connecting homomorphism ∂ . Given an element $c \in \mathfrak{KL}^0(\mathfrak{g}, \mathfrak{C})$, let $b \in \mathfrak{B}$ be any pre-image of c in \mathfrak{B} . For any $x \in \mathfrak{g}$, we have

$$\beta({}^{x}b) = {}^{x}c = 0 = c^{x} = \beta(b^{x}).$$

Thus the element ${}^{x}b$ (resp. b^{x}) is in ker $(\beta) = \operatorname{im}(\alpha)$. Since the morphism α is injective, the map $d^{c} : x \mapsto \alpha^{-1}({}^{x}b)$ (resp. $D^{c} : x \mapsto \alpha^{-1}(b^{x})$) is a derivation (resp. an anti-derivation) from $(\mathfrak{g}, \operatorname{id}_{\mathfrak{g}})$ to $(\mathfrak{A}, 0)$. One easily checks that the triple $(d^{c}, D^{c}, 0)$ is a well-defined element of Bider_{\mathfrak{g}} $(\mathfrak{g}, \mathfrak{A})$ whose class in $\mathfrak{H}^{1}(\mathfrak{g}, \mathfrak{A})$ does not depend on the choice of the pre-image b. We put

$$\partial(c) := \operatorname{class}(d^c, D^c, 0).$$

6.2. Non-abelian Leibniz homology. Let \mathfrak{g} be a Leibniz algebra viewed as the crossed Leibniz \mathfrak{g} -algebra $(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}})$, and let (\mathfrak{N}, ν) be a crossed Leibniz \mathfrak{g} -algebra.

Definition-Proposition 6.3. The map $\Psi_{\mathfrak{N}} : \mathfrak{N} \star \mathfrak{g} \to \mathfrak{N}$ given on generators by

$$\Psi_{\mathfrak{N}}(n*g):=n^g$$
 and $\Psi_{\mathfrak{N}}(g*n):={}^g\!\!n,\ g\in\mathfrak{g},\ n\in\mathfrak{N},$

is a morphism of crossed Leibniz \mathfrak{g} -algebras. We define the low-degrees non-abelian homology of \mathfrak{g} with coefficients in \mathfrak{N} to be

$$\mathfrak{HL}_0(\mathfrak{g},\mathfrak{N}) := \operatorname{coker} \Psi_{\mathfrak{N}} \quad and \quad \mathfrak{HL}_1(\mathfrak{g},\mathfrak{N}) := \ker \Psi_{\mathfrak{N}}.$$

Proof. To see that the map $\Psi_{\mathfrak{N}}$ is a Leibniz algebra morphism is equivalent to the fact that the Leibniz action of \mathfrak{N} on \mathfrak{g} is well-defined. The definition of the crossing homomorphism $\eta_{\mathfrak{N}}: \mathfrak{N} \star \mathfrak{g} \to \mathfrak{g}$ implies that $\Psi_{\mathfrak{N}}$ is a morphism of crossed Leibniz \mathfrak{g} -algebras.

Proposition 6.4. For any exact sequence of crossed Leibniz g-algebras

$$0
ightarrow (\mathfrak{A}, 0) \stackrel{lpha}{
ightarrow} (\mathfrak{B}, \lambda) \stackrel{eta}{
ightarrow} (\mathfrak{C}, \mu)
ightarrow 0,$$

there exists an exact sequence of \mathbb{K} -modules

$$\mathfrak{HL}_1(\mathfrak{g},\mathfrak{A}) o \mathfrak{HL}_1(\mathfrak{g},\mathfrak{B}) o \mathfrak{HL}_1(\mathfrak{g},\mathfrak{C}) \stackrel{\partial}{ o} \mathfrak{HL}_0(\mathfrak{g},\mathfrak{A}) o \mathfrak{HL}_0(\mathfrak{g},\mathfrak{B}) o \mathfrak{HL}_0(\mathfrak{g},\mathfrak{C}) o 0.$$

Proof. We know that the functor $-\star \mathfrak{g}$ is right exact (Proposition 4.5). Therefore Proposition 6.4 is nothing but the "snake-lemma" applied to diagram

which is obviously commutative.

6.3. Universal central extension. Let \mathfrak{g} be a Leibniz algebra and let $\Psi := \Psi_{\mathfrak{g}}$ be the morphism defining the homolgy $\mathfrak{H}_*(\mathfrak{g}, \mathfrak{g})$. From the relations v) of Definition-Theorem 4.1, it is clear that $\Psi : \mathfrak{g} \star \mathfrak{g} \to [\mathfrak{g}, \mathfrak{g}]$ is a central extension of Leibniz algebras (see [4]).

Theorem 6.5. If the Leibniz algebra \mathfrak{g} is perfect and free as a \mathbb{K} -module, then the morphism $\Psi : \mathfrak{g} \star \mathfrak{g} \twoheadrightarrow [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$ is the universal central extension of \mathfrak{g} . Moreover, we have an isomorphism of \mathbb{K} -modules

$$\mathfrak{HL}_1(\mathfrak{g},\mathfrak{g})\cong \mathrm{HL}_2(\mathfrak{g}).$$

Proof. It is enough to prove the universality of the central extension $\Psi : \mathfrak{g} \star \mathfrak{g} \twoheadrightarrow [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$. Let $\alpha : \mathfrak{C} \twoheadrightarrow \mathfrak{g}$ be a central extension of \mathfrak{g} . Since $\ker(\alpha)$ is central in \mathfrak{C} , the quantity $[\alpha^{-1}(x), \alpha^{-1}(y)]$ does not depend on the choice of the pre-images $\alpha^{-1}(x)$ and $\alpha^{-1}(y)$ where $x, y \in \mathfrak{g}$. One easily checks that the map $\phi : \mathfrak{g} \star \mathfrak{g} \to \mathfrak{C}$ given on generators by

$$\phi(x * y) := [\alpha^{-1}(x), \alpha^{-1}(y)]$$

is a well-defined Leibniz algebra morphism such that $\alpha \phi = \Psi$. The uniqueness of the map ϕ follows from Lemma 2.4 of [4] since the perfectness of \mathfrak{g} implies that of $\mathfrak{g} \star \mathfrak{g}$:

$$x * y = (\sum_{i} [x_i, x'_i]) * (\sum_{j} [y_j, y'_j]) = \sum_{i,j} [x_i * x'_i, y_j * y'_j].$$

By definition we have $\mathfrak{HL}_1(\mathfrak{g}, \mathfrak{g}) = \ker(\Psi)$. After [4] the kernel of the universal central extension of a Leibniz algebra \mathfrak{g} is canonically isomorphic to $\operatorname{HL}_2(\mathfrak{g})$. Therefore we have

$$\mathfrak{HL}_1(\mathfrak{g},\mathfrak{g})\cong \mathrm{HL}_2(\mathfrak{g}).$$

7. The Milnor-type Hochschild homology

Let A be an associative algebra viewed as a Leibniz (in fact Lie) algebra for the bracket given by $[a,b] := ab - ba, a, b \in A$. Recall that the K-module $L(A) := A^{\otimes 2}/\operatorname{im}(b_3)$ is a Leibniz (non-Lie) algebra for the bracket defined by

$$[x \otimes y, x' \otimes y'] := (xy - yx) \otimes (x'y' - y'x'), \ \forall \ x, y, x', y' \in A.$$

L

$$\begin{aligned} A \times \mathcal{L}(A) &\to \mathcal{L}(A), \ ^a(x \otimes y) \coloneqq [a, x] \otimes y - [a, y] \otimes x, \\ \mathcal{L}(A) \times A &\to \mathcal{L}(A), \ (x \otimes y)^a \coloneqq [x, a] \otimes y + x \otimes [y, a] \end{aligned}$$

confere to L(A) a structure of Leibniz A-algebra. Moreover the map

$$\mu_A : \mathcal{L}(A) \to A, \ x \otimes y \mapsto [x, y] = xy - yx$$

equips L(A) with a structure of crossed Leibniz A-algebra.

Proof. The operations are well-defined since we have

$$a(b_3(x \otimes y \otimes z)) = b_3(ax \otimes y \otimes z - a \otimes z \otimes xy - za \otimes x \otimes y + a \otimes yz \otimes x + a \otimes zx \otimes y - a \otimes y \otimes zx)$$

and

$$egin{aligned} &(b_3(x\otimes y\otimes z))^a = b_3\left(-ax\otimes y\otimes z+xy\otimes a\otimes z+x\otimes y\otimes za
ight. \ &-x\otimes a\otimes yz-zx\otimes a\otimes y-zx\otimes y\otimes a
ight). \end{aligned}$$

One easily checks that the couple $(L(A), \mu_A)$ is a pre-crossed Leibniz A-algebra. Moreover we have

Thus the Leibniz A-algebra $(L(A), \mu_A)$ is crossed.

It is clear that the inclusion map $[A, A] \hookrightarrow A$ induces a structure of crossed Leibniz A-algebra on the two-sided ideal [A, A], and that the map $\mu_A : L(A) \to [A, A]$ is a morphism of crossed Leibniz A-algebras. Moreover we have an exact sequence of \mathbb{K} -modules

$$0 \to \operatorname{HH}_1(A) \to \operatorname{L}(A) \xrightarrow{\mu_A} [A, A] \to 0.$$

Lemma 7.2. The Leibniz algebra A acts trivially on $HH_1(A)$.

Proof. One easily checks that

$${}^a\!(x\otimes y) = a\otimes [x,y] + b_3(a\otimes x\otimes y - a\otimes y\otimes x) \equiv a\otimes [x,y] \text{ in } \operatorname{L}(A)$$

and

$$(x \otimes y)^a = [x, y] \otimes a + b_3(x \otimes a \otimes y - x \otimes y \otimes a) \equiv [x, y] \otimes a \text{ in } L(A).$$

Therefore, if $\omega = \sum \lambda_i(x_i \otimes y_i) \in HH_1(A)$, that is $\sum \lambda_i[x_i, y_i] = 0$, then we have

$${}^{a}\omega = \sum \lambda_{i}{}^{a}(x_{i}\otimes y_{i}) \equiv \sum \lambda_{i}(a\otimes [x_{i}, y_{i}]) \equiv a\otimes \sum \lambda_{i}[x_{i}, y_{i}] = 0$$

and

$$\omega^{a} = \sum \lambda_{i} (x_{i} \otimes y_{i})^{a} \equiv \sum \lambda_{i} ([x_{i}, y_{i}] \otimes a) \equiv (\sum \lambda_{i} [x_{i}, y_{i}]) \otimes a = 0$$

for any $a \in A$.

As an immediate consequence, we get the following

Corollary 7.3. The sequence

$$0 \to \operatorname{HH}_1(A) \to \operatorname{L}(A) \xrightarrow{\mu_A} [A, A] \to 0$$

is an exact sequence of crossed Leibniz A-algebras.

We deduce from Proposition 6.4 an exact sequence of K-modules

$$\mathfrak{HL}_1(A,\mathrm{HH}_1(A))\to\mathfrak{HL}_1(A,\mathrm{L}(A))\to\mathfrak{HL}_1(A,[A,A])\to$$

 $\rightarrow \mathfrak{HL}_0(A,\mathrm{HH}_1(A)) \rightarrow \mathfrak{HL}_0(A,\mathrm{L}(A)) \rightarrow \mathfrak{HL}_0(A,[A,A]) \rightarrow 0.$

Since A and $HH_1(A)$ act trivially on each other, we have

$$\mathfrak{H}_0(A, \mathrm{HH}_1(A)) = \mathrm{HH}_1(A)$$

and

$$\mathfrak{H}_1(A, \mathrm{HH}_1(A)) = A \star \mathrm{HH}_1(A) \cong A/[A, A] \otimes \mathrm{HH}_1(A) \oplus \mathrm{HH}_1(A) \otimes A/[A, A].$$

On the other hand, it is clear that

$$\mathfrak{HL}_1(A, [A, A]) \cong [A, A]/[A, [A, A]].$$

Therefore we can state

Theorem 7.4. For any associative algebra A with unit, there exists an exact sequence of \mathbb{K} -modules

$$\begin{array}{rcl} A/[A,A]\otimes\operatorname{HH}_{1}(A) & \oplus & \operatorname{HH}_{1}(A)\otimes A/[A,A] \to \mathfrak{HL}_{1}(A,\operatorname{L}(A)) \to \mathfrak{HL}_{1}(A,[A,A]) \to \\ & \to & \operatorname{HH}_{1}(A) \to \operatorname{HH}_{1}^{M}(A) \to [A,A]/[A,[A,A]] \to 0 \end{array}$$

where $\operatorname{HH}_{1}^{M}(A)$ denotes the Milnor-type Hochschild homology of A.

Proof. Recall that $\operatorname{HH}_1^M(A)$ is defined to be the quotient of $A \otimes A$ by the relations

$$a \otimes [b, c] = 0, \ [a, b] \otimes c = 0, \ b_3(a \otimes b \otimes c) = 0$$

for any $a, b, c \in A$ (see [6, 10.6.19]). By definition $L(A) = A \otimes A/im(b_3)$ and from the proof of Lemma 7.2, we get

$$\Psi_{L(A)}(a*(x\otimes y))={}^a\!(x\otimes y)\equiv a\otimes[x,y]$$

and

$$\Psi_{L(A)}((x \otimes y) * a) = (x \otimes y)^a \equiv [x, y] \otimes a$$

Therefore it is clear that $\mathfrak{H}_0(A, \mathcal{L}(A)) = \operatorname{coker}(\Psi_{\mathcal{L}(A)})$ is isomorphic to $\operatorname{HH}_1^M(A)$.

Remark. The K-modules $HH_1(A)$ and $HH_1^M(A)$ coincide when the associative algebra A is superperfect as a Leibniz algebra that is, A = [A, A] and $HL_2(A) = 0$. Also, if the associative algebra A is commutative, then we have

$$\operatorname{HH}_1(A) \cong \operatorname{HH}_1^M(A) \cong \Omega^1_{A|\Bbbk}.$$

Let us also mention that the Milnor-type Hochschild homology appears in the description of the obstruction to the stability

$$\operatorname{HL}_{n}(gl_{n-1}(A)) \to \operatorname{HL}_{n}(gl_{n}(A)) \to \operatorname{HH}_{n-1}^{M}(A) \to 0$$

where $gl_n(A)$ is the Lie algebra of matrices with entries in the associative algebra A (see [2], [6, 10.6.20]).

Acknowledgements. It is a pleasure to warmly thank A. Kuku, M. Livernet, J.-L. Loday and M. Wambst for pertinent comments and suggestions improving this text. Also, I am grateful to UNESCO and the Abdus Salam ICTP (Trieste, Italy) for support and hospitality.

References

- [1] Casas J. M. and Ladra M., Perfect crossed modules in Lie algebras, Comm. Alg. 23(5) (1995), 1625-1644.
- [2] Cuvier Ch., Algèbres de Leibnitz : définitions, propriétés, Ann. Ecole Norm. Sup. (4) 27 (1994), 1-45.
- [3] Ellis G. J., A non-abelian tensor product of Lie algebras, Glasgow Math. J. 33 (1991), 101-120.
- [4] Gnedbaye A. V., Third homology groups of universal central extensions of a Lie algebra, Afrika Matematika (to appear), Série 3, 10 (1998).
- [5] Guin D., Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive, Ann. Inst. Fourier, Grenoble 45(1) (1995), 93-118.
- [6] Loday J.-L., Cyclic homology, vol. 301, Grund. math. Wiss., Springer-Verlag, 1992.
- [7] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math. 39 (1993), 269-293.
- [8] Loday J.-L. and Pirashvili T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Annal. 296 (1993), 139-158.