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Abstract
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Introduction. Let g be a Lie algebra and let M be a representation of g, seen as a right g-
module. Given a g-equivariant map p : M — g, one can endow the K-module M with a bracket
([m, m'] = m“(ml)) which is not skew-symmetric but satisfies the Leibniz rule of derivations:

[m7 [mlv m”]] = [[m7 ml]v m”] - [[m7 m”]v ml]'

Such objects were baptized Leibniz algebras by Jean-Louis Loday and are studied as a non-
commutative variation of Lie algebras (see [8]). One of the main examples of Lie algebras
comes from the notion of derivations. For the Leibniz algebras, there is an analogue notion of
biderivations (see [7]).

The aim of this article is to “integrate” the Leibniz algebra of biderivations by means of a
non-abelian tensor product of Leibniz algebras as it is done for Lie algebras.

In the classical case, D. Guin (see [5]) has shown that, given crossed Lie g-algebras 9t and
N, the set of derivations Derg (9, M) has a structure of pre-crossed Lie g-algebra. Moreover
the functor Derg (M, —) is right adjoint to the functor — ©g N where — @4 — is the non-abelian
tensor product of Lie algebras defined by G. J. Ellis (see [3]). D. Guin uses these objects to
construct a non-abelian (co)homology theory for Lie algebras, which enables him to compare
the K-modules HC;(A) and K57 *¥(A) where A is an arbitrary associative algebra. We give a
non-commutative version of his results, in the sense that Leibniz algebras play the role of Lie
algebras, the additive Milnor K-theory K *¥(4) (resp. the cyclic homology HC,(A)) being
replaced by the Milnor-type Hochschild homology HH]*VI(A) (resp. the classical Hochschild
homology HH.(A)).

To this end, we introduce the notion of (pre)crossed Leibniz g-algebra as a simultaneous
generalization of notions of representation and two-sided ideal of the Leibniz algebra g. Given
crossed Leibniz g-algebras 9 and N, we equip the set Bidery (9, M) of biderivations with a
structure of pre-crossed Leibniz g-algebra. On the other hand, we construct a non-abelian
tensor product 9 x N of Leibniz algebras with mutual actions on one another. When 21 and
I are crossed Leibniz g-algebras, this tensor product has also a structure of crossed Leibniz g-
algebra. It turns out that the functor —xyM is left adjoint to the functor Bidery (M, —). Another
characterization of this tensor product is the following. If the Leibniz algebra g is perfect (and
free as a K-module), then the Leibniz algebra g g is the universal central extension of g (see
[4]). We give also low-degrees (co)homological interpretations of these objects, which yield an
exact sequence of K-modules

AJ[A,A]@ HH (A) @ HH,(A) @ A/[A, A] = $HC1 (A, L(A)) = HC1 (A, [A, A]) —
— HH, (A) — HHM (A) — [4, A]/[A,[A, A]] = 0O

where L(A) is the K-module A® A/im(bs) equipped with a suitable Leibniz bracket (see section
1.2).

Throughout this paper the symbol K denotes a commutative ring with a unit element and

® stands @y.
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1. Prerequisites on Leibniz algebras

1.1. Leibniz algebras. A Leibniz algebra is a K-module g equipped with a bilinear map
[—,—]: g x g— g, called bracket and satisfying only the Leibniz identity

[, 1y, 21l = [z, y], 2] = [[=, 2], 4]

for any x,y,z € g. In the presence of the condition [z, 2] = 0, the Leibniz identity is equivalent
to the so-called Jacobi identity. Therefore Lie algebras are examples of Leibniz algebras.
A morphism of Leibniz algebras is a linear map f : g — go such that

[, y]) = [f (=), F(y)]

for any x,y € gy. It is clear that Leibniz algebras and their morphisms form a category that
we denote by (Leib).

A two-sided ideal of a Leibniz algebra g is a submodule § such that [#,y] € h and [y, 2] € b
for any € h and any y € g. For any two-sided ideal b in g, the quotient module g/ inherits
a structure of Leibniz algebra induced by the bracket of g. In particular, let ([z,z]) be the
two-sided ideal in g generated by all brackets [z, z]. The Leibniz algebra g/([z,]) is in fact a
Lie algebra, said canonically associated to g and is denoted by gre.

Let g be a Leibniz algebra. Denote by g’ := [g, g] the submodule generated by all brackets
[2,y]. The Leibniz algebra g is said to be perfect if g’ = g. It is clear that any submodule of g
containing g’ is a two-sided ideal in g.

1.2. Examples. Let M be a representation of a Lie algebra g (the action of g on M being
denoted by m? for m € M and ¢ € g). For any g-equivariant map p : M — g, the bracket given
by [m,m'] := m*(™") induces a structure of Leibniz (non-Lie) algebra on M. Observe that any
Leibniz algebra g can be obtained in such a way by taking the canonical projection g — gr;e
(which is obviously gr.-equivariant).

Let A be an associative algebra and let b3 : A®% — A9? be the Hochschild boundary that is,
the linear map defined by

bs(a@b®@c):=ab@c—a@bc+ca®b, a,b,ce A.
Then the bracket given by
[a @b, c®@d]:=(ab—ba) @ (cd — dc), a,b,c,d € A,

defines a structure of Leibniz algebra on the K-module L(A) := A®?/im(b3). Moreover, we
have an exact sequence of K-modules

0 — HHy(A) = L(A4) 22 A — HHy(A)

where HH,.(A) denotes the Hochschild homology groups and b2 (z,y) = [z, y] := 2y — ya for any
xz,y € A.

1.3. Free Leibniz algebra. Let V' be a K-module and let T(V) := & ., V®" be the reduced
tensor module. The bracket defined inductively by B

[z,0]=2®v,ifz e T(V)and v eV
[,y @v]=[2,y]@v—[e@uv,y], f 2,y e T(V) and v €V,
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satisfies the Leibniz identity. The Leibniz algebra so defined is the free Leibniz algebra over V
and is denoted by F (V) (see [8]). Observe that ones has

U1®U2®“‘®Un:[“‘[[U17U2]7U3]“‘]7 VU17...7vn€V‘

Moreover, the free Lie algebra over V is nothing but the Lie algebra F(V) ;..

2. Crossed Leibniz algebras

2.1. Leibniz action. Let g and 9 be Leibniz algebras. A Leibniz action of g on M is a couple
of bilinear maps

gxXM—=M, (g,m)—m and Mxg—M, (m,g)—m?

satisfying the axioms

i) mlodl = (mg)? - (mgl)g7

ii) (9,9l = (9m)9 - Im9'),
i) 9(9m) = —9(m?),
iv) Lm,m'] = ['m, m'] = [, m],
V) [m,m/19 = [m, m'] + [m, m'9],
vi) [m Im'l = —[m, m'9]

for any m, m’ € M and ¢, g’ € g. We say that M is a Leibniz g-algebra. Observe that the axiom
i) applied to the triples (m;g,¢’) and (m;g’, ¢) yields the relation

mle:d'l — _pleal

2.2. Examples. Any two-sided ideal of a Leibniz algebra g is a Leibniz g-algebra, the action
being given by the initial bracket.

A K-module M equipped with two operations of a Leibniz algebra g satisfying the axioms
i), ii) and iii) is called a representation of g (see [8]). Therefore representations of a Leibniz
algebra g are abelian Leibniz g-algebras.

2.3. Crossed Leibniz algebras. Let g be a Leibniz algebra. A pre-crossed Leibniz g-algebra
is a Leibniz g-algebra 991 equipped with a morphism of Leibniz algebras p : 91 — g such that

p(m) = [g,p(m)] and  p(m?) = [pu(m),g]
for any g € g and m € 9. Moreover if the relations
#mp! = [m, m']  and mum') — [m,m'], ¥ m,m' € M,
hold, then (M, p) is called a crossed Leibniz g-algebra.

2.4. Examples. Any Leibniz algebra g, equipped with the identity map idg, is a crossed
Leibniz g-algebra.

Any two-sided ideal §j of a Leibniz algebra g, equipped with the inclusion map h < g, is a
crossed Leibniz g-algebra.

Let o : ¢ — g be a central extension of Leibniz algebras (i.e., a surjective morphism whose
kernel is contained in the centre of ¢, see [4]). Define operations of g on ¢ by

Y :=[a""(g),c] and ¢ :=[c,a”'(g)]

where a~!(g) is any pre-image of g in ¢. Then (¢, «) is a crossed Leibniz g-algebra.
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Proposition 2.1. For any pre-crossed Leibniz g-algebra (M, p), the image im(p) (resp. the
kernel ker(p)) is a two-sided ideal in g (resp. M). Moreover, if (MM, ) is crossed, then ker(u)
s contained in the centre of M.

Proof. Let m be an element of 9. For any ¢ € g, we have

[(m), g1 = p(m?) € im(p) and  [g, p(m)] = p(’m) € im(u).

Thus, im(u) is a two-sDided ideal in g. Assume that m € ker(u); then for any m' € 9, we have

p([m,m'l) = [p(m), p(m)] = 0 = [u(m"), p(m)] = p([m', m)).

Therefore ker(p) is a two-sided ideal in 91. Moreover if the Leibniz action of g on 9 is crossed,
then we have
[m,m'] = M) ! = 0 = m/#0m) = [m', m]

for any m € ker(u) and m’ € 9. Thus ker(p) is contained in the centre of M. a
2.5. Morphism of pre-crossed Leibniz algebras. Let g be a Leibniz algebra and let (901, i)

and (M, v) be pre-crossed Leibniz g-algebras. A morphism from (M, 1) to (N, v) is a Leibniz
algebra morphism f : 91 — 91 such that

fEm) =2(f(m)), f(m?) = (f(m))? and p=vf

for any m € 9 and g € g. A morphism of crossed Leibniz g-algebras is the same as a morphism
of pre-crossed Leibniz g-algebras. It is clear that pre-crossed (resp. crossed) Leibniz g-algebras
and their morphisms form a category that we denote by (pc-Leib(g)) (resp. (c-Leib(g))).

Proposition 2.2. Let f : (M, u) — (N, v) be a crossed Leibniz g-algebra morphism. Then
(M, f) is a crossed Leibniz N-algebra via the Leibniz action of M on M given by

"mo=""m and m® = m’", ¥V m e M neNn.

Proof. One easily checks that 91 is a Leibniz M-algebra. For any m,m’ € 9 and n € N,
we have

=
3
\j
]
=
3
<
B
]
=
2
<
B
I
=
2
e

thus (9M, f) is a pre-crossed Leibniz 9-algebra. Moreover we have

oyt — (S m )yt — )y

I
=
z

m! (") = g Um) = pulm’) — [y )
thus (9, f) is a crossed Leibniz 9-algebra. O
2.6. Exact sequences. We say that a sequence
(£.0) 5 (M, 1) 5 (N,v)
is exact in the category (pec-Leib(g)) (resp. (c-Leib(g)) if the sequence
gambm

is exact as sequence of Leibniz algebras.
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Proposition 2.3. If the sequence

(£,20) 5 (0, 0) 5 (M)

is exact in the category (pc-Leib(g)) (resp. (c-Leib(g))), then the map X is zero. Moreover if
the Leibniz g-algebra (£, \) is crossed, then the Leibniz algebra £ is abelian.

Proof. Indeed, since fa = 0, we have A = vfa = 0. From whence ker(A) = £, and by
Proposition 2.1, it is clear that the Leibniz algebra £ is abelian. (|

3. Biderivations of Leibniz algebras
In this section, we fix a Leibniz algebra g.

3.1. Derivations and anti-derivations. Let (90, ) and (9M,v) be pre-crossed Leibniz g-
algebras. A derivation from (9, 1) to (N, v) is a linear map d : M — N such that

d([m, m')) = d(m)*") 4 U0 (m"), ¥ m,m' € M.
An anti-derivation from (9, ) to (M, v) is a linear map D : M — N such that
D([m,m']) = D(m)*"™) — D(m" ™) | ¥ m,m' € M.
3.2. Examples. Let (M, v) be a crossed Leibniz g-algebra and let n be any element of 9. By
the axiom iii) (resp. i)) of 2.1, the linear map
g—MN, 9= (resp.g—MN, g — —nY)

is a derivation (resp. an anti-derivation) from (g,idy) to (M, v).

3.3. Biderivations. Let (9, x) and (M,v) be pre-crossed Leibniz g-algebras. We denote
by Bider (90, M) the free K-module generated by the triples (d, D, g), where d (resp. D) is a
derivation (resp. an anti-derivation) from (9, p) to (M, r) and g is an element of g such that

v(d(m)) = p(m?), v(D(m)) = —p(’m),
"d(m) = "D(m), D(m") = —D("m)
for any h € g and m € 9.

Proposition 3.1. If the Leibniz g-algebra (M, v) is crossed, then there is a Leibniz algebra
structure on the K-module Bidery (9, N) for the bracket defined by

[(d, D, g),(d', D", g"] = (6, A, [g. g)
where , ,
§(m) :=d'(m?) —d(m?) and A(m)=-D(m?)—d (‘m), ¥V m € M.
Proof. Let us show that the maps & and A are respectively a derivation and an anti-
derivation. Indeed, for any m,m’ € 9, we have

§([m, m')) = d'([m,m')?) - d([m,m']?)

= d'([m?, m']) + d'([m, m"]) = d([m? , m"]) — d([m,m'"])

_ dl(mg) w(m )_I_u(mg)dl( )_I_dl(m)u(mlg)_|_M(m)dl(mlg)
— d(m? )u(m') _ u(m?’ d(m') — d(m)u(m'gl) _ u(m)d(mlg’)

= (d'(m?) — d(m? )" 4 1 (') — d( >>+”<d<m>>d’<m’>
! () PUmD) A& (m)g Ty

= §(m)* ™) 4+ # 5(m!) + [d(m), d'(m)]
+[d'(m), d(m")] = [d'(m), d(m")] — [d(m),d'(m")]

— 5(m)u(m') + ) § (m)

~—
&
—~
3
~—
T
Q&



and
A(lm,m") = = D(fm,m}*") — d'({m, m']
= = D([m? ]) D([m, ') = d' ([m, ) +d' ([’ m])
D+ D) Dl “+D<'wm
— d'(9m)Htm N mEm) g (m"y 4 d! (9" )M 4 )d’( )

= (=D(m?) = d'(*m))*") — (=D(m'?) - w@n»<>+0mw”“m>
_ D(m)V(d’(M’)) + VPl (y — v(Plm )))d'(m)

= A(m)"™) = A(m)") + [D(m), d' (m)]
= [D(m), d'(m")] + [D(m), d'(m")] = [D(m'), d'(m)]

= A(m)™) — A(m! ),

On the other hand, we have

v(8(m)) = v(d' (m?)) = v(d(m?)) = p((m*)?) = p((m?)?) = p(mlo),
V(A(m)) = —u(D(m?)) = v(d' (“m)) = p(*(m?)) = p((fm)?) = — (199 l),

"(m) = "d'(m?) = "d(m) = "D’ (m?) = "D(m?)
= = "D'(%m) = "D(m?) = ="d () = "D ()
= "A(m),

A('m) = = D(('m)*) = d'(?("m)
— D) = D("(m?)) + d'((m"))
= D((m")?) + d'((m")) = —A(m").
Therefore the triple (8, A, [g, ¢']) is a biderivation from (901, 1) to (M, v). Moreover, let (d, D, g),
(d',D’',g") and (d", D", g¢") be biderivations from (9M, i) to (M, r). We set
(5. A,[g"¢") = [(d, D', g"), (d", D", g")],
(%0, Ao, 90) == [(d, D, 9), (6, A,[g', g"])],
(6", A" [9,97) = [(d, D, g), (d', D', g")],
(01, A1, 01) = [(6, A g, 97), (d", D", g")],
(6", A" [g,4"]) := [(d, D, g), (d", D", g")],
(02, As, g2) == [(8", A" [g,9"]), (d', D', g)].

It is clear that go = g1 — g2. For any m € 91, we have

Iy = §'(m?") — d'(mlo7"1) 4 6" (m?)
= d"((m%)?) = d"((m?)?) — d'(m?")?) + d((m?")")
—d'(m) ")+ d' (")) + d"((m)9) — d((m?)*")
= d"((m?)?) — d'((m?)?") — d(mle" ")

= §(m?) — d(ml9"9"l) = 5 (m)

(61— 62)(m) = d" (ml



T A S M) = — ) = (9 + AT () + (55 )
= D((m?")*) +d' ((m? »—W«ng+wwmﬂ»
= D((m*)?") = d"(A(m?)) + ' ((4m)*") = d'((m?"))
= — D(ml" ) — " ((m)?) + d'((m)?")
= — D(ml"") = §(%m) = Ao (m).
Therefore the K-module Bidery (9, M) is a Leibniz algebra. O

Let us equip the set Bidery (9, M) with a Leibniz action of g.

Proposition 3.2. Let (M, u) (resp. (N, v)) be a pre-crossed (resp. crossed) Leibniz g-algebra.
The set Biderg (M, N) is a pre-crossed Leibniz g-algebra for the operations defined by

h(d, D,g) = (hd7 "D, [h,g]) and (d, D,g)h = (dh7 D", [g,h])

where

Proof. Everything can be smoothly checked and we merely give an example of these verifi-
cations. By definition we have

"l(d. D, g), (d', D' g")] @&%[h[ g0,
[h(dvag)v(dlv Dlvgl)] (517A17 [ %) ,]
[h(dllevgl)v(dvag)]: (527A27[[ ] ])

For any m € 9t we have

(81 — 83)(m) = d'(m!"9y — ("d
= d'((m")?) = d'(
—d((m")*) +d

= (d'((m")?) — d(

= 6(m") = 6(m)" = ("8)(m)

and

(A= Ay)(m) = = ("D)(m?) = d' (") + ("D') (m?) + d(1"9m)
= —"D(m?) +d("(m?)) — d'(("m)?) + d'("(m?))
+ "D (m?) — d'("(m?)) + d(
="(D'(m?) — D(m?)) — (d'(("m)?) — d(("m)?"))
= "6(m) — 6("m) = ("A)(m).
Thus we get
"l(d, D,g),(d', D', g")] = ["(d, D, g), (d", D', g")] - [, D', '), (d, D, g)]. O

Now we can state the fundamental result which is a consequence of Propositions 3.1 and 3.2.
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Theorem 3.3. For any pre-crossed (resp. crossed) Leibniz g-algebra (M, ) (resp. (M, v)), the
Leibniz g-algebra Bider4(9M, N) is pre-crossed for the morphism

p: Bidergy (M, M) — g, (d, D, g)— g. -

3.4. Remarks. For any element g of g, the linear map ad, : h — [h, g] (resp. Ad, : h —
—[g,h]) is a derivation (resp. an anti-derivation) of the Leibniz algebra g. In the classical
sense (i.e., without “crossing”, see [7]) the couple (ad,, Ad,) is called inner biderivation of g.
Therefore the pre-crossed Leibniz g-algebra Bidery (901, M) can be seen as the set of biderivations
from (9, 1) to (M, v) over inner biderivations of g.

On the other hand, given a pre-crossed Leibniz g-algebra (90, i), one easily checks that the
map Bidery(9M, —) is a functor from the category of crossed Leibniz g-algebras to the category
of pre-crossed Leibniz g-algebras.

4. Non-abelian tensor product of Leibniz algebras

4.1. Leibniz pairings. Let 971 and 91 be Leibniz algebras with mutual Leibniz actions on one
another. A Leibniz pairing of 9 and M is a triple (B, hy, he) where P is a Leibniz algebra and
hy : M XN — P (resp. hy : N x M — P) is a bilinear map such that

ha (m, [n, n']) = (
ha(n, [m,m']) = ha(n™,m') — hy

(
ha([n,n'],m) = hyi("m,n') — hy(n,m™),
hy(m,™n) = —hy (m,n™), hy(n,"m) = —hy(n,m"™ ),
hy (m",™'n"y = [hy(m, n), hy(m',n")] = hy ("n, m'™),
hy ("m, ™) = [ha(n,m), hy(n', m")] = hy (0™, "'m"),
hy(m", n'™ ) = [hy(m,n), ha(n',m")] = hy("n,"'m"),

for any m,m' € M and n,n' € N.

4.2. Example. Let 9T and 91 be two-sided ideals of a same Leibniz algebra g. Take B := MNN
and define

hi(m,n):=[m,n] and hy(n,m):=[n,m].
Then the triple (B, h1, ha) is a Leibniz pairing of 9t and N.
4.3. Non-abelian tensor product. A Leibniz pairing (%, h1, h2) of 9 and N is said to be
universal if for any other Leibniz pairing (B’, b}, h%) of 9 and N there exists a unique Leibniz
algebra morphism 6 : 8 — P’ such that
6hy = R} and 6hy = R).

It is clear that a universal pairing, when it exists, is unique up to a unique isomorphism. Here
is a construction of the universal pairing as a non-abelian tensor product.



10

Definition-Theorem 4.1. Let 9 and N be Leibniz algebras with mutual Leibniz actions on
one another. Let V be the free K-module generated by the symbols m+n and nxm where m € M
and n € N. Let M x N be the Leibniz algebra quotient of the free Leibniz algebra generated by
V' by the two-sided ideal defined by the relations

i) A(mkn)=Am*n=mx*An, AMn*m)=An*m=nsx*Am,

i) (m+mYxn=mxn+m xn, (n+n)xm=nxm+n"xm,

mx(n+n)=msn+m*n, nx(m+m')=n+m+nxm,

" xn, nok [mym/] = 0™k m! — 0™

iti) mx[n,n']=m"«xn' —m * 1,

[m,m'l*n="n+m' —m*n™, [n,n]+m="m+n —n*m",

., ' ' ' '
) m*xTmn=—m+n", nx"m=—-nxm",
no, o mt ! ! m n!
v) m" x ™' =[m*n,m x 0] ="nxm'",
+ +
m"xn'™ =[mxn,n' xm']="x"m,
+ +
"maxn'™ =[nxm,n xm/]=n"x"m

n, m' 1 ' ' m !
m+"n' = [nxm,m xn']=n"xm
for any A € K, m,m' € M, n,n’ € N. Define maps

hy e M XN —= M*N, hy(m,n) :=mx*n
and
hy : M XM — M*N, hy(n,m) :=n+*m.

Then the triple (M x N, hy, he) is the universal Leibniz pairing of M and N and called the
non-abelian tensor product (or tensor product for short) of M and N.

Proof. It is straightforward to see that the triple (91 x 9, hy, hy) so-defined is a Leibniz
pairing of 9 and M. For the universality, notice that if (F, A}, k}) is another Leibniz pairing
of 9 and 97, then the map @ is necessarily given on generators by

O(m «n) = hi(m,n) and O(n*m)=hi(n,m)
for any m € 9 and n € M. d

As an illustration of this construction, we give now a description of the non-abelian tensor
product when the actions are trivial.

Proposition 4.2. If the Leibniz algebras M and N act trivially on each other, then there is
an isomorphism of abelian Leibniz algebras

93?*9?2 9:nab(gs)’tab S¥ 9’tab(gginab

where My 1= M/[ON, M] and Ny = N/[N, N].

Proof. Recall that the underlying K-module of the free Leibniz algebra generated by V is
TV =V & Ve & - & VO o ...

Since the actions are trivial, the definition of the bracket on T(V) and the relations v) enable us
to see that MMM is an abelian Leibniz algebra and that the summands V®" (for n > 2) are killed.
Relations i) and ii) of 4.1 say that the K-module 9% is the quotient of M@N & N@M by the
relations iii). These later imply that 9xNis the abelian Leibniz algebra M, @MNap & Nap @M yp.
a
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4.4. Compatible Leibniz actions. Let 91 and N be Leibniz algebras with mutual Leibniz
actions on one another. We say that these actions are compatible if we have

Tt = tm™, m"], U’ = ™, 0],
(™! = ["m, m'], (m ")y = ["n, n'],
(") = [m, m'"], n("'m) = [n,n'™],
m™) = [m, "m/], (") = [n, ™n']

for any m,m' € M and n,n' € N.

4.5. Examples. If 9T and 97 are two-sided ideals of a same Leibniz algebra, then the actions
(given by the initial bracket) are compatible.
Let (9, 1) and (M, v) be pre-crossed Leibniz g-algebras. Then one can define a Leibniz
action of 9 on N (resp. of N on M) by setting
= M"pand " =t

(I’eSp. "m = y(n)m and m" = ml/(n))

If the Leibniz g-algebras (901, ) and (M, v) are crossed, then these Leibniz actions are compat-
ible.

4.6. First crossed structure. Let 91 and 91 be Leibniz algebras with mutual compatible
actions on one another. Consider the operations of 91 on 9 x I given by

™m0y = [mym k0" =" om0k m’) =0 xm! — [m,m']x 0,

m' __ ! m' m' __ m' !
* 1 1 * 1
(m+n)™ =[m,m«sn+m*n™, (nxm)™ =n" «m+nx[m,m]
and those of 91 on M * N given by
[ Nt o [ [ YON A [ I ot [
* 1 1 * 1 1
(m*n)" :=m"” xn+mx[n,n], (nxm)” =[n,n]*m+n+m”
for any m,m’ € M and n,n’ € M. Then we have
Proposition 4.3. With the above operations, the map
piMxN =M m*xn—m", nxme— "m
(resp. v :M+xN =N, mxn— "n, nxm—n")
induces on MxN a structure of crossed Leibniz M-algebra (resp. N-algebra).

Proof. Once again everything can be readily checked thanks to the compatibility conditions.
For example we have

u(m*n)(ml % nl) _ m"(ml % nl) _ [mn7 ml] «n — (m")nl £ m'
= " e — ™ = T !
= m"«"n =[m*n,m xn']
for any m,m' € M and n,n' € N. O

4.7. Second crossed structure. Let (9, ) and (91, v) be pre-crossed Leibniz g-algebras,
equipped with the mutual Leibniz actions given in Examples 4.5. One easily checks that the
operations given by

Hmxn):=9Imxn—Tn+xm, {n*m):=%*m—9mx*n,
(m+n)? :==myxn+mx*n?, (nxm)? :=n?«m+n+xm?,

define a Leibniz action of g on 991 x 1.
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Proposition 4.4. Let (M, p) and (N,v) be pre-crossed Leibniz g-algebras. Then the map
7 MxN — g defined on generators by

n(mxn) = [u(m),v(n)] and n(n+m):=[v(n), p(m),
conferes to M N a structure of pre-crossed Leibniz g-algebra. Moreover, if one of the Leibniz
g-algebras M or N is crossed, then the Leibniz g-algebra SN x N is crossed.

Proof. It is immediate to check that the map 7 passes to the quotient and defines a Leibniz
algebra morphism. Moreover we have

n(Am+n)) = [p('m), v(n)] — [v(*n), p(m)]
= [lg, p(m)], v(n)] = g, v(n)], p(m)]
= [g, [u(m), v(n)]] = [g, n(m * n)];
n(inxm)) = —n(?(m=n)) = —[g,n(m*n)]
= —[g,[p(m),v(n)]] = [g, [v(n), p(m)]] = g, n(n* m)];

= [[V(n)7 :u(m)]vg] = [77(" * m)vﬂ]?

thus (9 % M, n) is a pre-crossed Leibniz g-algebra. Assume that, for instance, the Leibniz
g-algebra 971 is crossed. Then we have

n(men)(! gty = WO/ ) = u(m”("))(m/ « )

_ u(m”("))m/ wn — “(my(n))n’ .
= [ml’(n)7ml] wn — M(ml'(n))n, .
B N e ey V() €0 BT C ) NY Q.
— () ulm')r [m * n, ! n]
and |
(m x n)n(m’*n’) = (mx n)[u(m’),u(n')] — (m n)u(m,y(n )
= mﬂ(mw(nl)) XM+ m o n“(mw(nl))
= [m, mly(nl)] kN 4 m ok el )
= 1Oy P ) g n ) )

= [m*n,m xn'].
By the same way, one easily gets
W)l ') = [mox n,n' «m'], (m* n)”(”l*ml) = [m*n,n" xm'],
W)l ') = [« m,n' «m'], (nx m)”(”l*ml) = [n*m,n" xm'],
W) (! s’y = [noxm,m’ «n'], (n+m)" ) = [nxm,m' «n'].
So we have proved that the Leibniz g-algebra 901 x 91 is crossed. O
4.8. Remark. It is clear that if (91, ;) (resp. (M, v)) is a crossed Leibniz g-algebra, then the

map M x — (resp. —xN) is a functor from the category of pre-crossed Leibniz g-algebras to
the category of crossed Leibniz g-algebras.



13

Proposition 4.5. Let (M,v) be a crossed Leibniz g-algebra. The functor F(—) := — N is a
right exact functor from the category of pre-crossed Leibniz g-algebras to the category of crossed
Leibniz g-algebras.

Proof. Taking into account Proposition 2.3, let

0= (T,0) 5 (Q,0) % (R,7) =0

be an exact sequence of pre-crossed Leibniz g-algebras. Consider the sequence of Leibniz alge-

bras

Fep) L ra) 29 Fery - 0.

It is clear that the morphism F'(g) is surjective. Since the map F(f) is a morphism of
crossed Leibniz g-algebras, by Proposition 2.2, (F'(B), F'(f)) is a crossed Leibniz I'(Q)-algebra;
and by Proposition 2.1, the image imF'(f) is a two-sided ideal in F'(Q). By composition we
have F(g)F(f) = F(gf) = 0, which yields a factorisation

Flg) : F(Q)/imF(f) = F(R).

In fact, the morphism F(g) is an isomorphism. To see it, let us consider the map
I': F(R) — F(Q)/imF(f)
given on generators by
D(r+n) =g (r)+n mod imF(f) and D[(n*r):=n*g '(r) mod imF(f)

where ¢7!(r) is any pre-image of r in 9. Indeed, if ¢ and ¢’ are two pre-images of r, then
;7 .
q— ¢ = f(p) for some p in P. Therefore we have

grm—q xn=(q—q)xn=f(p)xn=F(f)(p*n) €imF(f),
nxq—nxq =nx(qg—q)=nxf(p)=F(f)(n*p) €imF(f);

thus the map I' is well-defined. One easily checks that I' is a morphism of Leibniz algebras and
inverse to I'(g). O

5. Adjunction theorem

In this section we show that, for any crossed Leibniz g-algebra (M, v), the functor — x N is
left adjoint to the functor Bidery (9, —). For technical reasons, we assume that the relations

iv) mox MMy = _ % n“(ml), n o+ V= —n g mv ()

defining the tensor product 9 x9N are extended to the relations

iv)’ m*h=—mxn? nxIm=—nxm?

for any m, m' € M, n,n’ € Nand g € g. To avoid confusion, we denote this later tensor product

by M x4 N. For instance, the Leibniz g-algebras 9«91 and M x4 N coincide if the maps p and
v are surjective.
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Theorem 5.1. Let (MM, 1) be a pre-crossed Leibniz g-algebra and let (N, v) and (P, X) be crossed
Leibniz g-algebras. There is an isomorphism of K-modules

Hompe-Leib(g)) (M, Bidery (9, F)) = Hom c_Leib(g)) (M x4 N, P).

Proof. Let ¢ € Hompe Leib(g)) (I, Biderg (M, ) and put (d, D, ) := ¢(m) for m €
9. Notice that we have g, = p(m) thanks to the relation p¢ = p1, where p : Bidery(9,B) — g
is the crossing morphism. We associate to ¢ the map ® : M x9N — P defined on generators by

S(m+n):=—-Dy(n) and P(nxm):=d,(n), ¥VmeMneMN

Lemma 5.2. The map ® is a morphism of crossed Leibniz g-algebras.

Conversely, given an element o € Hom c_Leib(g)) (M x4 N, B), we associate the map X : M —
Bider (M, P) defined by
E(m) == (6m, Ap, p(m)), V. m € M,

where

dm(n) :=0c(n«m) and A, (n):=—-oc(mx*n), VneN
Lemma 5.3. The map X is a morphism of pre-crossed Leibniz g-algebras.
It is clear that the maps ¢ — ® and ¢ — X are inverse to each other, which proves the

adjunction theorem. O

Proof of Lemma 5.2. There is a lot of things to check in order to show that the map @ is
well-defined. Let us give some examples of these verifications. For any m,m' € MM, n,n’ € N
and h € g, we have

+

S("mxn’ —nxm") = — Duty, (') —d,_ vy (0)
= — ("D, (n") = ((dw)"")) ()
= — "D () + dp (") - m(n)”(”l) + dm(nvw’))
= =y (1) - d ([, 1) = o (1)) 4 i ([, 0'])

We also compute

®(m+ ") = —D,, (") = D, (n") = —®(m * n"),
B+ "m) = die () = () (1) = —((d)") () = —d () = —®( 5 ")

and
O(m" ™n') = = Dy () = = (D)) ()
= Dy (M) g D (O
- _D,, u(m’)n')V(n) _|_Dm([u(7n’)n'7n])

Now let m € M, n € M and g € g. One has successively

S(Am+n)) = Pmxn) — P« m) = —Day(n) — dp(n)
= ("Di)(n) = d () = =D (n) = % (m *n),
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S n*xm)) =—-P((m+*n)) = —9@(m*n) =D, (n) =%, (n) = %P(n+m),

S((m+n)?)=®(m*n)+ P(m*n?)=—=Dye(n) — Dy (n?)

= = ((Dn)?) (1) = D (n?) = =D (n)? = ®(m + n)?,
O((nxm)?)= O *m)+ P(nxm?) =d,(n?) + dne(n
=dn(n?) 4+ ((dn)?)(n) = dp(n)? = ®(n +xm)7;

AR (m x n) = =A(Dyn (1) = v(*"n) = [u(m), v(n)] = n(m «n),
AR (nx m) = Mdy () = v(n*") = [v(n), p(m)] = 1(n * m).

Therefore the map ® is a morphism of crossed Leibniz g-algebras. O

Proof of Lemma 5.3. Let us first show that ¥(m) is a well-defined biderivation. For any
n,n’ € N, we have

8y (n)707) 4 v (M5 (n))
= o(n * m)”(”l) + Mg (n' xm) = o((n * m)”(”l)) + o ("0« m))
= U(n”(”l) *m) + o(n * m”(”l)) + ("™’ «m) — U(”(”I)m *n')
= 20([n, '] xm) — o ("Pmxn' — nxm" ("))
= 20([n,n']* m) — o([n,n'] x m) = a([n,n'] * m) = &,,([n,n']),
thus é,, is a derivation. Moreover, we have
A (m)" ") = Ay ()

= a(mx )™ o (mn’) ) = o ((moen) ) — o ((mn) )

a(m”™ s« 0"y + o(mx 0"y = a(m”") « n) — o(m « n”(nl))

n) v(n')

!
*n —m

o(m”! xn) — o(m "y — g(m* ")
ag(m«[n,n']) — o(m* [n,n']) — a(m* [n,n])

= —o(mx*[n,n]) = An([n,n']),
thus A, is an anti-derivation. We have also
A(8m(n)) = Ao (nxm)) = n(n+m) = [v(n), p(m)] = v(n"™),
AB (1)) = ~Alo(m ) = —nm » n) = ~[u(m), v(n)] = —(*")
h5m(n) = ha(n *m) = ( xm)) = —of (m *km)) = —ha(m *n) = —hAm(n)7

Ay (") = —o(m+") =o(m*n") = —A,, (n").
Therefore X(m) = (8, A, pt(m)) is a biderivation from (M, v) to (B, A).

For any h € g, m € 9 and n € N, we have

(h(5m))(n) = 5m(nh) - 5m(n)h = U(nh *m) — o(n * m)h

= —o(nxm") = o(n+"m) = du,(n),

(h(Am))(n) = hAm(n) - 5m(hn) = ha(m *n) — U(hn * 1)

= o("m *n) = An, (n);
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and obviously [k, u(m)] = p("m), thus we have ¥("m) = ">(m). On the other side, we have

((5m)h)(n) = 5m(n)h - 5m(nh) = o(n * m)h - U(nh * 1)

= o(n*xm") =, (n)

and
(A" () = Ay ()" = 8, (") = —a(m +n)" + o (m + n")
= —o(m"xn) = A, (n).
Since [p(m),h] = p(m”), we get X(m") = X(m)". By definition of the map X, we have
pX(m) = pu(m). Therefore the map 3 is a morphism of pre-crossed Leibniz g-algebras. O

6. Cohomological characterizations

6.1. Non-abelian Leibniz cohomology. Let g be a Leibniz algebra viewed as the crossed
Leibniz g-algebra (g,idy), and let (90, 1) be a crossed Leibniz g-algebra. Given an element
m € M, we denote by d,,, (resp. D,,) the derivation (resp. anti-derivation) g — 9%m (resp.
g — —m?) from (g,idg) to (M, i), and by p(m) := p(m) mod Z(g), where Z(g) is the centre of

g. One easily checks that the triple (d,;,, Dy, p(m)) is a well-defined element of Bidergy(g, 90).

Definition-Proposition 6.1. Let J be the K-module freely generated by the biderivations
(dpy, Doy pi(m)), m € M. Then J is a two-sided ideal of Bidergy(g,9M). The Leibniz algebra
Bidery(g, M) /3 is denoted by $HL' (g, M).

Proof. For any m € M and (d, D, g) € Biderg(g, ), we have

[(d, D, g); (dims Dry ji(m))] = (0 A, [g, p(m)])

with L
b (2) = dn ([, 9]) = d([x, u(m)) = %m — d([z, p(m)])
— wld(z)), d(@u(?ﬂ) — %d(u(m))

——~

where my := —D(p(m)),

=
&
!
+
S
=
2
!
Nt
=
2
!
Nt
=
2

thus we have [(d, D, g), (d, D, t(m))] € 3. On the other side, we have

[(dn, Dy p(m), (d, D, 9)) = (87, AL, [u(m), g])

with
51, () = d([z, p(m)]) = dyn ([, 9]) = d([z, p(m)]) = "I
= d(w)ﬂ(m) + “d(p(m)) — u(d(@)),,,
= [d().m] + “d(u(m) ~ [d(z). m]



17

where mgy := d(p(m)),

Al (2) = = Du([z,g]) = d([u(m), «]) = ml*9 — d([u(m), «])
= muld@) _ d(p(m))™ — “(m)d(x)
= [m, d(@)] = d(p(m))* — [m, d(z)]

p(ma) = p(d(p(m))) = [u(m), g = [u(m), g;

thus we have [(dy,, Dy, u(m)), (d, D, g)] € J. Therefore the set J is a two-sided ideal of
Biderg4(g, 9). a

Similarly, given a crossed Leibniz g-algebra (90, i), one defines
S (g, M i={meM:'m=m? =0, V g € g}
that is, the set of invariant elements of 1. From the relations
[m,m'] = m*") =0 =0y = [m/,m], m € S0 (g, M), m' € M,
it is clear that $HC°(g, M) is contained in the centre of the Leibniz algebra 9.
Proposition 6.2. For any exact sequence of crossed Leibniz g-algebras
0= (2,003 (B,0) 2 (¢, 1) =0,

there exists an exact sequence of K-modules

0 — 92°(g, %) — HC° (g, B) — 9 (8, @) > 92" (9, %) — 9! (3, B) 5 9L (g, )
where B' is a Leibniz algebra morphism.

Proof. Everything goes smoothly except the definition of the connecting homomorphism 9.
Given an element ¢ € H2°(g, €), let b € B be any pre-image of ¢ in B. For any z € g, we have

B(b) = e = 0= = B(b").

Thus the element b (resp. b”) is in ker(f) = im(«). Since the morphism « is injective, the
map d° : @ — a~1(%) (resp. D¢ : z +— a71(b%)) is a derivation (resp. an anti-derivation)
from (g,idg) to (%, 0). One easily checks that the triple (d¢, D¢, 0) is a well-defined element of
Bider,(g, 2) whose class in $2! (g, %) does not depend on the choice of the pre-image b. We put

d(c) := class(d®, D, 0). a

6.2. Non-abelian Leibniz homology. Let g be a Leibniz algebra viewed as the crossed
Leibniz g-algebra (g,idgy), and let (M, ) be a crossed Leibniz g-algebra.

Definition-Proposition 6.3. The map Vo : N+ g — N given on generators by
Unp(n*g):=n? and VUn(g*n):=, g€ g, neN,

is a morphism of crossed Leibniz g-algebras. We define the low-degrees non-abelian homology
of g with coefficients in M to be

o (g, M) := cokerWeq  and HL;(g,N) := ker Uy

Proof. To see that the map Wy is a Leibniz algebra morphism is equivalent to the fact
that the Leibniz action of 9T on g is well-defined. The definition of the crossing homomorphism
Nor : Nx g — gimplies that Wi is a morphism of crossed Leibniz g-algebras. O
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Proposition 6.4. For any exact sequence of crossed Leibniz g-algebras
0= (2,0) 3 (B,0) 3 (¢, 1) =0,

there exists an exact sequence of K-modules

21 (8, A) = 521 (8, B) — 92 (g, €) 2 H5C (g, A) — HCo (g, B) — HCo (g, &) — 0.

Proof. We know that the functor —xg is right exact (Proposition 4.5). Therefore Proposition
6.4 is nothing but the “snake-lemma” applied to diagram

Axg — Bxg — Cxg — 0

[ PR

o— 4 — B — ¢ — 0

which is obviously commutative. O

6.3. Universal central extension. Let g be a Leibniz algebra and let ¥ := W, be the
morphism defining the homolgy $E€. (g, g). From the relations v) of Definition-Theorem 4.1, it
is clear that W : g% g — [g, g] is a central extension of Leibniz algebras (see [4]).

Theorem 6.5. If the Leibniz algebra g is perfect and free as a K-module, then the morphism
U gxg— [g, 0] = g is the universal central extension of g. Moreover, we have an isomorphism
of K-modules

H51(g,9) = HLa(g).

Proof. It is enough to prove the universality of the central extension W : gxg — [g, 0] =
g. Let @ : € — g be a central extension of g. Since ker(a) is central in €, the quantity
[a=1(2), a7 (y)] does not depend on the choice of the pre-images a~!(z) and a~!(y) where
x,y € g. One easily checks that the map ¢ : gx g — € given on generators by

$a xy) =[a"" (2), a7 (y)]

is a well-defined Leibniz algebra morphism such that a¢ = W. The uniqueness of the map ¢
follows from Lemma 2.4 of [4] since the perfectness of g implies that of gx g:

zry = [z, al])« O sy =D [wixal,yj xyjl.

i J ij

By definition we have $€(g,g) = ker(¥). After [4] the kernel of the universal central
extension of a Leibniz algebra g is canonically isomorphic to HL3(g). Therefore we have

H1(g,9) = HLa(g). O

7. The Milnor-type Hochschild homology
Let A be an associative algebra viewed as a Leibniz (in fact Lie) algebra for the bracket
given by [a,b] := ab — ba,a,b € A. Recall that the K-module L(A) := A®? /im(b3) is a Leibniz
(non-Lie) algebra for the bracket defined by

oy 2’0y = (2y —y2)o @'y —y'a"), Va,y2'y € A
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Proposition 7.1. The operations given by

AXL(A) = L(A), (zoy) = [e,2]oy - [¢,yloz,
L(A) x A —= L(4), (zoy)" :=[z,doy+rely,a

confere to L(A) a structure of Leibniz A-algebra. Moreover the map
pa:L(A) = A voye v,y =2y -y

equips L(A) with a structure of crossed Leibniz A-algebra.

Proof. The operations are well-defined since we have

“hs(royez) =bilazoyez —azery — zary
—|—a®yz®x—|—a®zw®y—a®y®29€)

and
(bs(zoy®2))* =bs(—arzeyez+ayvavz+ryeza

—IRARYZ— ZERAQY — 2TRYDa).

One easily checks that the couple (L(A),u4) is a pre-crossed Leibniz A-algebra. Moreover
we have

ma@OV (3 oy — zoy, ' oy = bs([z,y]ed oy - [z,y]ey o)
(z2y)"4=0Y _[zoy,2’ 0y = bz, y]oy —zayelz,y]).

Thus the Leibniz A-algebra (L.(A), p4) is crossed. O

It is clear that the inclusion map [A, A] < A induces a structure of crossed Leibniz A-algebra
on the two-sided ideal [A, A], and that the map p4 : L(A) — [A, A] is a morphism of crossed
Leibniz A-algebras. Moreover we have an exact sequence of K-modules

0 — HH;(A) = L(4) 24 [4, A] — 0.
Lemma 7.2. The Leibniz algebra A acts trivially on HH1(A).
Proof. One easily checks that
roy)=acz,yl+b(ecozoy—aoyor) =ao(z,y]in L(A)

and
(zoy)" =[r,ylea+bs(reaoy —royoa) = [v,y]oain L(A).

Therefore, if w => \i(2;0y;) € HH1(A), that is > \j[z;, y:;] = 0, then we have

=Y ANwioy) =) Nilaofr,yl) =ao Y Ari, gl =0

and
W' = Z/\i(fi@@yi)a = Z/\i([wuyi]@w) = (Z Ailzi yil) @a =0

for any a € A. d
As an immediate consequence, we get the following
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Corollary 7.3. The sequence
0— HH (A) = L(4) 25 [4,4] - 0

is an exact sequence of crossed Leibniz A-algebras. O

We deduce from Proposition 6.4 an exact sequence of K-modules

52 (A, HH1(A4)) = 95241(A,L(A)) — 921 (4, [4, A]) —
— 9 (A, HH 1 (A)) — 9 (A, L(A)) = 5% (A, [A, A]) = 0.
Since A and HH;(A) act trivially on each other, we have
$529(A, HH,1(A)) = HH,(A)

and

58 (A, HH 1 (A)) = AxHH 1 (A) 2 A/[A, A]@ HH{(A) & HH,(A) @ A/[A, A].
On the other hand, it is clear that
Therefore we can state

Theorem 7.4. For any associative algebra A with unit, there exists an exact sequence of K-
modules

A/[A, Al@ HH,(A) @& HH;(A) @ A/[A, A] = H, (A, L(A4)) — 51 (A, [A4, A]) —
— HHy (A) — HHY' (A) — [A, A/[A, [A, A]] = 0
where HH{VI(A) denotes the Milnor-type Hochschild homology of A.
Proof. Recall that HH1Y (A) is defined to be the quotient of A ® A by the relations
a®b,c]=0, [a,b]ec=0, bs(avbac)=0
for any a,b,c € A (see [6, 10.6.19]). By definition L(A) = A ® A/im(b3) and from the proof of

Lemma 7.2, we get
Vi (ax(zoy)) =Yroy) =aclz,y]
and
Vi ((roy)xa) = (zoy)’ = [z y]oa
Therefore it is clear that $Co (A, L(A)) = coker(¥y(4)) is isomorphic to HHY (A). O

Remark. The K-modules HH; (A) and HH} (A) coincide when the associative algebra A is
superperfect as a Leibniz algebra that is, A = [A, A] and HL3(A) = 0. Also, if the associative
algebra A is commutative, then we have

HH; (A) 2 HHY (4) 2 QY.

Let us also mention that the Milnor-type Hochschild homology appears in the description of
the obstruction to the stability

HL,(gl,—1(A)) = HL, (gl,(A)) = HHM , (4) =0

where gl,,(A) is the Lie algebra of matrices with entries in the associative algebra A (see [2], [6,
10.6.20]).
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