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Abstract

Let G be a connected Lie group with Lie algebra g. In this work, we deal with the observ-

ability of a general linear pair (X; �K) on G: By de�nition the vector �eld X belongs to the

normalizer of g related to the Lie algebra of all smooth vector �elds on G. K is a closed Lie

subgroup of G and �K is the canonical projection from G onto the homogeneous space G=K:We

compute the Lie algebra of the equivalence class of the identity element and characterize local

and global observability of (X; �k): We extend the well known observability rank condition for

linear control systems on IRn and also the work about observability of linear pairs appear in [2].
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�1 Preliminaires

Let G be a connected Lie group of dimension n with Lie algebra g. Here we consider g as

the set of left invariant vector �elds on G: Denote by X(G) the Lie algebra of all smooth vector

�elds on G and by normX(G)(g) the normalizer of g related to the Lie algebra X(G): In other

words,

normX(G)(g) = fX 2 X(G) j ad(X)(Y ) = [X; Y ] 2 g; for all Y 2 gg
In [1], the authors generalize the notion of Linear Control Systems from IRn to an arbitrary

connected Lie group G: Related to the observability property of this class of systems, the authors

in [2] introduce the notion of linear pair. Our interest in this work is to generalize this notion

in a natural way and to obtain more general results for general linear pairs where the dynamic

is given by a vector �eld in the normalizer. In fact, we extend all the results appear in [2] :

So, let us start with the de�nition of this notion:

De�nition 1.1 A general linear pair (X; �K) on G is determined by X 2 normX(G)(g) and

by a closed Lie subgroup K of G:

Remarks 1.2

1. Just observe that K induces a well de�ned homogeneous space K=G and also a canonical

projection output map �K : G! K=G:

2. De�nition 1.1 extends:

a) The classical pair (A;C) induced by a linear control system � on IRn

In fact, this class of control systems on IRn is de�ned by

_x(t) = Ax(t) +Bu(t); and h(x(t)) = Cx(t) 2 IRs

where x(t) 2 IRn for every t 2 IR. And A, B and C are matrices of appropriate orders, [4]. It

is well known that in order to study the observability property of � the pair (A;C) contains all

the information, [3] : We identify the matrix C with the canonical projection

�Ker(C) : IR
n ! IRn=Ker(C):

Of course, K = Ker(C) is a closed subspace of IRn: And, the matrix A 2 Mn(IR) belongs

to normX(IRn)(IR
n): In fact, the Lie algebra of IRn is the own IRnand a simple computation

shows that [Ax; b] = �Ab; for each invariant vector �eld b on IRn: Actually, normX(IRn)(IR
n)

is isomorphic to the semidirect product of Lie algebras IRn 
Mn(IR); (see Theorem 1.3 in the

following). In particular, (A;C) is a general linear pair de�ned on the simply conneted Abelian

Lie group IRn:We also appoint that for every admissible constant control u the associated vector

�eld Xu of � de�ned by Xu(x) = Bu +Ax belongs to the normX(IRn)(IR
n):

b) The notion of linear pairs (X; h) on a connected Lie group G:

In [2], the authors introduce the notion of linear pairs. By de�nition, (X; h) is given by the

in�nitesimal automorphism X on G, i.e., the 
ow (Xt)t2IR induced by the vector �eld X is a

one parameter subgroup of Aut(G). And the output map h is a Lie group homomorphism from

G to any Lie group V . It follows that X 2 normX(G)(g): A simple proof is given as follows. Let

us denote by e the identity element of G and by Lx and Rx the left and right translations by x

on G, respectively. Pick any left invariant vector �eld Y 2 g: Since Xt(e) = e for each t 2 IR;

we have:

[X; Y ](e) = �( d
ds

)s=0Xexp(sY ):
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On the other hand,

[X; Y ](x) = (
d

dt
)t=0d(X�t)(YXt(x)) = (

d

dt
)t=0(

d

ds
)s=0X�t � Ys �Xt(x)

= (
d

dt
)t=0(

d

ds
)s=0Lx �X�t(expsY ) = �( d

ds
)s=0d(Lx)Xexp(sY )

So, [X; Y ](x) = d(Lx)[X; Y ](e); and ad(X)(Y ) 2 g; for each Y 2 g: Therefore, X 2
normX(G)(g): If we denote by K the kernel of h and consider the canonical map �K : G !
G=K �= Im(h) � V; we get that (X; �K) is also a general linear pair.

Denote by Aut(G) the Lie group of all automorphisms of G and by aut(G) its Lie algebra

and by @g the Lie algebra of all g� derivations, i.e., the elements D of End(g) such that,

D(
h
Y 1; Y 2

i
) =

h
D(Y 1); Y 2

i
+
h
Y 1; D(Y 2)

i
; 8Y 1; Y 2 2 g:

We conclude this Section with a characterization of normX(G)(g) which will be used to de�ne

our dynamic. In [1], the authors prove the following result :

Theorem 1.3 Let G be a connected Lie group. Then,

normX(G)(g) �= g 
 aut(G):

If G is also simply connected, then normX(G)(g) �= g
 @g.

Just observe that aut(G) � @g: So, in the simply connected case the isomorphim is onto @g:

We shall consider general linear pairs of the form (X; �K) where the dynamic is determined by

the vector �eld X such that:

X = X1 +X2 2 g
aut(G); i:e:; X1 2 g and ad(X2) 2 aut(G):

Finally, let us establish the solution of X for any arbitrary initial condition x 2 G: The

authors had been proved in [1] the following :

Theorem 1.4 Each vector �eld X 2 normX(G)(g) is complete and its 
ow is given by

Xt(x) = X2
t (x)exp�(t) (1)

where �(t) is a di�erentiable curve in g: Actually, Jacobi identity yields that ad(X2) 2 @g; and

they show that :

�(t) = �k�1(�1)k+1tkdk(X1; ad(X2)); (2)

where d1(X) = X1; d2(X) = 1
2

�
X2; X1

�
;

d3(X) =
1

12
[X1;

h
X2; X1

i
] +

1

6

h
X2;

h
X2; X1

ii
:

In general, for each k � 1; dk is a homogeneous polynomial map of degree k from the

semidirect product g 
 @g into g:

In order to characterize local and global observability properties of general linear pairs we

shall use the global form of the solution established in (1); for any X in the normalizer:
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�2:Observability

First of all we recall the notion of observability. So, let us start with the following one:

De�nition 2.1 The general linear pair (X; �K) is said to be :

i) observable at x1, if for all x2 2 G; x1 6= x2 there exist t � 0 such that

�K(Xt(x1)) 6= �K(Xt(x2))

ii) locally observable at x1, if there exists a neighborhood of x1 such that the condition (i)

is satis�ed for each x2 in the neigborhood:

iii) observable (locally observable) if it is observable (locally observable) at every x 2 G.

We note that X2
t 2 Aut(G); 8t 2 IR. For any x1; x2 2 G, let us de�ne � by :

x1 � x2 , �K(Xt(x1)) = �K(Xt(x2)); 8t � 0:

Then, � is an equivalence relation. From (1) we get,

x1 � x2 , X2
t (x1)exp�(t)K = X2

t (x2)exp�(t)K; 8t � 0:

So, for any x1; x2 2 G we obtain :

x1 � x2 , iexp�(t)(X
2
t (x

�1
2 x1)) 2 K; 8t � 0

, i(exp�(t))�1(X
2
t (x

�1
1 x2)) 2 K; 8t � 0

where ix : G! G is the usual inner automorphism given by conjugation.

Fix t 2 IR and denote 't = iexp�(t) � X2
t , ~'t = i(exp�(t))�1 � X2

t and by I the equivalence

class of e: It follows that :

Proposition 2.2 Let (X; �K) be a general linear pair. Then, I is the largest ('t)t2IR�invariant
closed Lie subgroup of G contained in K: Furthermore, for any x 2 G the equivalence class

�
x of

x is given by left translation.

Proof. From De�nition 2.1, it is clear that

I = fx 2 G j 't(x) 2 K; 8t � 0g:

For each t 2 IR, 't 2 Aut(G): It follows that I is a subgroup of K: Since K is a closed subgroup

of G standard continuity arguments shows that I is also a closed set. In particular, I is Lie

subgroup of G, [5] : On the other hand, I is 't�invariant for every non negative t: From standard

analytical arguments we get the ('t)t2IR�invariance of I: In particular,

I = fx 2 G j 't(x) 2 K; 8t 2 IRg:

Moreover, for each x 2 G,
�
x = xI . Indeed, x2 � x1 , x�1x2 2 I , x2 2 x1I .

In order to be able to compute the Lie algebra of I; we need the following one:

Lemma 2.3 Let (X; �K) be a general linear pair on G: Then,

1. There exists Z 2 aut(G) and a right invariant vector �eld Y on G with X = Z + Y:

2. The linear transformations ad(Z) and ad(X) de�ned on X(G) agree on g:
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3. ad(Z) 2 @g is a derivation such that for every U 2 g and t 2 IR:

~'t(expU) = exp(etad(Z)U)

Proof. 1. As we know the 
ow ('t)t2IR � Aut(G): On the other hand,

�
't= L(exp �(t))�1 �Xt; 8t 2 IR:

For each x 2 G;

(
d

dt
)t

�
't (x) = d(Lexp�1 �(t))Xt(x)(XXt(x)) + d(RXt(x))exp�1 �(t)((

d

dt
)t(exp

�1(�(t)):

Thus, the one parameter group
�
't 2 Aut(G) induced a well de�ned vector �eld Z 2 aut(G),

such that , for every x 2 G; Zx = Xx � (dRx)e(X
1): In fact, from (2); we get

(
d

dt
)t=0(exp

�1(�(t)) = �X1:

So, Y = (dRx)e(X
1) is a right invariant vector �eld with X = Z + Y:

2. The map X 7�! ad(X)g is a Lie algebra homomorphism of normX(G)(g) into the deriva-

tion algebra @g of g. The kernel of this homomorphism is the centralizer Z(g) of g in X (G),

i.e., the set of all vector �elds on G commuting with each element of g: In order to prove the

assertion we compute the bracket [Y; U ] for each U 2 g: By de�nition, [5] ;

[Y; U ]x = (
d

dt
)t=0+
(

p
t); where; 
(s) = Y�s� �U�s � Ys� � Us(x):

Since, we consider U as a left invariant vector �eld we get 
(s) = x; for each s 2 IR:

Consequently, we have seen that Y 2 Z(g). Thus, the proof is complete, because [Y; U ] = 0:

3. Since
�
't 2 Aut(G) and

�
't (e) = e; 8t 2 IR , the 
ow (d(

�
't)e)t2IR � Aut(g) is a linear


ow. From the standard Lie series expansion we have

d( ~'t)e = �1i=0
ti

k!
adi(Z) = etad(Z):

By standard commutative diagrams envolving the exponential map a homomorphim and its

derivative the proof of the lemma is complete.

Let us denote by I the Lie algebra of the equivalent class I of the identity element and by

K the Lie algebra of K. The following theorem establishes an algebraic charaterization of I :

Theorem 2.4 Let (X; �K) be a general linear pair onG: Then, I is the largest ad(X)�invariant
subalgebra of g contained in K:

Proof. From Prosition 2.2, the Lie subgroup I is ('t)t2IR�invariant. It follows that I

is also (
�
't)t2IR�invariant. Since the one parameter subgroup ( ~'t)t2IR de�nes the vector �eld

Z; it is clear that I is ad(Z)� invariant. From Lemma 2.3 we obtain that I is also ad(X)�
invariant, i.e., the map ad(X) : I ! I is well de�ned. So, for each i � 0; adi(X)(I)� K, where
ad0(X) = Id: Actually, we are able to prove that

I = \i�0ad�i(X)(K):
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In fact, �x an element U 2 \i�0ad�i(X)(K); then adi(X)(U) 2 K; for each i � 0: Then, for

every t; s 2 IR we have:

d( ~'t)(sU) =
1X
i=0

ti

i!
adi(X)(sU):

By hypotesis, d( ~'t)(sU) 2 K:Therefore, ( ddt)t=0 ~'t(exp(sU)) 2 K:Thus, for t; s 2 IR; ~'t(exp(sU))

and 't(exp(sU)) 2 K: As a matter of fact, Proposition 2.2 shows that exp(sU) 2 I: In partic-

ular, U 2 I as we want to prove. Finally, if K = feg we get I = f0g : On the other hand, if

K 6= feg we obtain that at most in n� 1 ad(X)�steps we should reach the Lie algebra I: This
yields that the real face of I is:

I =
n�1\
i=0

ad�i(X)(K):

Remarks 2.5 Let (X; �K) a general linear pair on G: Proposition 2.2 shows that:

1. (X; �K) is observable if and only if I is trivial.

2. For any x 2 G; the tangent space at any point y of the equivalence class
�
x is also given

by left translation, i.e., Ty
�
x = dLy(I):

An immediate consequence of it is the following :

Corollary 2.6 Let (X; �K) a general linear pair on G: Therefore,

(X; �K) is locally observable if and only if I is trivial.

Proof. I = f0g , I is discrete.

Remark 2.7

1. Let (A;C) be a linear pair induced by a linear control system � on IRn : For this set,

Corollary 2.6 also determines global observability. In fact, in this case I = I . In particular,

Theorem 2.4 give us the well known formula

�

0=
n�1\
i=0

Ker(CAi)

In fact, as we know
�

0 is the largest A�invariant subspace of IRn contained in Ker(C):

2. As showed in [2] , local and global observability are independent notions for linear pairs

(X; h) where X = 0 +X2 2 g
 aut(G) and h is a Lie group homomorphism output map. So,

for a general linear pair given by X = X1 +X2 2 g
 aut(G) we must expect the same.

Lemma 2.3 yields the existence of a vector �eld Z 2 aut(G) and a right invariant vector �eld

Y on G such that X = Z + Y and ad(Z) and ad(X) agree on g: Let us denote by S(Z) the set

of the singularities of Z; i:e:; S(Z) = fx 2 G : Zx = 0g :
The following result illustrates necessary and su�cient conditions for global observability.

Theorem 2.8 A general linear pair (X; �K) on G is observable if and only if

i) (X; �K) is locally observable

ii) S(Z)\K = feg
Proof. Of course, the locally observable property is a necessary condition to the global

one. If x 2 S(Z) \ K it follows immediately that
�
't (x) 2 K for every t 2 IR: Thus, x 2 I:

Conversely, we shall show that the property of being observable is a necessary condition. Assume
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I is discrete and �x x 2 I � K . As we proved, I is (
�
't)t2IR�invariant thus by continuity

arguments,
�
't (x) = x; for each t 2 IR: So, x 2 S(Z): By hypothesis, we get x = e. It follows

that (X; �K) is observable.

Remark 2.9 Let G be a connected Lie group such that the exponential map exp : g ! G

is a global di�eomorphism. For instance, it happens if G is a simply connected nilpotent Lie

group. By Lemma 2.3, ~'t(x) = exp(etad(Z) log x); for every x 2 G and t 2 IR: Here, log denotes

the inverse map of exp : So,

Zx = 0, log x 2 Ker(ad(Z))

Therefore, in this situation Theorem 2.8 implies that locally and globally observability prop-

erties are equivalent. In fact, the only one discrete vector subspace of g is the trivial one. As

a matter of fact, in this case the observability property of a general linear pair (X; �K) on G

reduces to a test at the algebra level.

�3:Algorithm and Examples

In order to compute the Lie algebra I it is also suitable to use a general algorithm proved

by Isidori in [3] : In fact, from this result and starting with the Lie algebra K it is possible to

construct a �nite sequence of left invariant subspaces of the dual space g� convergent to I�, (see
[2] for details).

Algorithm

Consider a general linear pair (X; �K) on G and the following steps:

1. Choose a basis B = fY 1; :::; Y lg to the Lie subalgebra K,
2. Find the B-dual basis B� = fw1; :::; wn�lg,
3. Find the ad(X)(B�)-associated basis to I�, i.e.,

ad(X)(B�) = fadi(X)(wj) j 0 � i; 1 � j � n� lg;

ad0(X) = Id:; ad(X)(w) = � w � ad(X); adi(X)(w) = ad(X)(adi�1(X)(w)), i � 2.

Then, we have :

Proposition 3.1 Let (X; �K) be a general linear pair. Therefore,

I = (Span:ad(X)(B�))�

Proof. It follows from Isidori theorem in [3] that

Span(ad(X)(B�) = I�:

In the sequel, some examples.

Examples 3.2

Let us consider the simply connected and nilpotent Heisenberg Lie group G of dimension 3,

such that G = IR3 and g =IRY 1+IRY 2+IRY 3 with the generators

Y 1 =
@

@x1
; Y 2 = x3

@

@x1
+

@

@x2
and Y 3 =

@

@x3
:

Just observe that only the Lie bracket [Y 3; Y 2] = Y 1 is not null. The group operation is

given by

(x1; x2; x3)(y1; y2; y3) =: (x1 + y1 + x3y2; x2 + y2; x3 + y3):
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Consider the vector �eld X 2 g
 @g de�ned by X = X1 + X2where X1 = Y 2 and X2 is the

vector �eld associated to the derivation

ad(X2) =

0
@
�3 0 1

0 �1 0

0 1 �2

1
A 2 @g:

Observe that the vector �eld Z of the Lemma 2.3 has the face:

Z = Y 2 +X2 � @

@x2
= x3

@

@x1
+X2:

We consider the followings general linear pairs:

i) (X; �K) where K is the closed Lie subgroup with Lie algebra K = Span
�
Y 1
	
: A simple

computation shows that ad(X)(Y 1) = �3Y 1 2 K: Thus, by Proposition 2.4, I = K. Therefore,
Corollary 2.6 implies that (X; �K) is neither locally nor globally observable.

ii) (X; �K) where K is the closed Lie subgroup with Lie algebra K = Span
�
Y 2
	
: We have,

ad(X)(Y 2) = �Y 2+Y 3 =2 K: In this case, Corollary 2.6 (and Remark 2.9) gives us that (X; �K)

is observable.
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