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Abstract

Let GG be a connected Lie group with Lie algebra g. In this work, we deal with the observ-
ability of a general linear pair (X, 7x) on G. By definition the vector field X belongs to the
normalizer of g related to the Lie algebra of all smooth vector fields on (. K is a closed Lie
subgroup of G and 7y is the canonical projection from G onto the homogeneous space G /K. We
compute the Lie algebra of the equivalence class of the identity element and characterize local
and global observability of (X, 7;). We extend the well known observability rank condition for

linear control systems on IR™ and also the work about observability of linear pairs appear in [2].
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¢1 Preliminaires

Let G be a connected Lie group of dimension n with Lie algebra g. Here we consider g as
the set of left invariant vector fields on (7. Denote by X () the Lie algebra of all smooth vector
fields on GG and by normy (g)(g) the normalizer of g related to the Lie algebra X (). In other
words,

normy () (g) = {X € X(G) | ad(X)(Y) =[X,Y] € g, forall Y € g}

In [1], the authors generalize the notion of Linear Control Systems from IR™ to an arbitrary
connected Lie group . Related to the observability property of this class of systems, the authors
in [2] introduce the notion of linear pair. Our interest in this work is to generalize this notion
in a natural way and to obtain more general results for general linear pairs where the dynamic
is given by a vector field in the normalizer. In fact, we extend all the results appear in [2].

So, let us start with the definition of this notion:

Definition 1.1 A general linear pair (X, 7x) on G is determined by X € normy ¢ (g) and
by a closed Lie subgroup K of G.

Remarks 1.2

1. Just observe that K induces a well defined homogeneous space K /G and also a canonical
projection output map 7x : G — K/G.

2. Definition 1.1 extends:

a) The classical pair (A, ) induced by a linear control system ¥ on IR™

In fact, this class of control systems on IR™ is defined by
&(t) = Az(t) + Bu(t), and h(z(t))=Cz(t) € R®

where z(t) € IR for every t € IR. And A, B and C are matrices of appropriate orders, [4]. It
is well known that in order to study the observability property of 3 the pair (A4, C') contains all

the information, [3]. We identify the matrix C' with the canonical projection
Trer(c) : R" — IR"/Ker(C).

Of course, K = Ker(C) is a closed subspace of R”. And, the matrix A € M, (IR) belongs
to normX(]Rn)(IR”). In fact, the Lie algebra of IR™ is the own IR™and a simple computation
shows that [Az,b] = —Ab, for each invariant vector field b on IR". Actually, normy rn(IR")
is isomorphic to the semidirect product of Lie algebras R™ @ M, (IR), (see Theorem 1.3 in the
following). In particular, (A, C') is a general linear pair defined on the simply conneted Abelian
Lie group IR™. We also appoint that for every admissible constant control u the associated vector
field X* of ¥ defined by X*“(z) = Bu + Az belongs to the normy rn(IR").

b) The notion of linear pairs (X, h) on a connected Lie group G.

In [2], the authors introduce the notion of linear pairs. By definition, (X, k) is given by the
infinitesimal automorphism X on G, i.e., the flow (X;)cr induced by the vector field X is a
one parameter subgroup of Aut(G). And the output map h is a Lie group homomorphism from
G to any Lie group V. It follows that X € normy g (g). A simple proof is given as follows. Let
us denote by e the identity element of G and by L, and R, the left and right translations by z
on G, respectively. Pick any left invariant vector field Y € g. Since X;(e) = e for each t € IR,

we have: J
[X,Y](e) = _(%)szoXexp(sY)'



On the other hand,

[X.¥](0) = (0)mod(X-) (V) = (im0 0)umo Xy 0 Vi 0 Xofo)
= (%)t:O(%)s:OLw o X_i(expsY) = —(dis)s:od(Lx)Xexp(sY)

So, [X,Y](z) = d(L;)[X,Y](e), and ad(X)(Y) € g, for each Y € g. Therefore, X €
norm y () (g). If we denote by K the kernel of h and consider the canonical map 7x : G —
G/K 2 Im(h) C V, we get that (X, 7k) is also a general linear pair.

Denote by Aut(G) the Lie group of all automorphisms of G and by aut(() its Lie algebra
and by dg the Lie algebra of all g— derivations, i.e., the elements D of Fnd(g) such that,

DYy = DY), v2] + [y, DY) vl yieg.

We conclude this Section with a characterization of norm y (¢ (g) which will be used to define
our dynamic. In [1], the authors prove the following result :

Theorem 1.3 Let GG be a connected Lie group. Then,
normx () (g) = g @ aut(G).

If G is also simply connected, then normy s)(g) = g Jg.

Just observe that aut(G) C 0g. So, in the simply connected case the isomorphim is onto dg.
We shall consider general linear pairs of the form (X, 7x) where the dynamic is determined by
the vector field X such that:

X =X'"+ X? € goaut(@),ie, X' €g and ad(X?) € aut(G).

Finally, let us establish the solution of X for any arbitrary initial condition x € . The
authors had been proved in [1] the following :

Theorem 1.4 Each vector field X € normy g (g) is complete and its flow is given by
Xi() = X (w)eap((t) (1)

where ((t) is a differentiable curve in g. Actually, Jacobi identity yields that ad(X?) € dg, and
they show that :
C(t) = Sior ()M (X ad (X)), (2)

where d;(X) = X', dy(X) = § [X?, X],

ds(X) X1, [XQ,Xl}]Jr % [XQ, [XZ,XIH .

1
S 12
In general, for each & > 1, d; is a homogeneous polynomial map of degree k from the
semidirect product g ® dg into g.
In order to characterize local and global observability properties of general linear pairs we

shall use the global form of the solution established in (1), for any X in the normalizer.



¢2.0bservability

First of all we recall the notion of observability. So, let us start with the following one:
Definition 2.1 The general linear pair (X, 7x) is said to be :
1) observable at zq, if for all 25 € G, 21 # x5 there exist t > 0 such that

T (Xe(21)) 7 7rc (Xe(22))

it) locally observable at x4, if there exists a neighborhood of z; such that the condition (i)
is satisfied for each x5 in the neigborhood.

iii) observable (locally observable) if it is observable (locally observable) at every € (.

We note that X? € Aut(G),Vt € IR. For any 1,z € G, let us define ~ by :

1~ xy & wr(Xi(21)) = 7 (Xe(z2)), VE > 0.
Then, ~ is an equivalence relation. From (1) we get,
w1~ xy 2 X (a)expl(t) K = X2 (xg)expl(t) K, Yt > 0.
So, for any z1, 29 € G we obtain :
Ty~ By E degpey( X7 (23 21)) € KVt >0

S ieape(ey -1 (X7 (271 22)) € K,V >0

where ¢, : G — G is the usual inner automorphism given by conjugation.

Fix ¢ € IR and denote @i = icppe(s) © X2, 4 = Y(eape(t))=1 © X? and by I the equivalence
class of e. It follows that :

Proposition 2.2 Let (X, 7x) be a general linear pair. Then, [ is the largest (¢;);eir—invariant
closed Lie subgroup of G contained in K. Furthermore, for any « € G the equivalence class T of
x is given by left translation.

Proof. From Definition 2.1, it is clear that

I'={ze€G|pa)e K,Vt>0}.

For each t € IR, ¢, € Aut(G). It follows that I is a subgroup of K. Since K is a closed subgroup
of G standard continuity arguments shows that I is also a closed set. In particular, I is Lie
subgroup of G, [5]. On the other hand, [ is ¢;—invariant for every non negative t. From standard

analytical arguments we get the (¢;);eir—invariance of /. In particular,
I'={z € G| p(z) € K,Vt € R}.

Moreover, for each z € G, T =zl Indeed, 29 ~ 21 @ 2tz € I & 2y € 211 .

In order to be able to compute the Lie algebra of I, we need the following one:
Lemma 2.3 Let (X, 7x) be a general linear pair on G. Then,

1. There exists Z € aut((G) and a right invariant vector field ¥ on G with X = Z +Y.
2. The linear transformations ad(Z) and ad(X) defined on X (G) agree on g.



3. ad(Z) € dg is a derivation such that for every U € g and ¢ € IR.
Gi(exp U) = exp(e!*D))
Proof. 1. As we know the flow (¢¢)ier C Aut(G). On the other hand,

~

S‘Qt: L(expc(t))_l O Xt7vt E IR

For each © € GG,

d. ~ d
(5 2 (@) = d(Lexp1 (1) x0(2) (X xo(@) + AR (@) expr C(t)((%)t(exp_l(C(t))'

Thus, the one parameter group ¢; € Aut(G) induced a well defined vector field Z € aut(G),
such that , for every » € G, Z, = X, — (dR;).(X"). In fact, from (2), we get

() molexp™ (C(1)) = ~X".

So, Y = (dR,).(X"') is a right invariant vector field with X = Z + Y.

2. The map X — ad(X)g is a Lie algebra homomorphism of norm x (¢ (g) into the deriva-
tion algebra dg of g. The kernel of this homomorphism is the centralizer Z(g) of g in X (G),
i.e., the set of all vector fields on G commuting with each element of g. In order to prove the

assertion we compute the bracket [Y, U] for each U € g. By definition, [5],

d
,Ul, = (%)tzo_py(\/f), where, v(s) =Y_so0U_;50Y,,0Us(x).

Since, we consider U as a left invariant vector field we get v(s) = z, for each s € IR.
Consequently, we have seen that Y € Z(g). Thus, the proof is complete, because [Y, U] = 0.
3. Since ¢y € Aut(G) and @; (€) = e,¥t € IR, the flow (d(@1))teir C Aut(g) is a linear

flow. From the standard Lie series expansion we have

By standard commutative diagrams envolving the exponential map a homomorphim and its
derivative the proof of the lemma is complete.

Let us denote by Z the Lie algebra of the equivalent class I of the identity element and by
K the Lie algebra of K. The following theorem establishes an algebraic charaterization of Z .

Theorem 2.4 Let (X, 7) be a general linear pair on G. Then, 7 is the largest ad(X )—invariant
subalgebra of g contained in K.

Proof. From Prosition 2.2, the Lie subgroup [ is (¢;)icir—invariant. It follows that [
is also (c,r;t)telpt—invariant. Since the one parameter subgroup (&;):cmr defines the vector field
Z, it is clear that 7 is ad(Z)— invariant. From Lemma 2.3 we obtain that Z is also ad(X)—
invariant, i.e., the map ad(X) : Z — I is well defined. So, for each i > 0, ad’(X)(Z) C K, where
ad®(X) = Id. Actually, we are able to prove that

7 = Nisoad ™ (X)(K).



In fact, fix an element U € N;>oad~"(X)(K), then ad'(X)(U) € K, for each ¢ > 0. Then, for

every t, s € IR we have:
. S
A (sU) = Y- ad (X))
1=0
By hypotesis, d(;)(sU) € K. Therefore, (4),—0@;(exp(sU)) € K. Thus, fort, s € IR,3(exp(sU))

and ¢;(exp(slU)) € K. As a matter of fact, Proposition 2.2 shows that exp(sU) € I. In partic-
ular, U € I as we want to prove. Finally, if K = {e¢} we get Z = {0}. On the other hand, if

K # {e} we obtain that at most in n — 1 ad(X)—steps we should reach the Lie algebra Z. This
vields that the real face of 7 is:

7= n(:] ad™" (X)(K).

Remarks 2.5 Let (X, 7x) a general linear pair on G'. Proposition 2.2 shows that:

1. (X,7g) is observable if and only if [ is trivial.

2. For any @ € G, the tangent space at any point y of the equivalence class 7 is also given
by left translation, i.e., T} T = dL,(T).

An immediate consequence of it is the following :

Corollary 2.6 Let (X, 7g) a general linear pair on (. Therefore,

(X, k) is locally observable if and only if Z is trivial.

Proof. 7 = {0} & I is discrete.

Remark 2.7
1. Let (A,C) be a linear pair induced by a linear control system X on IR™. For this set,
Corollary 2.6 also determines global observability. In fact, in this case I = Z . In particular,

Theorem 2.4 give us the well known formula

n—1
0= ﬂ Ker(CAY)
=0

In fact, as we know 0 is the largest A—invariant subspace of IR™ contained in Ker(C).

2. As showed in [2] , local and global observability are independent notions for linear pairs
(X, h) where X = 0+ X? € g® aut(G) and h is a Lie group homomorphism output map. So,
for a general linear pair given by X = X! 4+ X? € g® aut(G) we must expect the same.

Lemma 2.3 yields the existence of a vector field Z € aut(G) and a right invariant vector field
Y on G such that X = Z+Y and ad(Z) and ad(X) agree on g. Let us denote by S(Z) the set
of the singularities of Z,i.e., S(Z)={e € G: Z, = 0}.

The following result illustrates necessary and sufficient conditions for global observability.

Theorem 2.8 A general linear pair (X, 7x) on G is observable if and only if

i) (X, 7x) is locally observable

il) S(Z)N K ={e}

Proof. Of course, the locally observable property is a necessary condition to the global
one. If z € S(Z) N K it follows immediately that ¢; (z) € K for every t € IR. Thus, z € I.

Conversely, we shall show that the property of being observable is a necessary condition. Assume



I is discrete and fix z € I C K . As we proved, [ is (ggt)tGIR—invariant thus by continuity
arguments, ;9,5 (z) = =, for each t € IR. So, € S(Z). By hypothesis, we get z = e. It follows
that (X, 7k) is observable.

Remark 2.9 Let G be a connected Lie group such that the exponential map exp : g — G
is a global diffeomorphism. For instance, it happens if G is a simply connected nilpotent Lie
group. By Lemma 2.3, @;(z) = exp(e!*?) log z), for every z € G and ¢ € IR. Here, log denotes
the inverse map of exp . So,

Zy=0&logz € Ker(ad(Z))

Therefore, in this situation Theorem 2.8 implies that locally and globally observability prop-
erties are equivalent. In fact, the only one discrete vector subspace of g is the trivial one. As
a matter of fact, in this case the observability property of a general linear pair (X, 7x) on G
reduces to a test at the algebra level.

¢3.Algorithm and Examples

In order to compute the Lie algebra Z it is also suitable to use a general algorithm proved
by Isidori in [3]. In fact, from this result and starting with the Lie algebra K it is possible to
construct a finite sequence of left invariant subspaces of the dual space g* convergent to Z*, (see
[2] for details).

Algorithm

Consider a general linear pair (X, 7x) on GG and the following steps:

1. Choose a basis B = {Y!,...,Y!} to the Lie subalgebra K,

2. Find the B-dual basis B* = {wy, ..., w,_},

3. Find the ad(X)(B*)-associated basis to Z*, i.e.,

ad(X)(B%) = {ad'(X)(wj) |0 < i, 1<j<n—1},

ad®(X) = Id.,ad(X)(w) = — woad(X),ad (X)(w) = ad(X)(ad = (X)(w)), i > 2.
Then, we have :

Proposition 3.1 Let (X, 7x) be a general linear pair. Therefore,
T = (Span.ad(X)(B%))*

Proof. It follows from Isidori theorem in [3] that
Span(ad(X)(B*) =1~.

In the sequel, some examples.
Examples 3.2
Let us consider the simply connected and nilpotent Heisenberg Lie group G of dimension 3,

such that G = IR? and g =IRY!'4+IRY2+IRY? with the generators

0 0 0 0
- 8$17 $38$1 + 8$2 and 8$3'

Just observe that only the Lie bracket [Y2,Y?] = Y is not null. The group operation is
given by
(z1, %2, 23) (Y1, Y2, y3) = (@1 +y1 + T3Y2, T2 + Y2, T3 + y3).



Consider the vector field X € g® dg defined by X = X1 4+ X2where X! = Y2 and X2 is the

vector field associated to the derivation

-3 0 1
ad(Xz):(O ~1 o)eag.

0 1 =2
Observe that the vector field Z of the Lemma 2.3 has the face:

J J
Z=Y?4+X?- 90 :xga—xl—l—XQ.

We consider the followings general linear pairs:

i) (X, 7x) where K is the closed Lie subgroup with Lie algebra K = Span {Y'}. A simple
computation shows that ad(X)(Y!) = —3Y! € K. Thus, by Proposition 2.4, Z = K. Therefore,
Corollary 2.6 implies that (X, 7x) is neither locally nor globally observable.

ii) (X, 7x) where K is the closed Lie subgroup with Lie algebra K = Span {Y?}. We have,
ad(X)(Y?) = -Y?4Y? ¢ K. In this case, Corollary 2.6 (and Remark 2.9) gives us that (X, 7x)

is observable.
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