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of Alexander-Spanier cohomology given by the authors. A version of the continuity property is

proved, and some applications are given.
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0 Introduction

It is well-known that in the Alexander-Spanier cohomology theory [17], [18] or in the isomorphic
theory of Cech [9], if the coefficient group G is topological then either the theory does not take
into account the topology on G [9], [18], or considers only the case when G is compact to obtain a
compact cohomology [5], [8]. Continuous cohomology naturally arises when the coefficient group
of a cohomology theory is topological [6],[7],[11]. The partially continuous Alexander-Spanier
cohomology theory [14] can be considered as a variant of the continuous cohomology of a space
with two topologies in the sense of Bott-Haefliger [15]; also it is isomorphic to the continuous
cohomology of a simplicial space defined by Brown-Szczarba [6].

The idea of K-groups [1],[2] where K is a locally-finite simplicial complex, is used to in-
troduce the K-types of Alexander-Spanier cohomology with coefficients in a pair (G,G') of
topological abelian groups [3],[4]; namely, K-Alexander-Spanier and partially continuous K-
Alexander-Spanier cohomologies ﬂ}‘(, ﬁ}‘( It is proved that these K-types satisfied the seven
Eilenberg-Steenrod axioms [9]; the excision axiom for the second K-type is verified for com-
pact Hausdorff spaces when (G,G’) are absolutely retract. Therefore the uniqueness theorem
of the cohomology theory on the category of compact polyhedral pairs [9], asserts that our
Alexander-Spanier K-types over a pair of absolute retract coefficient abelian groups are natu-
rally isomorphic.

The present work is centered around the tautness property for the Alexander-Spanier K-
types cohomology. Roughly speaking, we prove that the K-Alexander-Spanier cohomology of a
closed subset in a paracompact space is isomorphic to the direct limit of the K-Alexander-Spanier
cohomology of its neighborhoods; and that the partially continuous K-Alexander-Spanier co-
homology of a neighborhood retract closed subspace of a Hausdorff space is isomorphic to the
direct limit of the partially continuous K-Alexander-Spanier cohomology of its neighborhoods.
Also a version of the continuity property is proved. Moreover, we study some application of the

K-type cohomologies.

1 Alexander-Spanier Cohomology of K Types

Here we mention the notations which will be used throughout the present work [3],[4].

For an object (X, A) of the category @ of the pairs of topological spaces and their continuous
maps, denote by Q(X, A)[Q(X, A)] the set of the pairs @ = (a, '), where « is an open covering
of X and ¢ is a subcollection of « covering Al = a N A]; it is directed with respect to the
refinement relation @ < 3, i.e. a < § and o < 3 [9]. Denote by C%7)(X) the group of the
functions ¢7 : X9+l 5 @, where 7 is a simplex in K, ¢(7) = ¢ + dim7, ¢ > 0, and X
denotes either a space X or a € Q(X). Let C%7)(X) be the subgroup of the direct product
[1,cx C97)(X) consisting of such ¢ = {7} for which the condition (k) is satisfied, which states

that there is a cofinite subset 7(¢) of K, i.e. K —7(y) is finite, such that (¢7) 1(G') = X9+,



V71 € 7(p). The coboundary §7 : C9(X) — Ct1(X) is

q(7)+1
(87%0)" = 3 (=1 pl L (1) ST (57l
i=1 oest(T)

where st(7) = {o € K : 7 is (dimo — 1)-face of o}, pET) : X7t — X7 is the projection defined
by: if #; is the 7-tuple consisting of t = (zg,...,z,;) € X" 7! with 2; omitted, then pET) (t) = t;,
0 < i < 7. The cohomology groups of the cochain complex C7(X) = {C9(X),#9} is, in general,

uninteresting, as shown in the following theorem [3].

Theorem 1.1. If dimK = 0, then HY(C7(X)) = G*K (the subgroup of GX = [[,.x G,
G" = @, consisting of those elements having all but a finite number of their 7-coordinates in
G"), and HY(C#(X)) = 0, when ¢ # 0.

To pass to more interesting cohomology groups, the topology of the space X will be used
to define that ¢ € C?(X) is said to be K-locally zero on M C X if there is o € Qx (M)
(the set of external covering of M by open subsets of X) such that ¢ vanishes on o N M, i.e.
each " vanishes on (a N M)4D+! where o™ = U{ul, : uq € a}. The subgroups of C?(X)
consisting of those elements which are K-locally zero on X, A respectively are denoted by
C(X), C1(X,A). The K-Alexander-Spanier cohomology of (X, A) over (G,G"), denoted by
H3 (X, A), is the cohomology of the quotient cochain complex C’?(X, A) = C7(X, A)/Cgé (X).
If f:(X,4) = (Y,B)isin Q, 8 € QY,B) and @ = f~'(3), then f defines a cochain map
f7: C’[;?(Y,B) — C’;?(X, A), where 7(f%) = 7(y) for each ¢ € C9(Y). In turn, f7 induces the
homomorphism f* : H3 (Y, B) — Hj (X, A).

On the other hand, for a € Q(X, A), denote by CZ. The subgroup of C? = C%(«) consisting
of those ¢ which vanishes on o/ N A. Then we obtain a direct system {C’;é }o(x,4) such that any
map f € @Q constitutes a map F : {Cg}Q(Y’B) — {Cg}mx,A) [9]; its limit is F'°.

Theorem 1.2. The K-Alexander-Spanier cohomology functor {Hj,, f*} is naturally isomor-
phic to the functor {lim{H*(CZ)}a(x,a), F>*} [4].

In the previous part, the topology on (G, G) plays no role; to pass to the second cohomology
of K-type we characterize an element ¢ € C?(X) to be K-partially continuous if it is continuous
on some a € Q(X), i.e. 7 |a?)*! are continuous functions. Let LI(X) be the group of all such

elements, and M;?(X) = L’é(X)/CgE(X). The subgroup of C4

o

where o € Q(X), consisting
of the K-continuous elements ¢, i.e. ¢’ are continuous, is denoted by MJ. Let i : A — X,
define M;(X, A) to be the mapping cone of i7 : M;(X) — MZ?(A), [13],[18], assuming that
MY(X,A) = ML(X)® M ' (A), and the coboundary is AY(p, ) = (—d%p,i%p + 69~ 14)). The
cohomology of M;(X , A) is the partially continuous K-Alexander-Spanier cohomology of (X, A)
over the topological pair (G, G") of coefficient groups; it is denoted by IZT}‘((X yA).

On the other hand, if @ € Q(X, A), then i defines a cochain map i# : M7 — Mf,; its
mapping cone is denoted by Mo—;f .



Theorem 1.3. For a pair (X, A) € Q with A is closed, M;(X, A) is naturally isomorphic to
R
Wm{MZ b x,ay [4]-

Theorem 1.4 For a discrete space, and ¢ > 0, HL(X) ~ HL(X).

Proof. Since X%+ admits a discrete topology, it follows that each T-coordinate " of ¢ €
C}(X) is continuous [16]. Then ¢ is K-partially continuous with respect to any a € Q(X).
Therefore LY(X) = C}(X) and M[;?(X) = C’?(X)

2 Tautness and Continuity Properties

This article is devoted to study the tautness property for both Alexander-Spanier cohomology
of K-types. One of its applications is the continuity property.
The star of a subset A in a space X with respect to a € Q(X) is

st(A,a) =U{Uy € a: UgNA £ 0}

The star of « is

o = {st(Uy, @) : uq € a}

Definition 2.1 Let «, # € Q(X), then [ is a star-refinement of «, written ov <* 3, if v < 5*.

Denote by N (A) the collections of neighborhoods {N} of A in X; it is directed downward
by inclusion. If Ny < Nj, then the inclusion 7y, n, : N2 — N; induces the homomorphisms
ThuN, P Hic(N1) = H}(Ng). Also iy : A< N induces i}y : H}(N) — H}.(A), and they define
a homomorphism

1% im{ H (N), vy ey = Hi(4) -

Theorem 2.1 (Tautness). A closed subspace of a paracompact space is a taut subspace relative
to the K-Alexander-Spanier cohomology, i.e. I is an isomorphism for each ¢ and any pair

(G,@G") of coefficient groups.

Proof. (1) I*® is an epimorphism. Actually let h € H}-(A) with representative ¢ € C(A),
written h = [p]. Let ¢ € CY(A) such that ¢ € . Then there is @ = {uqg =, NA: v, C X is
open} € Q(A) such that

(6%) [ F2 =0 (2.1)

Since A is closed, it follows that § = {v,} U{X — A} € Q(X). The paracompactness of
X is equivalent to the existence of such v € Q(X) that g <* v [21], and a neighborhood N of
A and an extension f : N — A (not necessarily continuous) of the identity map id4 of A, i.e.
fin = idy, such that f(u, N N) C st(uy,~) for each u, € v [18]. One can show that f defines
a cochain map f# : C#(A) — C#(N) by (f%)™ = ¢ fl+D) with 7(f%) = 7(p), where



f7): NT — A7 given by f(xo,...2zr—1) = (f(x0),-.., f(xr_1)). The relation 3 < v* yields that
for each u,, € 7 there is ug € 3 such that f(u, N N) C st(u,,7y) C ug. Because f(N) = A, then
fluy N N) CugN A C u, for some u, € a. By using (2.1), we get (39f%)7|(y N N)I+2 =0,
ie. 09(flp) € CITY(N). Then f9p represents a cocycle fip € C%(N) which, in turn, defines
hy € HL(N), i.e. hy = [fip]. Let t € A9+ then

(i% (FI9))7 () = 7 faHDFIDTI () — o7 () |

and therefore i5hy = [(fin)i¢p] = [p] = h.

(2) I is a monomorphism. Actually, let hy € H%(N1), p1 € C%(N1) and 1 € CY(Ny)
such that ¢1 € @1, @1 € hy, and [h1] € KerI®.

First, one can consider that the neighborhood N; of A is a paracompact subset of X. For,
if N7 is not so, then there is a paracompact subset M; of X such that My < Ny (e.g., take
M; = X) [10]. The inclusion 7y n, induces an epimorphism 7?7&1 N, Bl let T, v U1 = @
Thus the cohomology class of HY. (M) represented by vy is [h1], which shows that N; can be
taken paracompact.

Now, @1 € Kerd?, or equivalently, there is a = {uq = v N Ny : v C X is open} € Q(Ny)
such that

(891)7 |12 =0 (2.2)

On the other hand, the assumption 7% h; = 0 asserts that there exists ¢ € C_'?(fl(A) such that
i?vl 1 —07tp € CJ(A), where ¢ € ¢. This means that there is such 8 = {ug =wgNA:ws C X
is open} € Q(A) that

(i%,¢1)" = (67" ¢)" on AT (2.3)
Assume that $; = {ug, = wgNN}U{N; —A}. The paracompactness of IV asserts the existence
of 1,72 € Q(Ny) for which oo <* 41 and 1 <* 5. The directedness of Q(N;) implies that there
v € Q(Ny) for which 1,72 < «; and so for each u, € v there are u,, € v;, i = 1,2 and u, €
ug, € [ such that

Uy C Uy, C st(uny,, Vi) C uq Nug, ,

Then
st(uy,y) C uq Nug, (2.4)

ie. a,f <" v. According to Lemma 6.6.1 in [18], there is a neighborhood N3 of N; and

f+ Ny — A (not necessarily continuous) such that fiy, =ida, and ug, € $; such that

f(uy M N2) Cst(uy,y) Cug, Cug, NA=ug (2.5)
Then, by (2.3), we get

(87117 0) = (fUif, 1) on (v 0 Ny)a(IH (2.6)

5



Define D7 : C9t1(N;y) — C9(Ns) by:

it £ = (20, .., 7(r) € NI and 41 € CTH ()

then
q(1)
(Dq¢1)T(t) = Z(_1)7¢I(y0’ s Yy By ?Zq(T)) ’
r=0
where

yj = TN, (€5), zj = (i f)(5) = f(z5) ,
and 7(D%) = 7(¢1). A similar calculation as given in [4], we get
(T DI ) = (9% 1) — (n 1) — (DT571) (27)
By (2.4), (2.5) for each u,, € v, there is u, € « such that
(uy N N2) U f(uy N Na) C uq
Then, by (2.7), (2.2), (2.6) consequently, we have
(17 DI 1) = (%, 1) — (e, 1) om (711 N)HT
and so

(mh, nye1)” = (07 (f7 o = D7 1)) on (v N Np)I+L

Therefore
Yo = f97lp — D7 Ly, € C71(Ny) such that

(T, np 1) = (89 4pg)™ on (y N Ny)aHL

i.e. Tn,N,h1 = 0 which completes the proof.

Corollary 2.2. Any one-point subset of a paracompact is a taut subspace relative to H K-
The next part is devoted to study the tautness property for H *-, which is also valid for H.
The idea and results of o — [-contiguous maps, introduced in [4] plays an essential role in this
study.
The inclusions 7y, n, : No < Nj corresponding to the relations Ny < No in AV(A), define
the direct system {H%(N), TN, N, - Also the inclusion iy : A < N, where N € NV(A), define a

map of direct systems [9]:
Iy : {H(MZ), 755 an)— {H (M, 75 sbaa)

where o € Q(N), & = iy (@) = @ N A. On the other hand, {75} define a homomorphism

1% i { HY (N), 75, v, by = Hic(4)



Theorem 2.3 (Tautness). If A is a closed subset in a Hausdorff space X such that A is a

neighborhood retract, then A is a taut subspace relative to the cohomology I:I}‘(

Proof. 1) I*® is an epimorphism. Actually, let h € fNI}I((A). Without loss of generality, the
neighborhood retractness of A in X yields that A has an open neighborhood U (in X) such that
U C N and a retraction 7y : U — A (If Uy is an open neighborhood of A of which A is retract
but U; N, take U = U; NIntN). Let iy : A < U then, I°°[7 (h)] = i3;(71h) = id 4(h) = h.

2) I is a monomorphism. Let [h] € KerI®,

It is sufficient to construct V' € N'(A) satisfying N <V and 7}k = 0.

Since the cohomology functor commutes with the direct limit [18]. Theorem 1.3 asserts that
one may assume that h belongs to hgl{Hq(Mf), Tasta(n) With representative hq € HY(MZ),
where

a={ug =wa NN :w, C X is open} € Q(N)

Let oy = {wa} U{X — A}, a=a1NA,
ﬁ:{u5:Tf1(u@)ﬂ(uaﬂU):¢7éud6&},

V=Uug, 7=7|V:V <= A and o =a;NV. Then & € Q(A4), o/ =anV € Q(V), usg C ug for
each ug # ¢, (0 is a family of open subsets in Uand so open in X, V' is an open neighborhood of
A such that V C U, and € Q(V). Since ug = ug Nuq C V Nuy = uy, it follows that o/ < 3.
Alsod NA=anNA=adaand j7'3=a, where j : A V. If £ : V < N, and [¢] € HI(M7?),
then

Jhmaalale] = J5{(e7 o/ M) | g1
= [{g7 1@/ *,
i.e.
Il =N .o (2.8)

where i}, , : M7 — Mgf is induced by iy : A = N.

On the other hand, (j7)us C ug and so j7, idy : V — V are 3 — (3 contiguous [4].
NIt follows thz}t (i?iv)%_ﬁ, (3’?)%_5 ~Mg — Mg are cochain homotopi~c [4]. Then (i?iv)ﬁfﬂ =
(Jr)s_p = T4_pJj> Which yields that jj is a monomorphism. Because i}y ,ho = 0, (2.8) yields
that frz,ﬂg’&ha =0. Since?’&hm ﬁ;,ﬁ(gaha) represent the zero element of hgl{Hq(Mf), o FQ(N)
it follows that 7y h = [€}ha] = 0.

The rest of this article is centered around a special case of the continuity property for Hj.
As an application of the continuity property the cohomology groups satisfy a much stronger

form of the excision axiom.

The following results can be deduced from those given in [9].



Lemma 2.4. Let X be the intersection of a nested system {Xg,7sq}a, then (i) X and
l(igl{Xa, TBa }A are homeomorphic

(ii) If the nested system consists of compact Hausdorff spaces then X is a closed subset of
each X,.

(iii) If N is an open neighborhood of X in X, (for some a € A), then there is 3 > a in A
such that Xz C N.

The inclusions %, : X — X, define a map
I {Hy (Xa) Toghn = Hi(X)

its direct limit is denoted by I°°.

Theorem 2.5 (Weak continuity). If X is the intersection of a nested system {X,,mgq}a of

compact Hausdorff spaces, then I is an isomorphism.

Proof. Since each X, is a paracompact Hausdorff space [10] and X, is closed in X (Lemma
2.4), it follows, by Theorem 2.1, that X is a taut subspace in X, relative to I:I}‘(

(1) I*® is an epimorphism. Let h € H}(X), then, according to Theorem 2.1, there exists
an open neighborhood N of X in X, and hy € H%(N), such that i%(hy) = h. By Lemma
2.4, there is 8 > « in A such that Xg C N. Let ig : X — Xg, jg : Xg — N. Because
EE(thN) = (jpig)*hn = iyhn = h, then foo[thN] = h.

(2) I? is a monomorphism. Let [hy] € Kerl®, i.e. i’ hy = 0. The tautness of X in X,
yields, by Theorem 2.1, an open neighborhood N of X in X, such that Ay is the unique element
for which i %hy = 0, where iy : X < N. Because i’ (i ha) = i5,ha = 0, then i%hy = 0. Let

B>« in A such that X C N, then 7} 3h0 = (inig)*ha = j5(ixha) =0, i.e. [hq] = 0.

3 Applications

One of the good applications of the Alexander-Spanier cohomology of K-types is the study of
the 0-dimensional cohomology groups and their relation with the connectedness of the space [4].
In this article two applications are given. In a next work we hope to give more applications.
The first application is concentrated to define the partially continuous K-Alexander-Spanier
cohomology of an excision map and calculate its value for some dimensions.

Let f7 : M;(Y,B) — M[;?(X, A) be the cochain map induced by the map f in Q. Define
M;(f) to be the mapping cone of f# by:

ME(f) = MEL(Y,B) ® M (X, A) ,
= MEL(Y) o ME(B) o ME ' (X) @ ME?(4),

and the coboundary is
A9( o2, 4b, p1,101) =



= (—A%(p2,42), A1, 91) + (02, 42))
= (0%pg, —i%py — 67 ey, =07 o1 + flipy
17 g1+ 0972y + f]A)T )
Then there is a short exact sequence
0 = M7(X, A) 25 MZ(f) 25 ME(Y, B) = 0, (3.1)

where A7, x7 are injection, projection respectively; A}’é(X, A) is the complex M;?(X, A) with
the dimensions all raised by one, and M7 (Y, B) is the complex M7 (Y, B) with the sign of the
coboundary changed [12]. Note that Hq(MIf(Y, B)) = H%(Y,B). Let V be an open subset of
X such that V C IntA,B =X —V, and C = A — V. Put the excision map e : (B,C) — (X, A)
in (3.1) instead of f, and then apply the cohomology functor, we get the long exact sequence:

o Hi(e) X5 HL(X, A) 5 79.(B,C)

2 T ) = (3.2)

Thus the groups H (e), I:I}I(H(e) measure how much the cohomological groups deviate from the

excision axiom.

Theorem 3.1. If dimK =0, e: (B,C) — (X, A) is an excision map, where A is closed and
(G, G") any pair of topological abelian groups, then fI}I((e) =0wheng=0orq=1.

Proof. (1) Case ¢ = 0. We have
M (e) = My (X, A) = Mg (X) = Lj(X)

Let ¢ € MY (e) such that Ap = 0, then 1% = 0, ép = 0. Then ¢ = 0 [4], which means that
Ker A =0.
(2) Case ¢ = 1. We have

Mj(e) = My (X)® LY(A) @ LY(B) .
It is sufficient to show that KerA' C ImA. Let (pg, 49, ¢1,0) € KerA', then
o =0, i'py=—6"
ety = 6% (3.3)
A1) = jen (3.4

wherei: A— X, j:C — B and e; =e¢|C.
By (3.4), there exists [4], ¢ € M%(X) = L%(X) such that

Lo =—1, Eo=¢ (3.5)



By (3.3)-(3.5), we get
i'(6% —@2) =0, €'(6°p— ) =0 (3.6)

Then 6% = @y [4], which with (3.6) yield that (¢,0,0,0) € M%(e) such that A°(,0,0,0) =
(90277#2790170)'

Combining the sequence (3.2) and the above theorem, we get the following result.

Corollary 3.2 Under the assumptions of Theorem (3.1), the map &0 : H% (X, A) — H%(B,C)
is an isomorphism but é*!' is a monomorphism:

The second application is to give attention in our work to use a pair of coefficients groups,
an arbitrary locally-finite simplicial complex K, and the condition (k).

Let n : (G,G") — (F,F') be a homeomorphism of pairs of (discrete) abelian groups which
is an epimorphism, (L, L") = Kern and X\ : (L,L') < (G,G"). Then for each & € Q(X, A), the

maps 7, A define, naturally a short exact sequence
0—CYa,L,L)— Ca;G,G") = Cla; F,F') = 0 ;

its cohomology is a long exact sequence [12] denoted by S5. One can show that {Sa}q(x, ) is a

direct system, its direct limit [3], [4]
o HEYX AR F') - HL (X, AL L L) —

HL(X,A;G,G") —» HL(X, A, F,F') - H (X, A, L, L)) — ...

Now instead of F' take the factor group G/G" and so instead of F’ will be the null subgroup of
G/G'. Then the above sequence yields the following result.

Theorem 3.3 Consider that (X, A) has a trivial (¢ — 1)-dimensional K-Alexander-Spanier
cohomology group with finite cochains, and a trivial (¢ + 1)-dimensional K-Alexander-Spanier
cohomology with infinite cochains, taken over the coefficient groups G/G’ and G’ respectively.
Then the group Hi (X, A;G,G") defined over an arbitrary pair (G, G’) of coefficient groups is
the extension of the cohomology group H 1(X, A; G') with infinite cochains over G’ by the group
HY(X,A,G/G") with finite cochains over G/G'.
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