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0 Introduction

It is well-known that in the Alexander-Spanier cohomology theory [17], [18] or in the isomorphic

theory of �Cech [9], if the coe�cient group G is topological then either the theory does not take

into account the topology on G [9], [18], or considers only the case when G is compact to obtain a

compact cohomology [5], [8]. Continuous cohomology naturally arises when the coe�cient group

of a cohomology theory is topological [6],[7],[11]. The partially continuous Alexander-Spanier

cohomology theory [14] can be considered as a variant of the continuous cohomology of a space

with two topologies in the sense of Bott-Hae
iger [15]; also it is isomorphic to the continuous

cohomology of a simplicial space de�ned by Brown-Szczarba [6].

The idea of K-groups [1],[2] where K is a locally-�nite simplicial complex, is used to in-

troduce the K-types of Alexander-Spanier cohomology with coe�cients in a pair (G;G0) of

topological abelian groups [3],[4]; namely, K-Alexander-Spanier and partially continuous K-

Alexander-Spanier cohomologies �H�K ,
~H�K . It is proved that these K-types satis�ed the seven

Eilenberg-Steenrod axioms [9]; the excision axiom for the second K-type is veri�ed for com-

pact Hausdor� spaces when (G;G0) are absolutely retract. Therefore the uniqueness theorem

of the cohomology theory on the category of compact polyhedral pairs [9], asserts that our

Alexander-Spanier K-types over a pair of absolute retract coe�cient abelian groups are natu-

rally isomorphic.

The present work is centered around the tautness property for the Alexander-Spanier K-

types cohomology. Roughly speaking, we prove that the K-Alexander-Spanier cohomology of a

closed subset in a paracompact space is isomorphic to the direct limit of theK-Alexander-Spanier

cohomology of its neighborhoods; and that the partially continuous K-Alexander-Spanier co-

homology of a neighborhood retract closed subspace of a Hausdor� space is isomorphic to the

direct limit of the partially continuous K-Alexander-Spanier cohomology of its neighborhoods.

Also a version of the continuity property is proved. Moreover, we study some application of the

K-type cohomologies.

1 Alexander-Spanier Cohomology of K Types

Here we mention the notations which will be used throughout the present work [3],[4].

For an object (X;A) of the category Q of the pairs of topological spaces and their continuous

maps, denote by 
(X;A)[~
(X;A)] the set of the pairs �� = (�; �0), where � is an open covering

of X and �0 is a subcollection of � covering A[�0 = � \ A]; it is directed with respect to the

re�nement relation �� < ��, i.e. � < � and �0 < �0 [9]. Denote by Cq(�)( ~X) the group of the

functions '� : ~Xq(�)+1 ! G, where � is a simplex in K, q(�) = q + dim � , q � 0, and ~X

denotes either a space X or � 2 
(X). Let Cq(�)( ~X) be the subgroup of the direct productQ
�2K C

q(�)( ~X) consisting of such ' = f'�g for which the condition (k) is satis�ed, which states

that there is a co�nite subset �� (') of K, i.e. K� ��(') is �nite, such that ('� )�1(G0) = ~Xq(�)+1,
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8� 2 ��('). The coboundary �q : Cq( ~X)! Cq+1( ~X) is

(�q')� =

q(�)+1X
i=1

(�1)i'�p
(q(�)+1)
i + (�1)q(�)+1

X
�2st(�)

[� : � ]'� ;

where st(�) = f� 2 K : � is (dim� � 1){face of �g, p
(�)
i : X�+1 ! X� is the projection de�ned

by: if t̂i is the � -tuple consisting of t = (x0; : : : ; x� ) 2 X
�+1 with xi omitted, then p

(�)
i (t) = t̂i,

0 � i � � . The cohomology groups of the cochain complex C 6=(X) = fCq(X); �qg is, in general,

uninteresting, as shown in the following theorem [3].

Theorem 1.1. If dimK = 0, then Hq(C 6=(X)) �= G�K (the subgroup of GK =
Q
�2K G

� ,

G� = G, consisting of those elements having all but a �nite number of their � -coordinates in

G0), and Hq(C 6=(X)) = 0, when q 6= 0.

To pass to more interesting cohomology groups, the topology of the space X will be used

to de�ne that ' 2 Cq(X) is said to be K-locally zero on M � X if there is � 2 
X(M)

(the set of external covering of M by open subsets of X) such that ' vanishes on � \M , i.e.

each '� vanishes on (� \M)q(�)+1, where �� = [fu�� : u� 2 �g. The subgroups of Cq(X)

consisting of those elements which are K-locally zero on X, A respectively are denoted by

C
q
0(X), Cq(X;A). The K-Alexander-Spanier cohomology of (X;A) over (G;G0), denoted by

�H�K(X;A), is the cohomology of the quotient cochain complex �C
6=
K(X;A) = C 6=(X;A)=C

6=
0 (X).

If f : (X;A) ! (Y;B) is in Q, �� 2 
(Y;B) and �� = f�1( ��), then f de�nes a cochain map

�f 6= : �C
6=
K(Y;B)!

�C
6=
K(X;A), where ��(f

q') = ��(') for each ' 2 Cq(Y ). In turn, �f 6= induces the

homomorphism �f� : �H�K(Y;B)!
�H�K(X;A).

On the other hand, for �� 2 
(X;A), denote by C
q
��. The subgroup of Cq

� = Cq(�) consisting

of those ' which vanishes on �0 \A. Then we obtain a direct system fC 6=�� g
(X;A) such that any

map f 2 Q constitutes a map F : fC 6=�� g
(Y;B) ! fC 6=�� g
(X;A) [9]; its limit is F1.

Theorem 1.2. The K-Alexander-Spanier cohomology functor f �H�K ,
�f�g is naturally isomor-

phic to the functor flim
�!
fH�(C 6=�� )g
(X;A), F

1�g [4].

In the previous part, the topology on (G;G) plays no role; to pass to the second cohomology

of K-type we characterize an element ' 2 Cq(X) to be K-partially continuous if it is continuous

on some � 2 
(X), i.e. '� j�q(�)+1 are continuous functions. Let Lq(X) be the group of all such

elements, and M
6=
K(X) = L6=(X)=C

6=
0 (X). The subgroup of Cq

�, where � 2 
(X), consisting

of the K-continuous elements ', i.e. '� are continuous, is denoted by M q
�. Let i : A ,! X,

de�ne M
6=
K(X;A) to be the mapping cone of i6= : M

6=
K(X) ! M

6=
K(A), [13],[18], assuming that

M
q
K(X;A) =M

q
K(X)�M

q�1
K (A), and the coboundary is �q('; ) = (��q'; iq'+ �q�1 ). The

cohomology ofM
6=
K(X;A) is the partially continuous K-Alexander-Spanier cohomology of (X;A)

over the topological pair (G;G0) of coe�cient groups; it is denoted by ~H�K(X;A).

On the other hand, if �� 2 ~
(X;A), then i de�nes a cochain map i 6=� : M 6=� ! M
6=
�0 ; its

mapping cone is denoted by M
6=
�� .
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Theorem 1.3. For a pair (X;A) 2 Q with A is closed, M
6=
K(X;A) is naturally isomorphic to

lim
�!
fM 6=�� g~
(X;A) [4].

Theorem 1.4 For a discrete space, and q � 0, ~H
q
K(X) ' �H

q
K(X).

Proof. Since Xq(�)+1 admits a discrete topology, it follows that each � -coordinate '� of ' 2

C
q
K(X) is continuous [16]. Then ' is K-partially continuous with respect to any � 2 
(X).

Therefore Lq(X) = C
q
K(X) and M

6=
K(X) = �C

6=
K(X).

2 Tautness and Continuity Properties

This article is devoted to study the tautness property for both Alexander-Spanier cohomology

of K-types. One of its applications is the continuity property.

The star of a subset A in a space X with respect to � 2 
(X) is

st(A;�) = [fU� 2 � : Ud \A 6= ;g

The star of � is

�� = fst(U�; �) : u� 2 �g

De�nition 2.1 Let �, � 2 
(X), then � is a star-re�nement of �, written � <� �, if � < ��.

Denote by N (A) the collections of neighborhoods fNg of A in X; it is directed downward

by inclusion. If N1 < N2, then the inclusion �N1N2
: N2 ,! N1 induces the homomorphisms

���N1N2

: �H
q
K(N1)! �H

q
K(N2). Also iN : A ,! N induces �i�N : �H

q
K(N)! �H

q
K(A), and they de�ne

a homomorphism

I1 : lim
�!
f �Hq

K(N); ���N1N2

gN (A) ! �H
q
K(A) :

Theorem 2.1 (Tautness). A closed subspace of a paracompact space is a taut subspace relative

to the K-Alexander-Spanier cohomology, i.e. I1 is an isomorphism for each q and any pair

(G;G0) of coe�cient groups.

Proof. (1) I1 is an epimorphism. Actually let h 2 �H
q
K(A) with representative �' 2 �C

q
K(A),

written h = [ �']. Let ' 2 Cq(A) such that ' 2 �'. Then there is � = fu� = �� \ A : �� � X is

openg 2 
(A) such that

(�q')� j�q(�)+2 = 0 (2:1)

Since A is closed, it follows that � = f��g [ fX � Ag 2 
(X). The paracompactness of

X is equivalent to the existence of such 
 2 
(X) that � <� 
 [21], and a neighborhood N of

A and an extension f : N ! A (not necessarily continuous) of the identity map idA of A, i.e.

fiN = idA, such that f(u
 \N) � st(u
 ; 
) for each u
 2 
 [18]. One can show that f de�nes

a cochain map f 6= : C 6=(A) ! C 6=(N) by (f q')� = '�f (q(�)+1) with ��(f q') = ��('), where
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f (�) : N � ! A� given by f(x0; : : : x��1) = (f(x0); : : : ; f(x��1)). The relation � < 
� yields that

for each u
 2 
 there is u� 2 � such that f(u
 \N) � st(u
 ; 
) � u�. Because f(N) = A, then

f(u
 \N) � u� \A � u� for some u� 2 �. By using (2.1), we get (�qf q')� j(
 \N)q(�)+2 = 0,

i.e. �q(f q') 2 C
q+1
0 (N). Then f q' represents a cocycle f q' 2 �C

q
K(N) which, in turn, de�nes

hN 2 �H
q
K(N), i.e. hN = [f q']. Let t 2 Aq(�)+1, then

(i
q
N (f

q'))� (t) = '�f (q(�)+1)i
(q(�)+1)
N (t) = '� (t) ;

and therefore �i�NhN = [(fiN )q'] = [ �'] = h.

(2) I1 is a monomorphism. Actually, let h1 2 �H
q
K(N1), �'1 2 �C

q
K(N1) and '1 2 Cq(N1)

such that '1 2 �'1, �'1 2 h1, and [h1] 2 KerI1.

First, one can consider that the neighborhood N1 of A is a paracompact subset of X. For,

if N1 is not so, then there is a paracompact subset M1 of X such that M1 < N1 (e.g., take

M1 = X) [10]. The inclusion �M1N1
induces an epimorphism ��

6=
M1N1

[3], let ��
q
M1N1

� 1 = �'1.

Thus the cohomology class of �H
q
K(M1) represented by � 1 is [h1], which shows that N1 can be

taken paracompact.

Now, �'1 2 Ker�q, or equivalently, there is � = fu� = �� \ N1 : �� � X is openg 2 
(N1)

such that

(�q'1)
� j�q(�)+2 = 0 : (2:2)

On the other hand, the assumption �i�N1

h1 = 0 asserts that there exists �' 2 �C
q�1
K (A) such that

i
q
N1

'1��
q�1' 2 Cq

0(A), where ' 2 �'. This means that there is such � = fu� = !�\A : !� � X

is openg 2 
(A) that

(i
q
N1

'1)
� = (�q�1')� on �q(�)+1 (2:3)

Assume that �1 = fu�1 = !�\N1g[fN1�Ag. The paracompactness of N1 asserts the existence

of 
1; 
2 2 
(N1) for which � <
� 
1 and �1 <

� 
2. The directedness of 
(N1) implies that there


 2 
(N1) for which 
1; 
2 < 
; and so for each u
 2 
 there are u
i 2 
i, i = 1; 2 and u� 2 �,

u�1 2 �1 such that

u
 � u
i � st(u
i ; 
i) � u� \ u�1 ;

Then

st(u
 ; 
) � u� \ u�1 (2:4)

i.e. �; �1 <� 
. According to Lemma 6.6.1 in [18], there is a neighborhood N2 of N1 and

f : N2 ! A (not necessarily continuous) such that fiN2
= idA, and u�1 2 �1 such that

f(u
 \N2) � st(u
 ; 
) � u�1 � u�1 \A = u� (2:5)

Then, by (2.3), we get

(�q�1f q�1')� = (f qi
q
N1

'1) on (
 \N2)
q(�)+1 (2:6)
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De�ne Dq : Cq+1(N1)! Cq(N2) by:

if t = (x0; : : : ; xq(�)) 2 N
q(�)+1
2 and  1 2 C

q+1(N1)

then

(Dq 1)
� (t) =

q(�)X
r=0

(�1)
 �1 (y0; : : : ; y� ; z� ; : : : ; zq(�)) ;

where

yj = �N1N2
(xj); zj = (iN1

f)(xj) = f(xj) ;

and ��(Dq 1) = ��( 1). A similar calculation as given in [4], we get

(�q�1Dq�1'1)
� = (f qi

q
N1

'1)
� � (�

q
N1N2

'1)
� � (Dq�q'1)

� (2:7)

By (2.4), (2.5) for each u
 2 
, there is u� 2 � such that

(u
 \N2) [ f(u
 \N2) � u�

Then, by (2.7), (2.2), (2.6) consequently, we have

(�q�1Dq�1'1)
� = (f qi

q
N1

'1)
� � (�

q
N1N2

'1)
� on (
 \N2)

q(�)+1 ;

and so

(�
q
N1N2

'1)
� = (�q�1(f q�1'�Dq�1'1))

� on (
 \N2)
q(�)+1 :

Therefore

 2 = f q�1'�Dq�1'1 2 C
q�1(N2) such that

(�
q
N1N2

'1)
� = (�q�1 2)

� on (
 \N2)
q(�)+1 ;

i.e. ��N1N2
h1 = 0 which completes the proof.

Corollary 2.2. Any one-point subset of a paracompact is a taut subspace relative to �H�K .

The next part is devoted to study the tautness property for ~H�K , which is also valid for �H�K .

The idea and results of � � �-contiguous maps, introduced in [4] plays an essential role in this

study.

The inclusions �N1N2
: N2 ,! N1 corresponding to the relations N1 < N2 in N (A), de�ne

the direct system f ~Hq
K(N); ~��N1N2

g. Also the inclusion iN : A ,! N , where N 2 N (A), de�ne a

map of direct systems [9]:

IN : fHq(M 6=� ); ~�
�

��g
(N)�!fH
q(M

6=
~� ; ~�

�

~�~�
g
(A)

where � 2 
(N), ~� = i�1N (�) = � \A. On the other hand, f~i�Ng de�ne a homomorphism

~I1 : lim
�!
f ~Hq

K(N); ~��N1N2

gN (A) ! ~H
q
K(A)

6



Theorem 2.3 (Tautness). If A is a closed subset in a Hausdor� space X such that A is a

neighborhood retract, then A is a taut subspace relative to the cohomology ~H�K .

Proof. 1) ~I1 is an epimorphism. Actually, let h 2 ~H
q
K(A). Without loss of generality, the

neighborhood retractness of A in X yields that A has an open neighborhood U (in X) such that

U � N and a retraction �1 : U ! A (If U1 is an open neighborhood of A of which A is retract

but U1 6� N , take U = U1 \ IntN). Let iU : A ,! U then, ~I1[~��1 (h)] = ~i�U (~�
�
1h) =

eid�A(h) = h.

2) ~I1 is a monomorphism. Let [h] 2 Ker~I1,

It is su�cient to construct V 2 N (A) satisfying N < V and ~��NV h = 0.

Since the cohomology functor commutes with the direct limit [18]. Theorem 1.3 asserts that

one may assume that h belongs to lim
�!
fHq(M 6=� ), ~�

�

��g
(N) with representative h� 2 Hq(M 6=� ),

where

� = fu� = !� \N : !� � X is openg 2 
(N)

Let �1 = f!�g [ fX �Ag, ~� = �1 \A,

� = fu� = ��11 (u~�) \ (u� \ U) : � 6= u~� 2 ~�g ;

V = [u�, � = �1jV : V ,! A, and �0 = �1\V . Then ~� 2 
(A), �0 = �\V 2 
(V ), u~� � u� for

each u~� 6= �, � is a family of open subsets in Uand so open in X, V is an open neighborhood of

A such that V � U , and � 2 
(V ). Since u� = u� \ u� � V \ u� = u�0 , it follows that �0 < �.

Also �0 \ A = � \ A = ~� and j�1� = ~�, where j : A ,! V . If ` : V ,! N , and ['] 2 Hq(M 6=� ),

then

~j��~�
�

�0�
~̀�
�['] = ~j�� [f('

� j�
0q(�)+1)j�q(�)+1g]

= [f'� j~�q(�)+1g] ;

i.e.

~j��~�
�

�0�
~̀�
� = ~i�N;� (2:8)

where ~i
6=
N;� :M 6=� !M

6=
~� is induced by iN : A ,! N .

On the other hand, (j�)u� � u� and so j� , idV : V ! V are � � � contiguous [4].

It follows that ( eidV )q��� ; (fjr)q��� : M
q
� ! M

q
� are cochain homotopic [4]. Then ( eidV )���� =

(fjr)���� = ~r�~���
~j�� , which yields that ~j�� is a monomorphism. Because ~i�N;�h� = 0, (2.8) yields

that ~���0�
~̀�
�h� = 0. Since ~̀��h�, ~�

�

�0�(
~̀
�h�) represent the zero element of lim

�!
fHq(M 6=� ), ~�

�
��g
(N),

it follows that ~��NV h = [~̀��h�] = 0.

The rest of this article is centered around a special case of the continuity property for �H�K .

As an application of the continuity property the cohomology groups satisfy a much stronger

form of the excision axiom.

The following results can be deduced from those given in [9].

7



Lemma 2.4. Let X be the intersection of a nested system fX�; ���g�, then (i) X and

lim
 �
fX�; ���g� are homeomorphic

(ii) If the nested system consists of compact Hausdor� spaces then X is a closed subset of

each X�.

(iii) If N is an open neighborhood of X in X� (for some � 2 �), then there is � > � in �

such that X� � N .

The inclusions i� : X ,! X� de�ne a map

I : f �Hq
K(X�); ��

�

��g� ! �H
q
K(X) ;

its direct limit is denoted by �I1.

Theorem 2.5 (Weak continuity). If X is the intersection of a nested system fX�; ���g� of

compact Hausdor� spaces, then �I1 is an isomorphism.

Proof. Since each X� is a paracompact Hausdor� space [10] and X� is closed in X (Lemma

2.4), it follows, by Theorem 2.1, that X is a taut subspace in X� relative to �H�K .

(1) �I1 is an epimorphism. Let h 2 �H
q
K(X), then, according to Theorem 2.1, there exists

an open neighborhood N of X in X� and hN 2 �H
q
K(N), such that �i�N (hN ) = h. By Lemma

2.4, there is � > � in � such that X� � N . Let i� : X ,! X�, j� : X� ,! N . Because

�i��(
�j��hN ) = (j�i�)

�hN = �i�NhN = h, then �I1[�j��hN ] = h.

(2) �I1 is a monomorphism. Let [h�] 2 Ker�I1, i.e. �i��h� = 0. The tautness of X in X�

yields, by Theorem 2.1, an open neighborhood N of X in X� such that hN is the unique element

for which �i
0�
NhN = 0, where i0N : X ,! N . Because �i0�N (

�i�Nh�) =
�i��h� = 0, then �i�Nh� = 0. Let

� > � in � such that X� � N , then �����h� = (iN i�)
�h� = �j��(

�i�Nh�) = 0, i.e. [h�] = 0.

3 Applications

One of the good applications of the Alexander-Spanier cohomology of K-types is the study of

the 0-dimensional cohomology groups and their relation with the connectedness of the space [4].

In this article two applications are given. In a next work we hope to give more applications.

The �rst application is concentrated to de�ne the partially continuous K-Alexander-Spanier

cohomology of an excision map and calculate its value for some dimensions.

Let ~f 6= : M
6=
K(Y;B) ! M

6=
K(X;A) be the cochain map induced by the map f in Q. De�ne

M
6=
K(f) to be the mapping cone of ~f 6= by:

M
q
K(f) =M

q
K(Y;B)�M

q�1
K (X;A) ;

=M
q
K(Y )�M

q�1
K (B)�M

q�1
K (X) �M

q�2
K (A) ;

and the coboundary is

~�q('2;  2; '1;  1) =

8



= (��q('2;  2);�
q('1;  1) + ~f q('2;  2))

= (�q'2;�~i
q'2 � �q�1 2; ��

q�1'1 + ~f q'2 ;

~iq�1'1 + �q�2 1 +
gf jA)q�1 2)

Then there is a short exact sequence

0!
+
M
6=
K(X;A)

�6=
�!M

6=
K(f)

x6=
�! �M

6=
K(Y;B)! O2 (3:1)

where �6=, �6= are injection, projection respectively;
+
M 6=(X;A) is the complex M

6=
K(X;A) with

the dimensions all raised by one, and �M 6=(Y;B) is the complex M 6=(Y;B) with the sign of the

coboundary changed [12]. Note that Hq( �M
6=
K(Y;B)) =

~H
q
K(Y;B). Let V be an open subset of

X such that �V � IntA;B = X � V , and C = A� V . Put the excision map e : (B;C) ,! (X;A)

in (3.1) instead of f , and then apply the cohomology functor, we get the long exact sequence:

: : :! ~H
q
K(e)

~��

�! ~H
q
K(X;A)

~e�
�! ~H

q
K(B;C)

~��
�! ~H

q+1
K (e)! : : : (3:2)

Thus the groups ~H
q
K(e),

~H
q+1
K (e) measure how much the cohomological groups deviate from the

excision axiom.

Theorem 3.1. If dimK = 0, e : (B;C) ,! (X;A) is an excision map, where A is closed and

(G;G0) any pair of topological abelian groups, then ~H
q
K(e) = 0 when q = 0 or q = 1.

Proof. (1) Case q = 0. We have

M0
K(e) =M0

K(X;A) =M0
K(X) = L0K(X)

Let ' 2M0
K(e) such that ~�' = 0, then ~i0' = 0, ~e' = 0. Then ' = 0 [4], which means that

Ker ~�0 = 0.

(2) Case q = 1. We have

M1
K(e) =M 0K(X)� L0(A)� L0(B) :

It is su�cient to show that Ker ~�1 � Im ~�0. Let ('2;  2; '1; 0) 2 Ker ~�
1, then

�1' = 0; ~i0'2 = ��0 2

~e1'2 = �0'1 (3:3)

~e01(� 2) = ~j'1 (3:4)

where i : A ,! X, j : C ,! B and e1 = ejC.

By (3.4), there exists [4], ' 2M0
K(X) = L0(X) such that

~i0' = � 2; ~e0' = '1 (3:5)
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By (3.3)-(3.5), we get

~i1(�0'� '2) = 0; ~e1(�0'� '2) = 0 (3:6)

Then �0' = '2 [4], which with (3.6) yield that ('; 0; 0; 0) 2 M0
K(e) such that ~�0('; 0; 0; 0) =

('2;  2; '1; 0).

Combining the sequence (3.2) and the above theorem, we get the following result.

Corollary 3.2 Under the assumptions of Theorem (3.1), the map ~e�0 : ~H0
K(X;A)!

~H0
K(B;C)

is an isomorphism but ~e�1 is a monomorphism:

The second application is to give attention in our work to use a pair of coe�cients groups,

an arbitrary locally-�nite simplicial complex K, and the condition (k).

Let � : (G;G0) ! (F; F 0) be a homeomorphism of pairs of (discrete) abelian groups which

is an epimorphism, (L;L0) = Ker� and � : (L;L0) ,! (G;G0). Then for each �� 2 
(X;A), the

maps �, � de�ne, naturally a short exact sequence

0! Cq(��;L;L0)! Cq(��;G;G0)! Cq(��;F; F 0)! 0 ;

its cohomology is a long exact sequence [12] denoted by S��. One can show that fS��g
(X;A) is a

direct system, its direct limit [3], [4]

: : :! �H
q�1
K (X;A;F; F 0)! �H

q
K(X;A

0;L;L0)!

�H
q
K(X;A;G;G

0)! �H
q
K(X;A;F; F

0)! �H
q+1
K (X;A;L;L0)! : : :

Now instead of F take the factor group G=G0 and so instead of F 0 will be the null subgroup of

G=G0. Then the above sequence yields the following result.

Theorem 3.3 Consider that (X;A) has a trivial (q � 1)-dimensional K-Alexander-Spanier

cohomology group with �nite cochains, and a trivial (q + 1)-dimensional K-Alexander-Spanier

cohomology with in�nite cochains, taken over the coe�cient groups G=G0 and G0 respectively.

Then the group �H
q
K(X;A;G;G

0) de�ned over an arbitrary pair (G;G0) of coe�cient groups is

the extension of the cohomology group �H
q
K(X;A;G

0) with in�nite cochains over G0 by the group

�H
q
K(X;A;G=G

0) with �nite cochains over G=G0.
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