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A weak-strong simulation code is used to study the single-particle stability in the presence of triplet
field errors, head-on collisions, and long-range beam-beam interactions at the Large Hadron Collider.
We present the dependence of the simulated transverse diffusion rate on various parameters, such as
starting amplitude, working point in tune diagram, crossing angle, beta function at the interaction points
(IPs), beam current, triplet nonlinearities, tune modulation, and a transverse offset at one of two IPs.
For several examples, we perform a frequency map analysis à la Laskar, to obtain tune footprints and
the tune variation in time. A cursory look at the effect of a Möbius lattice is also reported.

PACS numbers: 29.27.Bd, 29.20.–c
I. INTRODUCTION

The beam-beam interaction has limited the performance
of most storage ring colliders (see [1–4] for past and
recent experience). It also imposes serious constraints on
the design and operation of the Large Hadron Collider
(LHC), a proton-proton collider under construction at
CERN, which will bring into collision, at a cm energy of
14 TeV, two counterrotating beams, each one consisting
of 2835 particle bunches. The LHC will enter a new
regime of beam-beam interaction, in that there are almost
20 long-range beam-beam encounters on either side of
each interaction point, before the beams are separated into
two independent rings.

These long-range encounters can introduce a strong
perturbation at amplitudes where particles come close to
the center of the opposing beam. Using this criterion, a
diffusive or chaotic aperture could be expected at

xda �
uc

ux
sx , (1)

where uc denotes the full crossing angle between the two
beams, ux the rms divergence, and sx the rms beam
size at the interaction point (IP). For the nominal LHC
parameters, listed in Table I, xda amounts to about 9.5sx .
Simulation studies conducted by Irwin for the Supercon-
ducting Super Collider (SSC) showed that, in the pres-
ence of tune modulation, the diffusive aperture of the
SSC was actually about 2.5sx smaller, a reduction which
was found to be independent of the crossing angle [6].
Hence, extrapolating from these results, we would pre-
dict the LHC diffusive aperture at about 7sx . However,
the LHC and SSC parameters differ substantially, e.g., the
SSC bunch population was only 7.3 3 109, 15 times less
than that of the LHC. Thus, a simple extrapolation may
not be valid. In addition, since the beam-beam interaction
is the most important limitation of the LHC performance
at top energy, it is important to study the effect on the
beam stability of various related parameters, such as the
beam current, the beams’ crossing angle, or the IPs beta
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function, the values of which have a direct impact on the
luminosity.

Here, we report the results of a dedicated weak-strong
simulation study for the LHC. Different from previous
beam-beam dynamic aperture studies [7], in this work we
evaluate several indicators of diffusion, such as the long
term action variance or the short term tune variation. In
the latter case, we use Laskar’s method of frequency map
analysis [8–10], for the first time in this context.

The article is organized as follows. In Sec. II, we
describe the employed weak-strong model. Section III
presents the simulation results, i.e., tune footprints, dif-
fusion maps, and the dependence of the action diffusion
on different beam-beam parameters. We summarize and
conclude our work in Sec. IV.

II. MODEL

The simulation study was performed following the
recipe given by Irwin [6], and using the LHC parameters
of Table I. The simulation is four-dimensional: the hori-
zontal and vertical motion of single particles is calculated

TABLE I. LHC collision parameters [5].

Parameter Symbol Value

Particles per bunch Nb 1.05 3 1011

Beam energy Eb 7 TeV
rms beam size at IP sx,y 16 mm
rms divergence at IP ux,y 31.7 mrad
IP beta function b�

x,y 50 cm
Full crossing angle uc 300 mrad
rms bunch length sz 7.7 cm
Collision points nIP $2
Bunches per beam nb 2835
Bunch spacing Lsep 7.48 m
Beam-beam parameter j 0.003 42
Revolution frequency frev 11.25 kHz
Synchrotron tune Qs 0.002 12
Luminosity per collision Lcoll 3.14 3 1026 cm22

Total luminosity Ltot 1034 cm22 s21
© 1999 The American Physical Society 104001-1
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under the influence of the field of the opposing beam. We
treat two IPs, symmetrically spaced around the ring, one
with a horizontal crossing angle, the other with a vertical
crossing angle, so that the linear tune shifts induced by the
long-range interactions cancel between the IPs [11]. At
each IP, we apply a series of five kicks: the first represents
the lumped nonlinear effect due to the superconducting
quadrupole triplet, the next corresponds to the long-range
beam-beam interactions on the incoming side, then a kick
for the head-on collision effect is applied, another for the
long-range interaction on the outgoing side, and finally a
kick due to the triplet nonlinearities on the outgoing side.
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An optional tune modulation can also be selected. These
tracking elements are described in more detail below.

A. Arcs

Between the two IPs, denoted by subindices i and j, we
perform a linear rotation of the form0

BBB@
x
x0

y
y0

1
CCCA

IP i

� Rij

0
BBB@

x
x0

y
y0

1
CCCA

IP j

, (2)

with the rotation matrix
Rij �

0
BBBBB@

cosfx b�
x sinfx 0 0

2
1

b�
x

sinfx cosfx 0 0
0 0 cosfy b�

y sinfy

0 0 2
1

b�
y

sinfy cosfy

1
CCCCCA . (3)

The coordinates are those at the successive IPs and primes denote the particle slopes. Unless noted otherwise, we
assume that the two rotation matrices, from IP 1 to IP 2 and from IP 2 to IP 1, are identical (i.e., R12 � R21), and also
that the beta functions at the interaction points, b�

x and b�
y , are the same in both planes and at both IPs and equal to the

LHC design value b�
x � b�

y � 0.5 m. The bare half-ring phase advances were chosen as fx � 2 3 p 3 31.655 and
fy � 2 3 p 3 29.66, corresponding to the nominal working point of LHC optics version 5.

B. Head-on collision

For the beam-beam interaction, we assume round Gaussian beam profiles. The effect of head-on collisions is then
given by

Dx0 �
2rpNb

g

x
r2

µ
1 2 e2 r2

2s2

∂
, Dy0 �

2rpNb

g

y
r2

µ
1 2 e2 r2

2s2

∂
, (4)

with s � sx � sy the rms beam size at the IP, r �
p

x2 1 y2 the radial distance to the origin, rp the classical proton
radius, g the Lorentz factor, and Nb the bunch population.

C. Long-range interactions

For the long-range interactions, we lump together the effect of all npar parasitic collisions on each side of the IP.
Since they occur at a betatron phase advance close to p�2 from the IP [6,11], the kick can be approximately expressed
as a change in the IP coordinate, while the trajectory slope at the IP stays unchanged. In case of a horizontal crossing
we have

Dx � 2npar
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(5)
where ut � ��x0 1 uc�2 1 y02�1�2 and ux,y is the rms
beam divergence at the IP. The effective number of
parasitic crossings per side of one IP, npar , is about 18
[12]. In fact, assuming that we have a parasitic cross-
ing every 3.75 m for the nominal bunch spacing of
25 ns, there are around 16 long-range collisions up to
the separation dipole. The two remaining crossings oc-
cur inside the dipole before the beams get completely
separated. In the first part of Eq. (5), we subtract the
average horizontal dipole kick on the bunch, since its
effect would be canceled by steering correctors. Note
that the kick is the same on both sides of the IP, be-
cause the betatron phase advance of about 180± com-
pensates for the opposite direction of the beam-beam
separation. The vertical crossing is treated in complete
analogy.
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D. Triplet nonlinearities

The integrated effect of the higher-order multipoles in the low-b quadrupoles can be written in complex form. Under
some simplifying assumptions (equal b functions in the two transverse planes), the nonlinear kick on the incoming side
of the IP with horizontal crossing is given by

Dx � 2K Re
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(6)
where the complex coefficient Gn represents the effective
strength of the nth order multipole kick, through the sum

Gn � b�n�2
x,y

√
4X

k�1

�an,k 1 ibn,k�bn�2
k

!

over the four low-beta quadrupoles on one side of the IP.
The latter expression is evaluated prior to the tracking,
with bk taken to be the geometric mean of the actual
horizontal and vertical beta function at the center of the
kth quadrupole, and an,k and bn,k the skew and normal
multipole components relative to the main quadrupole
field at the same reference radius r0 (see Tables II and III).
The coefficient K in Eq. (6) is equal to K � lquadr0K1,
where lquad denotes the quadrupole length (lquad � 5 m)
and K1 the nonintegrated quadrupole gradient (K1 �
0.01 m22). As before, x0 and y0 are the trajectory slopes
at the IP. Note that the dipole kick, as well as the static
quadrupole and skew quadrupole components induced by
the crossing angle, are subtracted, because we assume that
in the real machine the changes in the closed orbit, tunes,
and coupling, due to the field errors, will all be corrected
by standard tuning methods. This could be a difference
with respect to previous applications of similar kick-map
codes for the SSC and the LHC [6,7].
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Due to the simplification of equal b functions in both
planes and for both sides of the IP, the geometric mean for
the outgoing side is 2Gn, where the opposite sign reflects
the asymmetry in the polarity of the triplets before and
after the IP. Taking into account the 180± phase advance
difference between the two sides of the IP, and the
opposite direction of the beam-beam separation, for the
outgoing side we use the same formulas, but without
the “2” sign in � 1

r0
�n21. This means that the net effect

of the systematic field errors of even order n would cancel
if there were no head-on collisions at the IP. Finally, the
case of the vertical crossing is treated identically except
that uc�2 is added to y0 instead of x0.

In the present study, we consider a single random seed
for the errors calculated according to Tables II and III.
Let us finally point out that we include the errors of only
one type of quadrupole (Fermilab and KEK design) for
each study, in order to compare their effect, even if in the
actual LHC design it is foreseen to mix the two magnet
families [13].

E. Tune modulation

As a further ingredient in our simulation, a tune
modulation can be added. It is described by a linear
transport matrix of the form
M �

0
BBBBB@

cosDfx b�
x sinDfx 0 0

21
b�

x
sinDfx cosDfx 0 0

0 0 cosDfy b�
y sin Dfy

0 0 21
b�

y
sinDfy cosDfy

1
CCCCCA , (7)

TABLE II. Harmonic multipole content in low-b quadrupoles (Fermilab design), after application of tuning shim correction
[13,14]. The harmonic values are quoted in units of 1024 of the main quadrupole field, for a reference radius r0 � 17 mm. The
uncertainty in the mean, as well as the estimated standard deviation, is also listed.

Order Mean Uncertainty rms Mean Uncertainty rms
�n� �bn,M � �bn,U� �bn,rms� �an,M� �an,U� �an,rms�

3 0.0 0.3 0.8 0.0 0.3 0.8
4 0.0 0.2 0.8 0.0 0.2 0.8
5 0.0 0.2 0.3 0.0 0.2 0.3
6 0.14 0.6 0.7 0.0 0.085 0.11
7 0.0 0.05 0.06 0.0 0.04 0.06
8 0.0 0.03 0.05 0.0 0.03 0.04
9 0.0 0.02 0.03 0.0 0.02 0.02

10 20.027 0.02 0.043 0.0 0.027 0.037
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TABLE III. Harmonic multipole content in low-b quadrupoles (KEK design) [14,15]. The harmonic values are quoted in units
of 1024 of the main quadrupole field, for a reference radius r0 � 17 mm.

Order Mean Uncertainty rms Mean Uncertainty rms
�n� �bn,M � �bn,U� �bn,rms� �an,M� �an,U� �an,rms�

3 0.0 0.51 1.0 0.0 0.51 1.0
4 0.0 0.29 0.57 0.0 0.29 0.57
5 0.0 0.19 0.38 0.0 0.19 0.38
6 0.38 0.5 0.19 0.01 0.1 0.19
7 0.0 0.05 0.06 0.0 0.05 0.06
8 0.0 0.02 0.03 0.0 0.02 0.03
9 0.0 0.01 0.01 0.0 0.01 0.01

10 0.22 0.03 0.01 20.003 0.01 0.01
where

Dfx � 2pDQx sin�2pfxt� ,

Dfy � 2pDQy sin�2pfyt� .

Here, DQx,y and fx,y denote the modulation amplitude
and frequency, respectively, and t is the time. For in-
stance, synchrotron oscillations and residual chromaticity
result in a modulation of the betatron tune for off-energy
particles. Assuming Q0 � 1, a particle at 1sd experi-
ences an effective tune modulation of amplitude 1024 at
the 22 Hz synchrotron frequency. Ground motion, mag-
net vibrations, and power supply ripple may also induce
tune modulation at similar amplitudes and frequencies.

F. Möbius insertion

In addition, a Möbius transformation [16] may be
inserted in order to study the stabilizing, or destabilizing,
properties of such a scheme. The Möbius twist is of the
simple form0
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i
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0 0 21 0
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21 0 0 0
0 21 0 0

1
CCCA

0
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y
y0

1
CCCA

j

, (8)

where the indices label the coordinates before and after
the application of the twist. Because of the additional
symmetry of a Möbius lattice, there is only one indepen-
dent tune value. The two tune lines, Q6, are placed sym-
metrically above and below 0.25,

Q6 � Qx 1 Qy 6 0.25 , (9)

where Qx and Qy denote the nominal tunes without the
Möbius twist.

III. RESULTS
A. Tune footprints and diffusion maps

Frequency map analyses have long been used in ce-
lestial mechanics [8] and recently in accelerator models
[9,10]. In this section we present results from an ap-
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plication of this technique to the beam-beam interaction,
through the kick-map model discussed previously.

Figure 1 presents tune footprints à la Laskar [9,10],
obtained by tracking single particles over 1000 turns
and, subsequently, frequency analyzing the tracking data
with the SUSSIX program [17]. Through this analysis, we
compute, with a very high precision [18], the fundamental
frequencies of motion, for a large number of starting
conditions, with initial horizontal and vertical amplitudes
varying from 0 to 10sx,y , and initial slopes set to zero.
By plotting the fundamental frequencies in tune space,
phase-space distortions representing resonances or chaotic
regions become visible.

The dramatic effect of the long-range collisions is
revealed through the comparison of Figs. 1b and 1a,
which show footprints obtained with and without the long-
range kicks. Up to initial particle amplitudes of around
6sx,y , the effect of the head-on collisions dominates.
Then, the long-range effect takes over and the frequency
footprint flips, as the tune shift with amplitude changes
direction. This nonmonotonic dependence of the tune
with respect to the amplitude is potentially dangerous for
the stability of particles beyond this limit.

The additional detrimental influence of the triplet non-
linearities can be observed in the plots Fig. 1c and 1d,
where we include the effect of the errors in the quadrupoles
designed in FNAL and KEK, respectively. The tune shift
with amplitude gets larger and the difference resonances of
order 5 and above are getting more pronounced. From this
representation, however, it is difficult to say which magnet
family is more harmful with respect to the beam stability.

The two remaining images [Figs. 1e and 1f] show the
pure effect of the KEK triplet errors and the combined
influence of triplet errors and parasitic collisions, respec-
tively. It is clear that the long-range effect is dominant.
Indeed, the tune spread induced for amplitudes up to
10sx,y is of similar size as with the head-on collisions
included (compare Figs. 1d and 1f).

In all the cases, except the one with head-on collisions
only, some particles diffuse out to the �1, 21� resonance,
as our working point is quite close to the frequency space
diagonal.
104001-4
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FIG. 1. (Color) Tune footprints obtained by tracking single particles over 1000 turns and subsequent frequency analysis. The red
dots represent particles with initial transverse amplitudes up to 5sx,y; the blue dots show results for an extended range with initial
amplitudes up to 10sx,y . (a) Head-on collisions only, (b) head-on and long-range collisions, (c) head-on plus long-range collisions
and FNAL triplet errors (one random seed), (d) head-on plus long-range collisions and KEK triplet errors (one random seed),
(e) KEK triplet errors only (one random seed), and (f ) long-range collisions and KEK triplet errors (one random seed), but no
head-on collisions.
An additional outcome of the frequency map analysis
is displayed in the plots of Fig. 2, where we depict
the variation of the betatron tunes jDQj that occurs
between the first and second sets of 500 turns, as a
function of the starting amplitude [9,10]. The different
colors correspond to different amounts of tune variation
on a logarithmic scale, extending from jDQj # 1027 to
jDQj . 1022. The gray regions correspond to particles
with a tune variation less than or equal to the precision
of the tune calculation for this number of turns. Thus,
their tune variation is consistent with no variation at
all, and they may be considered as completely stable.
The two types of green areas are weakly unstable. We
104001-5
speculate that the blue, magenta, and brown regions are
strongly chaotic, and that particles in the black areas also
might be lost, after a larger number of turns. In these
plots we can observe directly the traces of resonances
which limit the region of stability. The conclusions of the
previous paragraph regarding the dominant destabilizing
role of the long-range collisions are also confirmed here.
The additional effect of head-on collisions and triplet
nonlinear fields is negligible.

A further frequency analysis was performed for a model
with a reduced crossing angle of 200 mrad (Fig. 3). The
two images can be directly compared to Figs. 2d and 1d,
which correspond to the same model, but at the nominal
104001-5
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FIG. 2. (Color) Diffusion maps representing the change of the betatron tunes with time as a function of horizontal and vertical
starting amplitude. The tune change was inferred by tracking single particles over 2 3 500 turns and subsequent frequency analysis.
The color assignment is logarithmically scaled with the tune change jDQj over 500 turns. (a) Head-on collisions only, (b) head-on
and long-range collisions, (c) head-on plus long-range collisions and FNAL triplet errors (one random seed), (d) head-on plus
long-range collisions and KEK triplet errors (one random seed), (e) KEK triplet errors only (one random seed), and (f) long-range
collisions and KEK triplet errors (one random seed), but no head-on collisions.
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FIG. 3. (Color) Tune footprint and diffusion map for a model including the head-on and long-range collision effect and the KEK
triplet nonlinearities, for a 200 mrad crossing angle. The symbols are the same as in Figs. 1 and 2.
crossing angle (300 mrad). For the smaller crossing
angle, the diffusive aperture should be diminished, ac-
cording to Eq. (1). Indeed, the detuning is further in-
creased (Fig. 3a) and the particle motion is heavily
perturbed at amplitudes beyond about 4sx,y (Fig. 3b).

The influence of the application of a Möbius twist (8) to
the phase space of the system is presented in the diffusion
map of Fig. 4. In that case, tune footprints cannot be
provided, as there is only one independent tune. The
diffusion map now presents features which are symmetric
with respect to the diagonal of the initial amplitude space.
It seems that by this twist, instead of stabilizing the system,
we mirror instabilities in other parts of the phase space.
This was also reported in a recent experimental study [19].
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FIG. 4. (Color) Diffusion map for a model including a Möbius
twist. The symbols are the same as in Fig. 2.
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An illustrative comparison of the phase space stability
for all the previous cases is given in Fig. 5. We plot the
average tune difference in logarithmic scale over all the
tracked particles. The two curves correspond to a simple
average of the tune change and another average of the tune
variation normalized by the particles’ initial amplitudes.
The head-on case presents the smallest tune diffusion
coefficient. Adding the long-range force increases the
coefficient by 2 orders of magnitude. The addition of
triplet nonlinearities further perturbs the system and we
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FIG. 5. (Color) Averaged tune differences in logarithmic scale
over all particle amplitudes and phases, for different models.
The blue curve corresponds to a simple average of the
tune change over all tracked particles and the red one to a
normalized average by dividing the tune variation of every
particle with its initial amplitude.
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can even distinguish a small difference between the
case with FNAL and KEK design triplets. Interestingly
enough, the case without head-on but with long-range and
triplet errors seems more unstable: the linear tune shift
due to the head-on effect puts the tune to a position further
away from the dangerous �0, 3� skew resonance. As we
have seen before, the situation deteriorates for a reduced
crossing angle of 200 mrad, and also when a Möbius twist
is included [19].

B. Action diffusion

The diffusion rate of particles in the chaotic part of the
phase space quantifies the detrimental effect of the consid-
ered perturbations. Following standard ideas popularized
by Chirikov and co-workers [20,21], a diffusion coefficient
can be estimated by calculating the variance of the unper-
turbed actions for a large number of turns. This approach
has already been followed by Irwin, for the study of the
beam-beam interaction in the case of the SSC [6].

First, we study the evolution of the rms action spread for
a group of particles, launched with random phases at the
same values of transverse action of the unperturbed mo-
104001-8
tion. To suppress short-time fluctuations, e.g., caused by
deformations of the invariant tori in phase space due to
resonances, we compute the rms spread of the action aver-
age over 1000 turns. The evolution of the rms spread, for
particle trajectories of 105 turns, with a starting amplitude
of 5sx,y in both transverse planes is illustrated in Fig. 6,
comparing the situation of head-on collisions only, with
the cases of long-range collisions and triplet errors. In all
pictures, the diffusion is quite limited. Thus, an amplitude
of 5sx,y seems to lie inside the diffusive aperture.

Figure 7 shows a similar picture for a starting amplitude
of 6sx,y . While the head-on case looks comparable, the
action spread shows notably larger variation when the
long-range collisions are present. If the triplet errors are
also switched on, some of the tracked particles experience
a rapid growth in amplitude, leading to a steep growth
in the calculated spread of action values. When the first
particle is lost, we stop the simulation. This accounts
for the much shorter time scale on the two bottom
pictures. Finally, compared with the FNAL case, the
action variance seems bigger when we include the KEK
triplets and particle losses occur a little earlier, for this
random seed.
FIG. 6. (Color) The variance in action (in units of rms emittance) for a group of 100 particles as a function of turn number. The
particles were launched with identical transverse action corresponding to 5sx,y in both transverse planes and with random betatron
phase. The figure demonstrates the effects of head-on collisions, long-range collisions, and triplet nonlinearities, respectively.
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FIG. 7. (Color) The variance in action (in units of rms emittance) for a group of 100 particles as a function of turn number. The
particles were launched with identical transverse action corresponding to 6sx,y in both transverse planes and with random betatron
phase. The figure demonstrates the effects of head-on collisions, long-range interactions, and triplet nonlinearities, respectively.
More systematically, we can compute the diffusion at
many different amplitudes and, for each case, compute the
average increase in the rms action spread per turn. The re-
sult is illustrated in Fig. 8, which compares different com-
binations of head-on collisions, long-range interactions,
triplet field errors, tune modulation, and Möbius twist.
The tune modulation has little, if any, effect on the diffu-
sion. The Möbius twist appears to increase the diffusion
at low amplitudes, while the diffusion at larger amplitudes
remains unaffected. In all cases, including long-range
collisions, there is a well defined diffusive aperture, be-
tween 5.5 and 6sx,y , beyond which the motion is unstable.
In the case of the SSC, where both the long-range bunch
separation (7.5sx,y) and the bunch population were
smaller, the equivalent limit without tune modulation was
found to be between 6 and 7sx,y [6], a similar number.

Figure 9 shows the dominating effect of the long-range
collisions: it compares the diffusion generated by head-on
plus long-range beam-beam interactions with that due to
the uncorrected triplet field errors alone. The latter give
rise to strong diffusion at an amplitude of about 8sx,y ,
which is 2s larger than for the beam-beam effect. The
differences between FNAL and KEK field errors appear
to be marginal.
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We can use the tune variation of the tracked particles
in order to confirm the established diffusive aperture
thresholds. In Fig. 10, we plot the tune difference versus
the amplitude, averaged over all initial x 2 y amplitude
ratios (Fig. 10a), and for a fixed ratio f � arctany�x �
45± corresponding to particles with equal initial positions
(Fig. 10b), for the same cases as in Fig. 1. We also mark
two thresholds corresponding to the precision boundary
and to an empirical crude loss boundary for tune changes
bigger than 1024. For all the cases where long-range
collisions and triplet field errors are included, the loss
boundary is located at the same point, around 5.5sx,y . For
the case where the triplet field errors are not added to the
beam-beam effect, the threshold is reached a little further,
around 6sx,y . The case with only the KEK triplets is
clearly more stable, but indeed there is still a visible effect
for larger initial amplitudes. No effect whatsoever can
be observed for the case with only the head-on effect
included, where the tune variation is very close to the
precision limit of the method.

The complementary picture (Fig. 10b) for a fixed ini-
tial amplitude ratio gives the same qualitative information
regarding the dynamical influence of the various perturba-
tions included in the model. The fluctuation of the tune
104001-9
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FIG. 8. (Color) The change of action variance per turn as a
function of the starting amplitude. Compared are the cases
of head-on collisions only, head-on and long-range collisions,
long-range collisions plus KEK triplet field errors, both types
of collisions plus KEK triplet field errors, the additional effect
of a tune modulation at the synchrotron frequency (22 Hz) of
amplitude 1024, and the additional effect of a Möbius twist.

variation with the initial amplitudes is due to the presence
of some high order resonances which are identified and
indicated in the plot.

In the following, we study the dependence of the
diffusion on various parameters. Unless stated differently,

FIG. 9. (Color) The change of action variance per turn as a
function of the starting amplitude. Compared are the effect of
beam-beam collisions with that of the KEK and FNAL triplet
field errors.
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we use a model which includes head-on and long-
range effects in addition to the KEK triplet errors. For
simplicity, we choose a fixed launch amplitude of 5sx,y

in both transverse directions, which is close to the limit of
stability, for this model.

C. Parameter scans
1. Tune

Figure 11a presents the change of the action spread per
turn as a function of the horizontal tune. The vertical
tune was held constant and equal to 59.32. The nominal
horizontal tune of Qx � 63.31 is close to a valley. The
highest peaks correspond to tunes close to the 3rd, 7th,
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FIG. 10. (Color) The change of frequency per 500 turns
(a) averaged over all initial amplitude ratios x 2 y, and (b) for
a fixed initial ratio of 45±, as a function of the starting
amplitude. Compared are the cases of head-on collisions only,
head-on and long-range collisions, long-range collisions plus
KEK triplet field errors, both types of collisions plus KEK
triplet field errors, both types of collisions plus FNAL triplet
field errors, and only KEK triplet errors.
104001-10



PRST-AB 2 WEAK-STRONG BEAM-BEAM SIMULATIONS FOR THE … 104001 (1999)
(a) (b)

FIG. 11. (Color) The change of action variance per turn (in units of rms emittance times 1028) as a function of the horizontal
tune (a) for a constant vertical tune and (b) for both the tunes varying so as to keep a constant distance to the �1, 21� coupling
resonance. The starting amplitude is 5s in both planes.
and 4th integer resonances. Figure 11b shows the result
of another tune scan performed parallel to the tune space
diagonal, i.e., at a constant distance to the coupling
resonance. This scan indicates that the nominal working
point is close to optimal.

2. Phase advance

We have calculated the rms action variance as a
function of a split in the horizontal phase advance
between the two half arcs, with the nominal horizontal
tune, while the vertical phase advance is kept constant.
Figure 12 demonstrates that a difference in horizontal
phase advance has little effect on the diffusion rate.
Thus, the weak-strong beam-beam interaction does not
constrain this parameter, which might be adjusted for
optimum chromatic correction or for minimizing strong-
strong beam-beam effects.

FIG. 12. (Color) The change of action variance per turn (in
units of rms emittance times 1028) as a function of the
difference in horizontal phase advance between the two half
arcs. The total horizontal tune is held constant, equal to the
nominal. The vertical phase advance per arc is not changed.
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3. Offset

We have also investigated the effect of a transverse
offset between the two colliding beams. Figure 13
presents the change of the action spread per turn as a
function of the horizontal amplitude for different values
of horizontal separation at one of the two IPs. There is
no noticeable effect for an offset varying from 0.2sx,y up
to 2sx,y , which is an indication that the long-range effect
remains dominant.

4. Beam current

Figure 14 depicts the effect of the bunch population on
the diffusive aperture. We tracked particles with the same

FIG. 13. (Color) The change of action variance per turn (in
units of rms emittance times 1028) as a function of the starting
amplitude for different transverse offsets at one of the two
main IPs.
104001-11
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(a) (b) (c)

FIG. 14. (Color) Dependence of diffusion due to long-range collisions on the beam current. (a) The change of action variance per
turn as a function of the bunch population, (b) approximate diffusive aperture as a function of the bunch population, and (c) same
as the left picture, but the vertical axis is the distance to the other beam at the parasitic collision point. A square root dependence
is also indicated for comparison.
initial amplitude for four different bunch populations. It
is obvious that bigger currents will reduce the diffusive
aperture. The dependence of the difference between
the diffusive aperture and the beam separation at the
parasitic collision points on current follows the square
root law found for the SSC, which is also expected from
a simple scaling argument for a long-range force of the
form 1�r [6].

5. Crossing angle

Figure 15 shows a scan of the diffusion rate versus
the crossing angle. For crossing angles smaller than
300 mrad, the diffusion increases by many orders of
magnitude. The design crossing angle thus appears to be
a good compromise.

The tune variation averaged over initial amplitude
ratios versus the initial amplitude for the two crossing

FIG. 15. (Color) The change of action variance per turn as a
function of the full crossing angle. The start amplitude is 5sx,y
in both planes. The vertical axis gives the variance in units of
the design rms emittance times 1028.
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angles of 300 and 200 mrad is displayed in Fig. 16. There
is more than 1s difference between the locations of the
empirical loss boundary for the two cases.

6. IP beta function

Figure 17 depicts the dependence of the diffusion on
the IP beta function. The crossing angle uc was varied
simultaneously with the beta function so as to maintain
a constant value of uc�ux,y , i.e., a constant separation at
the parasitic collision points. Thus, the b� scan mainly
shows the effect of triplet errors. The figure indicates a
minimum acceptable beta function of about 0.35 m, below
which the diffusion at 5sx,y becomes prohibitively large,
for uncorrected multipole errors in the triplets.
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FIG. 16. (Color) The tune variation per 500 turns averaged over
the initial x 2 y amplitude ratio, for two different crossing
angles of 300 and 200 mrad.
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FIG. 17. (Color) The change of action variance per turn as
a function of b�

x,y . Along with b�
x,y , the crossing angle is

changed, so as to maintain a constant ratio uc�ux,y . The starting
amplitude in both planes varies from 3 to 6sx,y . The vertical
axis gives the variance in units of the design rms emittance
times 1028.

IV. CONCLUSIONS

We have performed a series of weak-strong beam-
beam simulations for the LHC. The simulation model is
similar to the approach followed by Irwin for the SSC [6],
studying the diffusion in the action variable of a group of
particles launched at the same transverse amplitude with
random betatron phase. We added some new features,
such as a Möbius twist element, and the tracking data was
further processed by a frequency map analysis.

Preliminary simulation results indicate that the stability
of particle motion is completely determined by the long-
range beam-beam interaction, which causes substantial
diffusion at amplitudes beyond about 6sx,y . If triplet
nonlinearities are also taken into account, unstable particles
at these amplitudes can be lost within a few 10 000 turns,
while without triplet errors no particle loss is observed
within the first 105 turns, due to the nature of the beam-
beam force, which decreases at large amplitude. In the
presence of long-range collisions, the simulation results
for the FNAL and the KEK triplet errors are almost
indistinguishable in the action and small in the average
tune changes. The uncorrected triplet field errors alone
cause a strong diffusion at a threshold amplitude of about
8sx,y , i.e., 2s larger than for the long-range collisions.
Compared with both long-range interactions and triplet
errors, the effect of the head-on collisions is negligible.
A tune modulation of amplitude 1024 at 22 Hz has only
marginal effect on the diffusion. Equally small effect has
a transverse offset between the two beams in one of the
head-on collisions. With long-range collisions present, the
diffusive aperture of about 6sx,y is 3.5s smaller than
the beam-beam separation at the parasitic collision points.
The distance between the diffusive aperture and the beam-
beam separation increases as the square root of the bunch
population, in accordance with previous studies [6].
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The present nominal working point in the tune diagram
corresponds to a broad local minimum in the diffusion rate
calculated for a starting amplitude of 5sx,y . The diffusion
rate is unaffected by a difference in the horizontal phase
advance between the two IPs. For crossing angles below
300 mrad, the diffusion at 5sx,y increases by many orders
of magnitude. For large crossing angles, the diffusion is
roughly constant. Therefore, the design crossing angle
of 300 mrad appears to be optimal. Finally, the IP beta
function could be squeezed down to about 0.35 m without
appreciable increase in the diffusion rate at 5sx,y . For
even smaller values of b�

x,y , the 5sx,y diffusion rate
increases dramatically. At b�

x,y � 0.25 m there is strong
diffusion below 4s, if the triplet errors remain uncorrected.
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