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Abstract

The Lie-transform perturbation theory for non-
autonomous non-Hamiltonian systems and its
implementation in a complex of Mathematica programs
are described. On the example of LEP 108/90 lattice the
radiation effects are shown to play an important effect on
particle stability at high energies.

1    INTRODUCTION

To meet the strict requirements on the beam quality and
lifetime in high energy e+e- rings used as circular
colliders, synchrotron radiation sources and damping
rings of linear colliders, a tool for nonlinear dynamics
analysis is necessary which takes into account the
synchrotron radiation and coupling of all three degrees of
freedom in the presence of errors.
     An efficient tool bringing a Hamiltonian dynamical
system to the normal form with the help of the Lie-
transform perturbation theory was presented in [1]. It
permits to evaluate separately contributions of various
sources of nonlinearity (kinetic energy, magnetic
multipoles, RF field) to the resonance excitation (with a
possibility to keep some multipole strengths in symbolic
form); the transformation generating function being
known all over the lattice may be important for analysis of
the off-resonance "smear" and nonlinear emittance
production in the case of weak synchrotron radiation.
     In the case of strong synchrotron radiation (such as
LEP2) the dependence of the radiation reaction force in
quadrupoles on the transverse coordinates introduce
strong radiative beta-synchrotron coupling [2] which
should be included in the normalization process. The
corresponding generalization of the Lie-transform
perturbation theory is outlined in the present report, as
well as its implementation in a complex of Mathematica
notebooks permitting to study high order nonlinear effects
in machines as complicate as LEP or HERA-e.

2   PERTURBATION THEORY
2.1  Equation of motion of radiating particle
Introducing 6D phase space column vector of coordinates
and momenta

z x p y px y p= ( , , , , , )σ δ T (1)

and θ=s/R we have the following equation of motion
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which is driven by the Hamiltonian and radiation reaction
F(rad), which can be decomposed into the mean (classical)
and fluctuating (quantum) parts [3]:

F F F(rad) (c) (q)= + . (4)
     We will proceed as follows: solve for the nonlinear
dynamics in the Hamiltonian and classical radiative fields
and then add the quantum field, F(q),  to find the
distribution of an ensemble of particles.

2.2  Linear normal modes
The first step is subtraction of the finite closed orbit due
to misalignments and (the mean part of) the energy losses
(see e.g.[4]). We assume it to have been performed so that
the power series expansion of the Hamiltonian starts with
quadratic terms in the dynamical variables, whereas the
mean part of the radiative force starts with linear terms.
     For the next step we ignore nonlinearities and
introduce eigenvectors wn and eigenvalues λn of the 1-turn
transfer matrix M(2π+θ, θ). They form three complex
conjugate pairs which we numerate as follows

λ π γ λ λn n n n niQ n= − = =+
∗exp[ ( )], , , ,2 1 3 51

    (5)

Alternatively we will use Greek indices for numbering the
normal modes, so that Q1 = QI, Q3 = QII, Q5 = QIII ,  QIII  < 0
above the transition energy.
     We use the normalization

w w iµ µ
+ ⋅ ⋅ =S (6)

at θ=0  and then propagate the eigenvectors so that to
make them 2π-periodic:

w e iQ wn
n n

n( ) ( ) M( , ) ( )θ γ θ θ= − − ⋅0 0 , (7)

Using the eigenvectors we can build a matrix, W, with the
elements Win=(wn)i and expand the phase space vector as
follows

z a= ⋅W( )θ (8)

The 6-tuple of the coefficients
a a a a a a aI I II II III III

T= { , , , , , }* * * (9)

may be regarded as a new phase space vector. In the
absence of nonlinearities

a I iQµ µ µ µθ γ θ( ) exp[( ) ]= − (10)

with Iµ being the initial values of the action variables of
the linear normal modes.

2.3  Nonlinear normalization
In the presence of nonlinearities we may use (8) just as a
linear change of variables after which the equation of
motion becomes

� ( , ; ),( )a a R a= ⋅ +Λ 0 (c) θ ε (11)
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where Λ(0) is a diagonal matrix with elements Λ(0)
kk = 

iQk - γk, vector

R
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c)= ⋅ ⋅ ⋅ +− −ε
∂

∂
W [S (W ) ](1 1

+ (12)

includes terms of order 2 in a and higher (subscript “hot”
standing for higher order terms), ε is the perturbation
parameter (introduced here in the simplest way).
     We may try to treat the nonlinear problem (11) with
the method of averaging [5] which does not involve
canonical transformations, however it is not convenient
for practical calculations in higher orders in the
perturbation parameter.
     In the Hamiltonian case there is an efficient Lie-
transform based algorithm, Deprit’s algorithm (see e.g.
[6]), which in principle permits to perform calculations to
an arbitrarily high order in an automated way. Here we
present its generalization for the non-Hamiltonian case.
     Let us look for a continuos set of transformations

A A a T a a T a= ≡ =( , ; ) �( , ; ) , �( , ; ) I,θ ε θ ε θ 0 (13)

which renders equation of motion in the new dynamical
variables

� ( , ; ), ( , ; ) ,( )A G A G A A= = ⋅θ ε θ 0 0Λ (14)

as simple as possible. Defining the transformation by the
equation

( )∂
∂ε

θ ε θ ε θ εA a V A a( , ; ) ( , ; ), ;= , (15)

V  being called a Lie-dragging field, we obtain the
equation for the inverse operator

∂
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∂
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Arbitrary vector fields are transformed with the help of
the matrix operator

� �T T
A

a
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∂
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which satisfies the equation
∂
∂ε
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     The Lie-dragging field V is related to the original and
new vector fields by the following basic equation [1]
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which in principle permits to find V for a given G(c) or
vice versa. But it is not clear in advance for which G(c)

solution of (19) may exist. Perturbation theory allows to
specify G(c) in the process of normalization so as to assure
existence of the (formal) solution.
     Expanding everything in power series
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we can reduce general equation (19) to the following set
of homology equations
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Eqs.(21) for the autonomous system (∂/∂θ=0) were first
obtained by Kamel [7]. In the Hamiltonian case they
reduce to Deprit’s equations [6].
     Introducing unit 6-vectors ei with the components
(ei)k = δik we can build the vector basis functions

Φ Φ Λ Λ Φk m k i
m

i
G k m i ii

i
kk k me A L mi

, ,
( ) ( )

,, � ( ) ,= = −∏ ∑
0

0 0 (22)

to solve eqs.(21) by expansion in them. We may set Gn
(c)

to zero unless (R0n
(c) - Σn) contains a term with the basis

function which eigenvalue is close to an integer times i,
these being the detuning (m2i = m2i-1, i ≠ k, m2k = m2k-1 -1)
and the resonance terms. The corresponding Fourier
harmonics of such terms should be added to Gn

(c) to avoid
small denominators in Vn.
     If no close resonance is encountered in the orders of
interest, we will obtain in the result of the normalization
process

G A A A A AI II III
(c) ( , ; ) (| | , | | , | | ; ) ,θ ε ε= ⋅Λ 2 2 2 (23)

where Λ is again a diagonal matrix independent of θ.
Having solved eq.(14) for A, we can transform back to the
original variables as follows:

( )a
n

A A A A A L A
n

n
n

n
n

m V n m
m

n

m
= = = −−

=

∞
− − −

− −
−

=
∑ ∑ε

θ
!

( , ), , �
1

0
0

1 1 1

1

1

1

  (24)

2.4  Distribution of radiating particles
Let us now consider the fluctuating part of the radiative
field F(q) as a perturbation of the deterministic motion.
Transforming and expanding it on the analogy of the
classical radiative field in (12), (20) (note that expansion
in ε now starts with zero order) we can project it onto the
normal form coordinates A by the following recursion
scheme:
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In the result of this projection additional nonlinear
transverse components of the fluctuating force can appear
from the longitudinal component enhancing diffusion in
the transverse planes.
     To find particle distribution in the phase space, ), one
should resort to the Fokker-Planck equation which has the
standard form [3] in the complex variables as well.
     With known ) we can obtain the true emittance of
nonlinear normal modes, εµ

(true) = <|Aµ|
2>, and, with the

help of (24), the apparent emittance of linear normal
modes, εµ

(app) = <|aµ|
2>, related to the observable beam

characteristics via eq.(8).

3   COMPLEX OF PROGRAMS
The described above theory was implemented in a
complex of Mathematica notebooks (see Fig.1). One
group of the notebooks perform symbolic computations
and generate analytical expressions for subsequent
numerical calculations.
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     Another group of the notebooks find linear
eigenvectors with radiation, components of the Lie-
dragging field, resonance and diffusion coefficients for a
particular lattice. As the starting point it uses the closed
orbit due to imperfections and classical radiation and the
linear eigenvectors of the Hamiltonian motion around it
computed by MAD [8]. Employing Mathematica for
numerical calculations permits to operate with nonlinear
element strengths in symbolic form which may be
convenient for determination of the multipole correctors
strength. At present the treatment is limited to the second
order effects in the thin lens approximation.

4   LEP2 108/90 LATTICE
The lattice with phase advances in the arc cells
µx/µy= 108°/90° was once considered as a strong
candidate for LEP operation at the highest energy.
However some problems were encountered with this
lattice tested at the beam energy of 86 GeV: sporadic
onsets of particle losses and by almost a factor of three
larger vertical emittance than expected from the linear
theory (0.5 nm vs. 0.2nm). Though the large vertical
emittance (but not particle losses) was obtained also in
simulation by quantum tracking with MAD [9], the
physics is not still clear. To get an insight the developed
methods were applied for the particular misaligned lattice
used in [9].

                                                            Table 1

Table 1 presents for some resonances squared absolute
values of the first order Lie-dragging field components
averaged over the arcs. One can see that the influence of
the transverse motion on the longitudinal one is much
stronger than vice versa, which is a manifestation of the
radiative beta-synchrotron coupling [2]. Also, the nearest
to the working point Qx =102.280, Qy =96.192, |Qs|=0.107
synchro-betatron resonances appear too weak to produce
noticeable vertical emittance.

    Table 2

     The second order perturbation theory gives
dependence of the tunes and damping rates on the
oscillation amplitudes. Table 2 presents derivatives of
Λµ = iQµ - γµ  w.r.t. the action variables of the nonlinear
normal modes Iν. Due to large derivative ∂Re(ΛIII )/∂II the
longitudinal damping fails at II =2.9 µm. Though this
value exceeds the dynamic aperture (~2.5 µm), the

weakened longitudinal damping can contribute to particle
losses at smaller II.
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resonance | v1 |
2 | v3 |

2 | v5 |
2

Qx - Qy - | Qs | 2.76 2.41 1.50⋅106

Qy - 2| Qs | - 4.94⋅10-3 6.11
(1-1) Qx - Qs 42.6 - 1.55⋅107

(1-1) Qy - Qs - 205. 5.02⋅105

∂/∂II ∂/∂III ∂/∂IIII

ΛI -509+51261 i -74 - 34702 i -0.10 -  80 i
ΛII -11- 34329 i 56 +35806 i 0.01 - 1.2 i
ΛIII 928 + 4949 i -127 + 1124 i -0.02 + 8.5 i

                   ‘deprit.nb’
nonlinear Hamiltonian

normalization
                    ‘kamalex.nb’
nonlinear driving field

normalization;
fluctuating  field
transformation

r.h.s. of the homology
equations

MAD

closed orbit,
symplectic eigenvectors

                 ‘eigenrad.nb’
linear driving field

normalization

radiative eigenvectors,
complex tunes

                              ‘liedrag1.nb’
integration of  the 1st order

homology equations,
3rd order resonance strength

                              ‘liedrag2.nb’
integration of  the 2nd order

homology equations,
4th order resonance strength,

complex detuning

                                                  ‘diffco.nb’
symbolic & numeric computation
of the diffusion coefficients matrix

Lie-dragging fieldvector Lie-transform formulas

                                     ‘fpe.nb’
perturbative solution of the

Fokker-Planck equation

                                     ‘emitt.nb’
calculation of the true and

apparent nonlinear emittance

symbolical                                           numerical

Figure 1.  Structure of the complex of programs.
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