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METHODS AND COMPLEX OF PROGRAMS FOR RADIATING
PARTICLE 3DOF NONLINEAR DYNAMICS ANALYSIS

Y.Alexahirf, JINR, Dubna, Russia

Abstract
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The Lie-transform perturbation theory for non-
autonomous  non-Hamiltonian ~ systems  and itwhich is driven by the Hamiltonian and radiation reaction
implementation in a complex dflathematicaprograms F'» which can be decomposed into the mean (classical)
are described. On the example of LEP 108/90 lattice tf@d fluctuating (quantum) parts [3]:

radiation effects are shown to play an important effect on FEI=FO+F@, (4)
particle stability at high energies. We will proceed as follows: solve for the nonlinear
dynamics in the Hamiltonian and classical radiative fields

1 INTRODUCTION and then add the quantum fiel&®@, to find the

. : . distribution of an ensemble of particles.
To meet the strict requirements on the beam quality andS P

lifetime in high energy ‘& rings used as circular 2.2 Linear normal modes

colliders, synchrotron radiation sources and dampinghe first step is subtraction of the finite closed orbit due
rings of linear CoIIiders, a tool for nonlinear dynamic&o misa”gnments and (the mean part of) the energy losses
analysis is necessary which takes into account thigee e.g.[4]). We assume it to have been performed so that
synchrotron radiation and coupling of all three degrees @e power series expansion of the Hamiltonian starts with
freedom in the presence of errors. quadratic terms in the dynamical variables, whereas the
An efficient tool bringing a Hamiltonian dynamicalmean part of the radiative force starts with linear terms.
system to the normal form with the help of the Lie- For the next step we ignore nonlinearities and
transform perturbation theory was presented in [1]. lhtroduce eigenvectoms, and eigenvaluek, of the 1-turn
permits to evaluate separately contributions of variousgnsfer matrix M(2+0, 8). They form three complex

sources of nonlinearity (kinetic energy, magneti%onjugate pairs which we numerate as follows
multipoles, RF field) to the resonance excitation (with a A = expRm(Q. -y, ), A, =A%, n=135 (5

I H . . H n n n/l 1 n’ (]
poss@llty to keep some multipole s_trengths n Symb.OIKAIternatively we will use Greek indices for numbering the
form); the transformation generating function bein

known all over the lattice may be important for analysis o ormal modes, SO theh = Q, Q3= Qu, Q= Qui, Qu <0
N o . ' above the transition energy.
the off-resonance "smear" and nonlinear emittance =
s I We use the normalization
production in the case of weak synchrotron radiation. . o (6)
In the case of strong synchrotron radiation (such as w, [B0w, =i
LEP2) the dependence of the radiation reaction force af =0 and then propagate the eigenvectors so that to
guadrupoles on the transverse coordinates introduoceake them #-periodic:
strong rad|a_t|ve beta_—synchrotron (_:oupl|ngﬁ2] which w(6)=¢ (iQ,-v.8 M(6, 0) W, (0) @)
should be included in the normalization process. The . ! ) _ )
corresponding  generalization of the Lie-transforn/SiNg the eigenvectors we can build a matrix, W, with the

perturbation theory is outlined in the present report, glementsWiy=(wy); and expand the phase space vector as

well as its implementation in a complex Mathematica  'ON1OWS
notebooks permitting to study high order nonlinear effects z=W(B)[a (8)
in machines as complicate as LEP or HERA-e. The 6-tuple of the coefficients
a={a,a,a, a8, a4, @} 9)
2 PERTURBATION THEORY may be regarded as a new phase space vector. In the

2.1 Equation of motion of radiating particle absence of noniinearities

0) =./1, exp[(Q, - (20)
Introducing 6D phase space column vector of coordinates 31.1( ) \/T‘ ] PIIQ. =, ] ] ]
and momenta with 1, being the initial values of the action variables of

z2=(% B, ¥% B. 0.5, 1) the linear normal modes.

andB6=g/R we have the following equation of motion 2.3 Nonlinear normalization

,_d_ 9 (rad) ) In the presence of nonlinearities we may use (8) just as a
£= dez_E_SBaizy{JrE ’ linear change of variables after which the equation of
oooooooooo motion becomes
#Email: alexahin@sunse.jinr.ru a=N9%@&a+ R9(a6:;¢), (11)
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where A© is a diagonal matrix with elements®y, = ”'1{ w1\ p @ (1) po } o _ _efm)i oo
3, = G9, - , RO =-S5 (™4 K.,

iQx - Vi, vector - mzl(m‘l)him’”'m (m)B"'"'"” A JZ(' 1)411 %

- 0 Egs.(21) for the autonomous systedid@=0) were first

© — 1 I\T (c) 12
R¥=eWIstw™) ng{herEhm (12) obtained by Kamel [7]. In the Hamiltonian case they

includes terms of order 2 mand higher (subscript “hot” reduce to Deprit's equations [6].
standing for higher order terms3, is the perturbation Introducing umF 6-vectorg W|th the gomponents
parameter (introduced here in the simplest way). (&)«= i we can build the vector basis functions

We may try to treat the nonlinear problem (11) with @, ,=¢,[T A", 4, @, ,=(Y WY -AQ) @, . (22)
the method of averaging [5] which does not involve i o
canonical transformations, however it is not conveniedf Solve €gs.(21) by expansion in them. We mayGaet .
for practical calculations in higher orders in thel© Zero unlessRy - %) contains a term with the basis
perturbation parameter. function which eigenvalue is close to an integer times

In the Hamiltonian case there is an efficient Liethese being the detuningy = M.y, i # K, My = Mpcy-1)
transform based algorithm, Deprit's algorithm (see e.@nd the resonance terms. The corresponding Fourier
[6]), which in principle permits to perform calculations toharmonics of such terms should be addeG{8 to avoid

an arbitrarily high order in an automated way. Here wémall denominators i

present its generalization for the non-Hamiltonian case.  If no close resonance is encountered in the orders of
Let us look for a continuos set of transformations interest, we will obtain in the result of the normalization
A=Na®e)=T(abe)a Tab0)=I (13) Process
which renders equation of motion in the new dynamical GO(ABe)=A(AF.IAT.IA 1e 1A, (29)
variables where A is again a diagonal matrix independent Gof
A=G(AB:g), G(AB:0)=A A (14) Having solved eq.(14) fok, we can transform back to the
as simple as possible. Defining the transformation by tr&rlglnalwvanrlables as follows: ) o
i I -1 — cl— _ n-1} j§ 1 24
equation ) g_nzon! AYAB), A=A A'= mzl(ml) L A,
o Aa.8:e)=V(Aabie).6:e): (15)

2.4 Distribution of radiating particles

Let us now consider the fluctuating part of the radiative
0. o A P field F9 as a perturbation of the deterministic motion.
gT‘lz—L\lT‘l, L, E\jBa—u (16)  Transforming and expanding it on the analogy of the

= classical radiative field in (12), (20) (note that expansion

Arbitrary vector fields are transformed with the help ofn £ now starts with zero order) we can project it onto the
the matrix operator

V being calleda Lie-dragging field we obtain the
equation for the inverse operator

normal form coordinateg\ by the following recursion

F1= -Ar—lgé , (17)  scheme:
a n m R
which satisfies the equation GYW=RY+ zl(:q)ﬂ;)mm R = ‘_Zl(r,-n_ll)i‘] i . (25)
m= 1=

%i‘lz—gi‘l, fU=LU-Lv=—4V, (18) In the result of this projection additional nonlinear
transverse components of the fluctuating force can appear
new vector fields by the following basic equation [1] from the longitudinal component enhancing diffusion in
3 R 3 T the transverse plane_s. o
AR EQ‘C) —TIERC’, (19) To find particle distribution in the phase spagepne
L Lo i _ . © should resort to the Fokker-Planck equation which has the
which in principle permits to find/ for a givenG™ or  an4ard form [3] in the complex variables as well.

. . . . . C)
V|c|et_versa:c Bf; It Is not _c[[eaF: |r; at()jv?ncetr:‘or Wh'ﬁ—h( 1o With known 7 we can obtain thérue emittanceof
solution of (19) may exist. Perturbation theory allows 19, ,,ihear normal modeg,"® = <]A,’>, and, with the

specifyG® in the process of normalization so as to assurﬁzelp of (24), theapparent emittanceof linear normal

existence qf the (formgl) s_olutlon. _ modes,su(app)= <|a“|2>, related to the observable beam
Expanding everything in power series - .
characteristics via eq.(8).

The Lie-dragging fiel¢/ is related to the original and

_v & O-vE G0 RO-TE RO 20
V=3 e 8923 160, RO=3 CRE..(20) 3 COMPLEX OF PROGRAMS
we can reduce general equation (19) to the following sghe described above theory was implemented in a
of homology equations complex of Mathematica notebooks (see Fig.1). One
0 N f the notebooks perform symbolic computations
9. — (O _ [ 21) 4group o p Y| p
66\1” T YVa =6 B+ Z, D) and generate analytical expressions for subsequent
where numerical calculations.
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Another group of the notebooks find linearweakened longitudinal damping can contribute to particle
eigenvectors with radiation, components of the Lielosses at smalldy.
dragging field, resonance and diffusion coefficients for a
particular lattice. As the starting point it uses the closed 5 REFERENCES
orbit due to imperfections and classical radiation and tH&] Y.Alexahin, in Proc. HEACC'98, Dubna, 1998.
linear eigenvectors of the Hamiltonian motion around ii2] J.Jowettin Proc. 4 Workshop on LEP Performance,
computed byMAD [8]. Employing Mathematica for Chamonix, 1994, p.47.
numerical calculations permits to operate with nonlinedB] J.Jowett, SLAC-PUB-4033, Stanford, 1986; AIP
element strengths in symbolic form which may be Conf. Proc. 153 (1987).
convenient for determination of the multipole corrector§4] Y.Alexahin, DESY HERA 99-02, Hamburg, 1999.
strength. At present the treatment is limited to the secofd] J.Ellison, H.-J.Shihin AIP Conf. Proc. 326 (1995).

order effects in the thin lens approximation. [6] L.Michelotti, “Intermediate Classical Dynamics with
Applications to Beam Physics”. J.Wiley, 1995.
4 LEP2108/90 LATTICE [7] A.Kamel, Celestial Mech v.3, p.90 (1970).

The lattice with phase advances in the arc cell8] H.Grote, F.Iselin, “The MAD program. Version 8.21.
K/p,= 108/90° was once considered as a strong User's Reference Manual”, 1997.

candidate for LEP operation at the highest energy9] J.Jowettin Proc. ¥' Workshop on LEP Performance,
However some problems were encountered with this Chamonix, 1997, p.76.

lattice tested at the beam energy of 86 GeV: sporadic

onsets of particle losses and by almost a factor of three

larger vertical emittance than expected from the linear symbolical numerical
theory (0.5 nm vs. 0.2nm). Though the large vertical .
emittance (but not particle losses) was obtained also i nonlinear ﬁ;ﬁ;‘i&’c‘ﬁ;ia MAD
simu!atio_n by q_uantum traCking WItrMAD [9]! the normalization S
physics is not still clear. To get an insight the developed Kamalex.nb' closed orbit,
methods were applied for the particular misaligned lattice|| nonlinear driving field : Symp'?‘?,t,',‘?%g?,r?,v,???‘?f?
used in [9] norma_lizatiqn; ‘eigenrad.nb’
Table 1 fltuctu?tmg Il_eld linear driving field
ranstormation i i
resonance WlF |VéF |V%F nonnmrauon
Q-Q-IQl|276 [241 [1s5080° | | | |  radinive sigenvectors,
Q-2 |- 4.9410° | 6.11 - r.n.s. of the homology . SOTRSNSS ]
(1-1)Q.-Q. | 42.6 : 1.5510 - e e
Integration o e’lorder
(1‘1) Qy' Qs - 205. 5.0210° homology equations,
3 order resonance strength
Table 1 presents for some resonances squared absolute - ]
values of the first order Lie-dragging field components _ _ ‘liedrag2.nb
averaged over the arcs. One can see that the influence pf 'mehgorfr‘:gg Ofethfa"ﬁ(;’r:gef
the transverse motion on the longitudinal one is much 4% order regzn;‘nce Stre’ngth
stronger tharvice versa which is a manifestation dhe complex detuning
radiative beta-synchrotron couplif@]. Also, the nearest |....|. e e L
to the working poinQ,=102.280,Q,=96.192,Q{=0.107  |vector tie:transform formulas _ Lie-dragging field
synchro-betatron resonances appear too weak to produge prr—
noticeable vertical emittance. __ .| symbolic & numeric computation
Table 2 of the diffusion coefficients matrix|
aple
alal, alal, e — | L
A -509+51261 | -74 - 34703 -0.10 - 80i perturbative solution of t calculation of the true and
i -11- 34329 56 +358064 001-1.2 Fokker-Planck equation| apparent nonlinear emittange
Aw | 928 +4949 | -127 +1124| -0.02+8.5

The second order perturbation theory gives Figure 1. Structure of the complex of programs.
dependence of the tunes and damping rates on the

oscillation amplitudes. Table 2 presents derivatives of
Ay =iQy -y w.r.t. the action variables of the nonlinear
normal modes,. Due to large derivativéRe(\,)/dl, the
longitudinal damping fails at, =2.9 um. Though this
value exceeds the dynamic aperture (~uB), the
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