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Abstract

The Frequency Map Analysis method is applied in mod-
els of LHC optics versions 5 and 6 in order to study their
non-linear dynamics. The maps present a global picture
of the resonance structure of the phase space. They en-
able us to view the dangerous zones tracing the limits of
the dynamic aperture. This approach, assisted by detailed
resonance analysis, is used as a guide for exploring possi-
ble correction schemes, which are subsequently verified by
long-term tracking.

1 INTRODUCTION
The long term stability of the beam is the major concern
for the design of a hadron collider, as the LHC [1]. Espe-
cially during long injection period of more than107 turns
needed to fill the LHC with 2835 bunches per beam, parti-
cle trajectories are perturbed strongly by non-linear magnet
fields, mainly attributed to the multipole errors of the super-
conducting magnets. In order to estimate the dynamic aper-
ture (D.A.), the region of the phase space where particles
survive after a long time, particle tracking is usually em-
ployed, with codes optimised for this task [2, 3]. Never-
theless, even in the upgraded multiprocessor system now
available at CERN [4], tracking studies of the full injec-
tion plateau are extremely time consuming. Simulations
are thus limited to1% of the total injection period and a re-
duction factor of7% [5,6] is taken into account for the es-
timation of the D.A. [7]. Beside the numerical difficulties,
the main drawback comes from the fact that tracking cannot
provide enough information about the system’s phase space
structure. The application of high-order perturbation the-
ory has been extensively used in beam physics [8, 9] in or-
der to give some insight regarding the systems’ non-linear
dynamics. However, the construction of some optimal set
of variables (normal forms or action-angle) for the eval-
uation of the phase space distortion cannot be applied in
the parts of the phase space which are close to instabilities,
such as resonances or chaotic regions. In fact, an approach
giving in a direct way a global view of the phase space
structure is needed. This later can be achieved by the Fre-
quency Map Analysis (F.M.A), a method extensively used
in celestial mechanics [10,11] and in Hamiltonian toy mod-
els [12–14] but only recently in real accelerators, as the
ALS [15] or the LHC [7]. The method relies on the high
precision calculation [18] of another fixed feature of KAM
orbits, the associated frequencies of motion and can be di-
rectly applied in short term tracking data. Moreover, the
variation of the frequencies over time [7, 13, 14] can pro-
vide an early stability indicator as good as, if not better
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than, the Lyapounov exponent.
After a brief introduction to the method (Sect. 2), we

display in frequency maps the global dynamics for cases of
interest of LHC optics version 5 and 6, show many inter-
esting features of the phase space structure and demonstrate
the efficiency of the method in comparing different designs
through a diffusion quality factor (Sect. 3). The last section
is devoted to the final conclusions and perspectives.

2 FREQUENCY MAPS
The first step is to derive through the NAFF algorithm [10]
or variants of this code (e.g. SUSSIX [17]), a quasi-
periodic approximation, truncated to orderN ,

f ′
j(t) =

N∑

k=1

aj,keiωjkt , (1)

with f ′
j(t), aj,k ∈ C andj = 1, . . . , n, of a complex func-

tion fj(t) = qj(t) + ipj(t), formed by a pair of conju-
gate variables of an degrees of freedom Hamiltonian sys-
tem, which are determined by usual numerical integration,
for a finite time spant = τ . The next step is to retain
from the quasi-periodic approximation the frequency vec-
tor ν = (ν1, ν2, . . . , νn) which, up to numerical accu-
racy [18], parameterises the KAM tori in the stable regions
of a non-degenerate Hamiltonian system. Then, the con-
struction of the frequency map can take place [12–15], by
repeating the procedure for a set of initial conditions which
are transversal to the orbits of interest. As an example, we
may keep all theq variables constant, and explore the mo-
mentap to produce the mapFτ :

Fτ :
Rn −→ Rn

p|q=q0
−→ ν .

(2)

The dynamics of the system is then analysed by studying
the regularity of this map.

3 APPLICATION TO THE LHC
The F.M.A is applied to the short-term tracking data (τ =
103 turns) issued by SIXTRACK [3], for a large number of
initial conditions (≈ 104). We select an arbitrary section
of the phase space, setting the initial transverse momenta
to zero. The particle coordinates are chosen equally spaced
in the transverse linear Courant-Snyder invariantsIx0 and
Iy0, at different ratiosIx0/Iy0. Hence, we construct the
map

Fτ : R
2 −→ R

2

(Ix, Iy)|px,py=0, −→ (νx, νy) , (3)

and proceed to the dynamical analysis of the accelerator
model.
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Figure 1: Frequency and amplitude maps for LHC optics version 5 target table without ((a),(c)) and with ((b),(d)) the
higha4 value of error table 9712 on the dipoles.

In order to reach the target D.A. of12σ for the LHC in-
jection optics, giving a necessary safety factor of 2 with
respect to the position of the collimators at6σ, a target er-
ror table was proposed. A frequency map for optics ver-
sion 5 with this error table and for the nominal working
point (Qx = 63.28, Qy = 59.31) is shown in Fig. 1a.
This specific machine gives an average D.A. over 11 dif-
ferent invariant ratios of13.1σ and a minimum of12.1σ
(at arctan(Iy0/Ix0) = 15◦), values which are close to
the average and minimum D.A over all the 60 random re-
alisation of the magnet errors (“seeds”) usually produced
for 6D tracking. Each point in the frequency space cor-
responds to a different orbit. The different colours in the
map correspond to orbits with different initial amplitude
I =

√
I2
x + Iy2 (from 0 − 16σ) and the black dots la-

bel initial conditions with different ratios (from15◦ to
75◦). The orderly spaced points correspond to regular or-
bits whereas the dispersed points to chaotic ones. This
plot is a snapshot of the so called Arnold web, the com-
plicated network of resonancesaνx + bνy + c = 0, which
appear as distortion of the map (empty and filled lines) and
can be easily identified. For example, we put in evidence
the importance of three 7th order resonances ((a, b) =
(7, 0), (6,−1) and(−2, 5)). Especially, the crossings of the

resonant lines are “hot spots”, from which particles can eas-
ily diffuse: as an example, we show the evolution of the fre-
quency of an orbit starting close to the crossing of the(7, 0)
with the (−3, 6) and(4, 6) resonances. The orbit diffuses
along the unstable manifold of the 7th order resonance and
is lost after a few thousand turns. This is a clear demon-
stration of the importance of this resonance with respect to
the D.A. of this model.

One of the main issues in the specification of the LHC
injection optics, is the correction of the systematic part of
the lowest order multipole errors of the super-conducting
dipoles, which limit the D.A. [6]. This is usually done by
magnetic coils (“spool pieces”) placed at the ends of the
dipoles. In the case of the last 9712 error table, where bi-
ases of the normal and skew octupoles have been signifi-
cantly raised, there was an important loss of the dynamic
aperture [19] with respect to the target error table. A fre-
quency map for the same “seed” as for the previous case
with the skew octupole error of the 9712 table in the dipoles
is shown in Fig. 1b. The phase space now looks much
more distorted. The most remarkable feature concerning
the system’s dynamics is the explosion of the detuning,
to the point that particles, especially the ones with initial
amplitude ratio of45◦ are diffusing towards the diagonal
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Figure 2: Positioning of the main resonances the initial am-
plitude space for two different correction schemes of theb4,
b5 error on the main dipoles of LHC optics version 6.

(1,−1) in the right corner of the map. On the other hand,
particles close to horizontal motion at the top of the map
are approaching the(0, 3) resonance and the ones close to
vertical motion the(4, 0). This finding has been confirmed
with Normal Form analysis. The dynamic aperture could
be recovered by tuning the skew octupole spool pieces such
as to cancel the(1,−1) resonance [19]. The global dynam-
ics of these two cases can be also displayed in the physical
space of the system by mapping each initial condition with
a diffusion indicator: the tune can be calculated for two
equal and successive time spans which correspond to half
of the total integration timeτ , giving a diffusion vector:

D|t=τ = ν|t∈(0,τ/2] − ν|t∈(τ/2,τ ] , (4)

the amplitude of which can be used for characterising the
instability of each orbit. In Figs. 1c and d, we plot the
points in the(Ix0, Iy0)–space with a different colour cor-
responding to different diffusion indicators in logarithmic
scale: from grey for stable (|D| ≤ 10−7) to black for
strongly chaotic particles (|D| > 10−2). Through this rep-
resentation we are able to view the traces of the resonances
in the physical space, and set a pessimistic threshold for
the minimum D.A.. Moreover, we can compute a diffusion
quality factor defined as the average of the local diffusion
coefficient to the initial amplitude of each orbit, over a do-
mainR of the phase space:

DQF =
〈 |D|

(I2
x0 + I2

y0)1/2

〉
R

. (5)

This quantity can be used for the comparison of different
designs and the optimisation of the correction schemes pro-
posed. For example, for the normal octupole and decapole
correction of LHC optics version 6, five schemes where
proposed, regarding the positioning of the “spool pieces”.
In Fig. 2, we display the strongly excited resonances (four
of 7th and one 9th order) in the amplitude space for the best
and worst case, as suggested by the diffusion quality factor.
The best one corresponds to the nominal scheme, where the

“spool pieces” are positioned in every dipole and correct
the average value ofb4 andb5 systematic per arc, whereas
the worst machine corresponds to a correction with spool
pieces in every second dipole. In both cases only the sys-
tematic per arcb4 and b5 errors are switched on, which
explains the relatively weak distortion of the phase space
for small amplitudes. On the other hand, in tha “bad” case,
the dangerous resonances are shifted towards lower ampli-
tudes, as the detuning is higher, especially for horizontal
motion. In fact, this correction option is not good for the
LHC, due to the odd number of dipoles per half cell.

4 CONCLUSIONS
The F.M.A. was employed for the thorough study of the dy-
namics of different LHC machines with the injection optics
version 5 and 6. All the fine details of the systems’ phase
space are directly viewed in frequency maps. Through the
evolution of the tunes with time, the drifting of chaotic or-
bits is followed in the frequency space and different types
of diffusion are shown. Moreover, the tune difference for
two successive time spans enables the representation of the
resonance structure and phase space distortion on the initial
amplitude space. This instantaneous diffusion coefficient
allows the computation of a global quality factor which
can be efficiently used for comparison of different acceler-
ator models with respect to their phase space stability. The
method can be applied to the study of many open problems
regarding the LHC non-linear dynamics, as the beam-beam
effect, the optimal choice of the working point and its sen-
sitivity to small variations or the influence of tune modu-
lation. For this, it is envisaged to extend the approach to
the full 6D phase space. Indeed, the challenge will be to
establish the statistical correlation of early indicators such
as the frequency variation with the beam lifetime.
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