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TilE PS AS A PIIYSICS TOOL AND AS A:i INJECTOR 

By the PS Stoff, presented by G. J.. Munclny 

CERN, Geneva, S\vitzerland 

l. lNTRODUC:'J'ION 

There. arr: at pre.sent four e!Xper:inwntal t1reas serving "25 GeV phy-

sics 11 \\'hich arc :;upplicd \\'ith prirnnry and secondary beams directly from 

the CPS. Hjgh energy protons are also delivered to the Intersecting Sto

rage Hings (ISR), in whi.ch there nre s1x co1liding--bec;m e.xperimenta1 zone~..;, 

From 1976, the CPS \\'ill also act a~; injector to the 400 Ce\' SPS, curn-_·nt]y 

under construction nearby. Th(' pt·ohlems involved in supplying the vnriou~; 

different users uith beams of adequate quality, int-_ensity, and stability, 

and the techniques developed to r0solve most of thcnt, arc briefly discussed 

111 this pnper. 

2. "25 GeV PHYSICS" AT THE CPS 

Hith the. completion of the: Booster Synchrotron (PSB) 1 , the CPS can 

now provide higher intensj.tie.s (up to 6 x 10 12 protons per pulse at the 

time of \vriting). The PSB accPlercltc>s from 50 ~leV to 800 MeV, and the prc

bunclled beam is injected into tl10 CPS during a single revolution. After 

further acc~lcration, tl1e protons are distributed betwee11 several c~xpcri

menU.; running simultaneously, using fast and slow extraction and internal 

targets. Different values of momentum can be supplied to individual users 

wfthin the same cycle; the usual range is between 19 and 26 GeV/c - hence 

the term "25 GeV physics". Fast extraction2 of one or more of the twenty 

circulating bunches is used for the bubble chambers (at present, three. are 

operational at CERN); slow extraction is shared with an internal target2'3 

for tl1e other experiments. An example of a typical cycJ_e in ctJrrent liSe is 

shown in Figure 2. 

The performance achieved up to the present 1s summarized 1n 



Table l. Improvl:lf:.c.'nts under way :>hould bring the.';c figure.<_; clnser 1.,·, rite 

vnltl~:; aimed at. Characteri.stics of tl1e extractctJ j)Yiiil~l·y !Jea1ns are also 

shovm in Table 1. A spill-time. of /j()() ms is usual for slow ejection, and 

this can be increased if the number of successive beam-consuming operations 

in the cycle is reduced. New models of extraction (septum) ml:lgnets4 > on 

the \.:ray, will allow improvements in duty cycle. The "effective spill·-t:ime 11 

is 90-99% of the overall btJrst dt1ration if only low-frequen(:y structtJre i:: 

ta~e11 into account, and sti.ll exceeds 80% if higt1 freqtJCllC'it•s nrc i11clt1<led; 

it is dcpenJ~...~nl upon the numlwr of bu1H:hes pn:vjnu:;'ly ext ,-:lc'Lc·d. In ten-

s:i.ty is not at present limited by the extraction procef;s or l'.quipme.nt, but 

by the (~xpcrimcntal area layout. and shielcllng; after reconstruction (see 

.tJeJ.ow), it is planned to use up to 4 x 10 12 protons/pulse i.11 the Ea~:t ll2l]S 

There ar0 four c->.>:perlmcntal areas (see Figure 1) for 11 25 GeV phy-

sic~~~~. The South Hall has sevC:':n secondary beams derived from two internal 

targets. One of these targets operates in each <.11tcrnate running period, 

sharing 1.:rith a slow extraction and using about ~·0% of the ;wcc·:lcrtlted beam. 

Three~ of the beams are cssentjaJly usc:d ns test fnc:i.litiC's, The East 1J:1l.l 

l1as two extracted beams, one fast a11d one s].o\~. l11 tl1e fi1:st of these, one 

of three possible target positions supplies either a beam \.,d.th RF ~;epar<J-

tors, or an electrostatically scparntccl beam at medium or low energy. This 

secondary beam feeds the 2m Hydrogen Bubble Chamber (HBC /.00) > which c;.in 

be expanded t\\1i.ce during a single: PS cycle, using from 2 to 6 hunches. The 

slo\\'-extract:ed beam is divided into three branchC's by t\VO splitt:ing magnets 

(steel septum type), with a target in each branc.h. Sharing het\\1ecn thef;c 

targets is adjusted by varying the magnet gap si7c and by altering t'1'1L~ 

optical characteristics of tl1c beam. A feedback steering syst:c1n co1~rcc:ts 

for movements clue to momentum vari.::1tion and low-frpquency ripple. Secondary 

beams derived from the targ0ts ;1t present include l1igl1 en~l:f~Y Jlroton, neu-

trn 1 
+ 

ancl ·r1·~· , and specL1'l typl'S such as hyperon and stopped-K. The \\Test 

]{all i_s supplied with protons via R be~m1 transfer li_ne some 800 metres 

long, from an extraction system h'hich can operBte l_n both fast and slm-,1 

modes during the same PS cycle. A fast kicker magnet direct.~: the proton 

bunches do\..rn one channel to a t.arget V..'hich produces the secondary (EF·· 

S('pat·ated) beam for the 3 . .Sm Hig European Bubble Chamber (BLBC); the slO\~'-

extract.ed beam goes down a second channel to a target giving secondary 

pnrt.i_c1es of various momenta for the "Omega 11 magnetic spectrometer. 
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Finn) ly, the South--East Area houses the neutrino fctcility (u.•;iug the lw<:-1\1~'-· 
. ----------

liquid bubble chamber 11 GargamcJ le 11
) and the 11 g~~2 11 experiment. The:,;e ope-

rate alternately in successive running periods, both using fast. extraction. 

The West Hall will become tl1c first experimental area for 200/400 

GeV physic~ with the SPS, and will tl1erefore no longer be available for 

11 25 GeV 11 experiments after mid-1975. l1oreover, i.t is pL:tn.ned to use redUI'(~d 

intensities on the South llal1 targets and employ the beams there n1ainly as 

equipment test facilities. Therefore the East Hall beams are in the course• 

of major reconstruction, to all_ow a more intensive exploitation of tl1i.s 

area at higher i.11tensitics and wi_th greater flexilJility in tl1c secondary 

beam layouts. 

3. CPS AS AN INJECTOR 

This mode of operatio11, first tried in 1970 for tl1e ISR nnd ]Jl_a1111ed 

from 1976 on\·mrds for the SPS, highJ,jght.s the importance of beam quality 

and stability both in the longitudinal and in the transverse phase planes. 

3.1. ISH 

The projected ISR ]umj.nosity (!~.10 30 cm-7 .s- 1 , corresponding to 

20 A stacked in both rings with a Ap/p of 2%) was based upon an extra

polated value for longitudinal density of 8.5 x 103 protons/(eV/c).Rf rad. 

in the bunches to be delivered from the CPS 6 . In 1969 this figure 1<as only 

2.6 x 103 p/(eV/c).RFrad. with 10 12 p/p. A strong blow-up effect, due to 

space charge and negative mass instabi.lity, was taking p]ace at transition 

energy 7 . This was cured by the "Q-jump" method 8 for rapid passage through 

trattsition. However, other longitudinal instabilities developed later in 

the cycle, during acceleration to higher energies, l.imiting the densi.ty to 

5 x 103 p/(eV/c).RFrad., and further measures had to be taken. Firstly, 

the col1erent bu11ch oscillations were suppressed by a feedback loOJl in the 

RF pbase-lock9 . Then the remaining longitudinal instabilities were checked 

by Landau damping; the RF non-linearity required was achieved by a program

med reduction of RF voltage, adjusted so that longitudinal acceptance COil

tinuously matched the bunch emittance 9 . Tt1e adjustment was very critical 

in the early days, but became easier after the reduction of some coupling 

impedances and with the increased acceleration rate due to the rH:'\,r HF 

system11
• It was thus possible to reach and even exceed the ISR luminosity 



design value. 

The increased intensity ;mel cknsity r(!S\Jl ting from Bonst·cr injc,c· 

tion brot1ght new problems. Strong l.ongitudin3l oscillatiotls appeuri11g in 

the Booster itself \.Jere suppressc~d by a controlled longitudinal dilution 

prodllCed b~ injecting a signal at tl1e syncl1rotroJ1 frequency into tt1e Rl~ 

pha~~e loop 10 , NC\·J longitudinal osc.:i.l] nti ons Bppcnring shoJ.~tJ.y af tcr i.njec-· 

t:i.on into the CPS were controlled by a further programmed reduction of RF 

voltage (Landau damping). The 11 Q-jump 11 could not: cope with the incre;:"Jsed 

densi. ty and the ngamma-transition ju1np 11 technique 11 was introduced. Thi~~ 

produces a rapid ytr-change an order of magni.tude larger, without any lnodi

ficati.on of tl1e betatron tune. As a result qf tl1ese measures, it is now 

possible to accelerate a 6 x 10 12 p/p beam to 26 GeV/c with 14 mrad longi-

tudjnal emittance (in Ap/p x 1~1~ radian units), correspondi.ng to a density 

of 23 x 103 protons/(eV/c) .RF radians, 

The ISR luminosity obtni.J1ed i.s inversel.y ]Jroportional to the ver

tical dimension of the beam i.njected, wl1i.lst l1orizontal size has to rentain 

small enough to avoid losses at extr<Jction from the CPS. Trnnsveu.;e> emit-

tance is therefore also a critical pc:-uameter. 

During PSB running-in, one of the most intractable problems encoun-

tercel was the large increase in normalized vertic<.d. emitta.nce bet.\;1een ~>0 

and 800 MeV. Tl1is has bee11 reduced by separating tl1e betatrc1n freque11cies 

by an integer and avoiding 3rd and ~tl1 order stop-hnnds 1• Corrections to 

narrow the stop-bands are also applj.cd at low energy in the CPS to prevent 

l . f . . 1? t1e emlttance ·rom 1ncreas1ng . 

Transverse instabi..litics of the he.ad-tail type hnvc been observed 

in both the PSB and the CPs 13, and they have been cured in both machines 

by using zero-l1armonic octtJpoles to spread betatron frequcJ·1cics within the 

buncl~. Present emittance values arc sunmwrized in Table 2. 

At the same time, various machine structures \vhich could provoke 

these instabilities have bceil i11vcstigated, Whilst resistive wall. effects 

seem to account for this 1.n the PSB, it has been concluded that. in tlH: CPS 

cermm.c vacuum chambers and fC'.rri te structures are the responsibJ e elc

ments14. 

3.2. SPS 

Whilst the same fast extraction technique already developed for 
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11 25 CcV physics 11 experimc·.nLs cc.uJcl be• used for the ISR, a new bc<Jm ; .. ran~;f,, 

schenK: had to be developC'cl to fill the SPS, which has a rad)_u::; e]l'vcn ti.mcs 

larger than the CPS, in .:::1 ~>inglc shot. This scheme, calle.cl ncontim1ous 

transfcr 11
, has been successfully tested up to 2 x 1012 p/p and it is dc~.:;cri

bed c~1scwhere 15 , The technique: of 11 peeling" the beam over 11 consecutive:~ 

revolutions allm-.'S uniform fi] ling of the SPS and results in a reduction 

by a fActor 2 to 3 of the horizontal emittance obtainable. It is compntiblc 

with any beam structure, bunched, debunched, or cvc:n rebunched in f.> ide the 

CPS ct the SPS RF frequency of 200 Hllz. 

In order to preserve longittJdinal phase-sjJace density in tl1c SPS) 

and more specifically to avoid an excessive momentum spread \Vhich could be 

troublesome at SPS transition, it is intended to clcbunch the beam adiabn

tically v,rithin the CPS. V,Jh:i.lst thjs p1~ocess has been tested successfully 

up to 2 x 10 12 p/p, at higher intensities it is made more difficult by 

strong longitudinal instabilitic.s due to beam interaction Hith surrounding 

equipment. An active search for potentially harmful structures lS be.ing 

conducted. It has recently been found that vacuum chamber flanges and pump 

manifolds are likely culprits 1[1 and it is intended to install 1\F short-cir

cuits and damping resistors on all these elements. 

4. OPERATIONAL ASPECTS 

The implications of tbc multiple use of tlw CPS have led to the 

concept of interleaved supercycles. Their duration \vill vary from 3.5 to 

abot1t 10 seconds accordi11g to tl1e SPS maximum CJlcrgy and the experimental 

areas in use. A possible, example is given in l''ig. 3. The main magnet pmver 

supply regulation is being modified to suit this type of operation, aiming 

at the same fieJ_d reproducj.bilj.ty as with single identical consecutive 

cycles. 

In order to mini.mize induced radio-activity and component damage, 

it is intended to accelerate 011ly the i.ntensity 11eeded by each user 16 . 

Pulse-to-pulse intensity modtll_ntioll will be acl1i.evcd by cl1aJ18ing the 11urnber 

of turns injected into the Booster at 50 NcV (operational tesls have already 

been successfully conducted), Compl(~mentary means such as 1ongi tlldinal 

acceptance reduction and vertical beam shaving at injection and attenuation by 

11 sieves 0 are also envisaged. 

Another area of permanent concern 1s the maintenance of a high 

degree of reliability (i.e. availability). Irradiation of the main magnet 





-- 6 -

has rccvntly become a sc~rJou.':> problem; severn] un_i l.s han' fed led ;n:d lJ.-i\. 

had to be replaced, and many others shov;r signs of serious damage. /\ d('Lii_L·d 

survey of the present stntus (Fig. 4) and its probnble evolution has been 

made, and preservation measures nrc under way 17 . Induced activity is a11otl·tcr 

problem 18, and stringent operational procedures have been adopted to 

stabilize its level in spite of tl1e ri.se in intensity 19 . With all tl1nse 

measures, it has been possible t:o keep the overall CPS failure r.Jt.e down co 

between 8 and 9% since 196920, 
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TABLE l 

C P S PERFORHANCE 

---1 
Thc-'oreticol Intensity I 

design * Heasurcd 
(x 101 2 proton~/pulse) j 

I 
or Effieiency t e m 
Efficiency (%) ])";; s i groTPr" s ~-;:;;:- ji(,-;;-(-

(%) 
-~·--· 

Linne hc·am (50 HeV) 60 28 50 

)'O'r: 
. PSB Hultiturn Injection 37-43(60 ) 34-ltO 211 9 15 

PSB HF Trapping 90-95 90-95 19 8.5 

Acceleration to 800 
100 95 17 8 12 

Hc.V 

PSB Ejection and 
95 90 15 6.5 ll 

Recombination 

Injection and acce-
99 90-97 10 + 

6.0 IJ o 3 
leration ln CPS 

Fast extraction from 
100 93-98 6.0 (L 

·i·+ 
5 

CPS 

Slow extraction from . 

*** 
CPS 98 93 l 6 

Transfer to ISR 100 98 1.8 

Transfer to SPS (test) 95-97 91 10 

-----
* Design efficiencies based on design emittances 111 the 3 phase planes. 

** Close to coupling resonances and using skew quadrupoles. 

*** With 30% of the beam shared with an internal target. 

+ At transitioa 

++ At 10 GeV/c 



TABLE 2 

BEAM PROPERTIES (Typical Values) 

Transverse emittance 

(95% of 

10-6 " 

be am ; 

rad. m) 

H 

v 

Normalised transverse 
emittance H 

(l0- 6 ·1r rad.m) V 

Normalised trdll~verse 

density H 

(lol7p/(n rad.m))V 

Longitudinal emittance 

-(6p/m c x RF radians 
0 

-(eVs) 

32 

32 

10.5 

10.5 

2. l 

2. l 

30 

14 

47 

22 

1.4 

3.0 

0.01 

0. 16 

1.5 

2.0 

16 

21 

1. 25 

1.0 

0.01 

0. 16 

5.5 

3.3 

60 

35 

1.0 

1.7 

0.014 

0.22 

0.9 

I 
[18 
i 
\24 

I l.l 
o.s 

0.01 

0. 16 

2.5 

2.2 

0.85 

1.0 

0.014 

0.22 

Longitudinal density li I 
, -(lol2 p/eVs) 10.0 J 2.5 , 0.65 1.1, I' 

l (lo 3 p/(eVs)·RF rad) 160.0 40.0 - [ro.o 3.0 
········~---------·~-- ~---- ----~- ___ .. -··-~-···· _L ___ L ________ .. ___ J 
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PS cyc1e for 11 2? GeV" physics ISH inJc~ction 

_j_j;2s;;;l
8
•:6z2;;;+;;t

3
a2'r9,ge t 1 

M ax].ruum momentum 26 .. 3 GeV/c 

l~'e 16 1 f<'lat top' momentum 24 GeV /c 
'Plat top 1 length ~54 0 mB 

Hepeti.tion time 2.6 sec. 

'l'arge t 8 Cycle l/cycle 2 1 : 

Cycle l Cycle 2 

- in sequence with -

Operation GeV/c Area User f..> Hemarks 

'r urge t 8 16 south Counter tests 5 ms burst with 
(parasitic) HF' structure 

<~ % intensity I 

Fast ejection 19 South-East G-2 experiment l-2 bunches 
rl SS74 

" Fast ejection 24 East 2m ll BC ~) shots with 
rl SS58 l-3 bunches 
() 

>-, Slow ejection 24 l~as t 6 counter 30-40 % of protons 
() SS62 experiments ~ 400 ms 

+ tests 

Target l 24 South 2 counter 15-20 % of protons 
experiments ~400 ms 
+ testn 

' N 
10-26 bunches I Injection to ISR Counter 20 

<ll ISR vari- experiments rl I 
' () able 
I 

>-, 
() 

FIG. 2 A Typical CPS Cycle Sequence 
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TOTAL 
INTENSITY(PIP) ! tO 13 

I 

I I J 1, ! 
' I 1 1 I I 
'I I I I I I I 

"25 GeV" P!IYSICS 

! FE 74 5 "lo 
I SE62 75% 

1 

TOB 20% 

4.10 12 

FE74 5% 
SE62 75% 
TOB 20% 

4./012 

I I I I 
1 SPS I ISR I "25GeV" PHYSICS I 
I I I I 
1 CT FE16/00% 1 TO/ 1% FE/6/00% 
1 100"/o 12xFE58 20% 

1 SE62 64% 

ISR 

TOB 75 ''lo 

5.1012 3.10 12 5.10 12 3.10 12 
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TO I ' INTERNAL TARGET STRAIG!IT SECTION I 
PIP ' PROTONS PER PULSE 

16 8 1.4. C.I!WI 

FEn o FAST EJECTION STRAIG!IT SECTION n 
5E62 , SLOW EJECTION STRAIGHT SECTION 62 

Fig.3 .· EXAMPLE OF A POSSIBLE SUPERCYCLE 
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