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Some estimates of the stochasticity domain of a 
particular Hamiltonian dynamic system with a continu­
ously increasing non-linearity have been given else­
where1,2. These estimates are not directly applicable 
to longitudinal motion in a circular accelerator because 
in the latter case the non-linearity is periodic and 
bounded. An extension of the method used in Refs. 1 
and 2 shows that in accelerators such as the CERN PS 
and PSB the accelerating voltage non-linearity produces 
stochastic behaviour only in the close vicinity of the 
separatrix. The usual description of a microtron is 
shown to imply the existence of a large stochastic 
domain. 

Introduction and Statement of the Problem 
The longitudinal motion in an accelerator can be 

described in a straightforward manner if the assumption 
is made that the ring is composed of discrete elements 
only. One formulation without space charge, taking in­
to account one RF-cavity gap, is3 

(1) 

where p is the particle momentum, Δp the momentum de­
viation, α the momentum compaction factor, Φ the phase, 
n the number of cavity gap traversais, V the amplitude 
of a sinusoidal accelerating voltage, h the harmonic 
number, e the particle charge, and β, γ, c the usual 
relativistic quantities. The subscript s refers to 
synchronous values. When radiation damping is taken 
into account, the recurrence (or point-mapping) (1) is 
equivalent to the known alternate forms4,5. It is also 
equivalent to the differential equation6 

(2) 

where τ and Ω are the normalized time and small-ampli­
tude synchrotron frequency, respectively. 

The object of this paper is the determination of 
the solution structure of the recurrence (1) in the 
discrete phase plane Δpn, Φn, and the application of 
the results to the CERN PS and PSB. When the differen­
tial equation (2) is solved by a method of series trun­
cation6 (perturbations with averaging, or a finite number 
of canonical transformations which reject the explicit 
time-dependence toward higher-order terms), the solution 
structure so obtained is valid only in the region where 
the recurrence (1) admits closed trajectories (invariant 
curves without "stochastic" intersections). The region 
where the invariant curves of (1) intersect is called 
stochastic, because the intersection pattern is so 
complex that superficially it appears to be random. 
Since this pattern is unambiguously defined by (1), it 
is of course completely deterministic. 

Determination of the solution structure 
of the recurrence (1) 

The approach used in this paper is based on the 
previously tested conjecture that the qualitative fea­
tures of the solution structure of (1) can be deduced 
from the distribution in the phase plane of zero- and 
one-dimensional singular solutions (point- and line-singularities)1,2,7-11. 
Consider, in fact, the par­
ticular conservative recurrence 

(3) 

where F(x) is an arbitrary differentiable function. 
From (3) it is possible to construct unambiguously 
the iterated recurrence 

(4) 
= g , = f, k = integer 

The simplest point-singularity of (3) is a cycle 
of order k (periodic point of order k), defined by a 
real root x,y of the two algebraic equations 

(5) 
deduced from (4), provided x,y is not simultaneously a 
root of (5) when k is replaced by one of its divisors. 
A cycle of order k=1 is called a fixed point. 

An invariant curve of (3) is described by 
G(x,y) = const. if the function G(x,y) satisfies the 
functional equation 

(6) 
If the curve G(x,y) = const. has at least one single-valued 
branch y = θ(x) passing through a point (x0,y0), 
then an equivalent formulation of (6) for this branch is 

(7) 
The function θ(x) and a sufficient number of its deri­
vatives are assumed to possess at least an asymptotically 
convergent Taylor series at and near x0. The simplest 
line-singularity of (3) is an invariant curve passing 
through a point of a cycle. 

Cycles are classified according to the eigenvalues 
λ1,2 of their characteristic equation. The special form 
of (3) implies λ1 • λ2 = 1. The indices are so chosen 
that either λ1 > +1 or λ2 < -1. Cycles are called sad­
dles (or hyperbolic points) if the λ are real (of type 1 
if λ > 0 and of type 3 if λ < 0) and centres (or ellip­
tic points) if λ = exp (±iΦ). The constant Φ is called 
the rotation angle of the centre. An additional property 
of a cycle is its rotation number r (integer), describ­
ing the least number of turns made around an interior 
point when following the k successive points of the 
cycle in the phase plane. For conciseness, a cycle of 
order k and rotation number r is designated by k(r). 

If the point (x0,y0) is a saddle, a singular in­
variant curve segment passing through (x0,y0) can be 
sought in the form 

(8) 

where the βi, i = 1,2, ... are real constants. Because 
of the postulated smoothness of θ(x), β1 is equal to one 
of the eigenslopes p1,p2 at (x0,y0). A known segment 
y = θ(x) can be continued by means of (4). The slope β1 
can be continued by means of the recurrence 

(9) 

where a,b,c,d are elements of the Jacobian matrix of (4), 
whose determinant is unity for any k. Similar recur­
rences exist for the continuation of the βi, i > 1. If 
b > 0, the eigenslopes of a saddle are given by p 1 , 2 =  
= (λ1,2 - a)/b. 

It is straightforward to show that the recurrence (1) 
can be transformed into the form (3). In fact, when θn = 
= b(Φn - Φs), ψn = b(Φn-1, - Φs), b = π - 2Φs, (1) becomes 
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(10) 

where E0 is the particle rest energy. The parameter 
k0 is negative below transition. Comparing (10) to 
the diagonal form of (3): 

(11) 
obtained by means of the transformation un = yn + F(xn). 
yields the required equivalence relation 

(12) 

The function F in (12) involves two independent parameters μ and Φs, rendering a graphical display of the singular solutions of (3), (12) very inconvenient. A preliminary study has shown, however, that the sto­chastic features of (3), (12) do not change qualita­tively as long as Φs ≠ 0. For the purposes of this paper it is therefore possible to choose ΦS arbitrarily. For convenience φ was fixed as follows: 

(13) 

The recurrence defined by (3), (12), (13) is periodic 
in x. In order to assure uniqueness of the graphical 
representation for a fixed μ, a cylindrical phase space 
may be used, i.e. the phase plane is thought to be 
wrapped around a cylinder of radius 1/π centred on x = 0. 

Some of the singularities of (3), (12), (13) are 
easily found, such as the two fixed points at (0,0) and 
(1,0). The former is a centre of rotation angle 
Φ = arc cos μ and the latter a saddle of type 1. The 
locations of other singularities depend on the value 
of μ and must be sought numerically. A partial list 
of cycles is given in Tables 1-3. The invariant cur­
ves passing through the "main" saddle (1,0) are shown 
in Figs. 1-3. 

From an inspection of Figs. 1-3 it is clear that 
the recurrence (2), (12), (13) admits homoclinic points. 
Hence by a theorem of Birkhoff12 it admits an infinity 
of cycles. An inspection of Tables 1-3 suggests that 
the cycles found so far form well-ordered sets. Some 
properties of the ordering can be found by rearranging 
the tables so that the ratio k/r is roughly constant, 
or by tracing the locations of the points in the phase 
plane, together with the "main" invariant curves tra­
versing the saddle (1,0), as illustrated in Figs. 1-3. 
The first deduction is that the points of the cycles 
are located on curves which approach a discrete set of 
homoclinic points8. In addition to the x-axis, one such 
curve is y = x-F(x). A more fundamental way consists, 
however, in ordering the cycles according to conditions 
of their appearance, disappearance, or other change of 
properties, i.e. in ordering them from the point of 
view of Poincaré's theory of bifurcation. 

By present knowledge, bifurcations take place only 
when the eigenvalue of a cycle satisfies 

λ = +1 or λ = - 1 , q = integer ≥ 1 (14) 
The case q = 1 is called a critical case13 and the case 
q > 1 an exceptional one14,15. The latter arises in (3) 
whenever Φ = 2πp/q, p = integer. In the case (3), (12), 
(13) an exceptional case occurs at (0,0) whenever 
µ = (2πr/k), k > and relatively prime (15) 
It has been found9 that the traversal of ≠ - ½ in the 
direction of decreasing μ (increasing strength of non-linearity) 
releases from (0,0) a cycle saddle k(r) of 
type 1 and a cycle centre k(r). The "bifurcated" cycles 

k(r) exist only for μ < and they merge with (0,0) when 
μ from below. Furthermore 

k/ < finite constant, λ1(k() 1 (16) 

where λ(k(r)), Φ(k(r)) designate the eigenvalue and ro­
tation angle of the cycles k(r), respectively. The 
first enumerable set of cycles of (3), (12), (13) con­
sists therefore of cycles bifurcated from (0,0) at the 
exceptional values (14), provided r/k ≠ , according 
to the schematic rule: 

centre (0,0) centre (0,0) + centre k(r) +  
+ saddle k(r) of type 1 (17) 

The geometric distance s(x,y) between points of a cycle 
k(r) so bifurcated and (0,0) is found to increase si­
multaneously with the parametric distance s(μ) = μ - . 
The parameters λ1(k(r)) and the angle between p1, p2 
also increase with s(μ). 

For any given μ ≠ -½ the centre (0,0) is thus sur­
rounded by an infinite but enumerable set of concentric 
cycle pairs k(r), bifurcated according to the scheme (17), 
with k/r verifying the inequality μ < cos (2πr/k). 
When the difference λ1(kr)-1 is sufficiently small, the 
computed invariant curves passing through the saddles 
k(r) are for all practical purposes indistinguishable 
from regular invariant curves, i.e. from invariant cur­
ves not traversing any singular points. The assumption 
that these invariant curves are not "analytically" 
closed for arbitrarily small values of s(x,y) implies 
that homoclinic points can exist arbitrarily close to 
(0,0). It is, however, known8 that homoclinic points 
( ) are accumulation points of a set of cycles k(r) 
of coordinates (xm,ym)k, and that the "effective" order 
k/r, as well as the eigenvalues λ1(k(r)) of the sad­
dles of type 1 of this set increase indefinitely as 
the geometric distance between () and (xm,ym)k de­
creases, i.e.: 

k/r ∞, λ1(k(r)) ∞ and p1 - p2 finite 
constant as (xm,ym)k ( ) . (18) 

The assumption that sufficiently near (0,0) the inva­
riant curves are not (truly) closed leads to a contra­
diction between the properties (16) and (18). A small 
neighbourhood of (0,0) is therefore filled with an in­
finite but enumerable set of island structures [formed 
by the invariant curves which traverse the saddles k(r) 
of type 1, surround the centres k(r) and join without 
other intersections]. Since two close island structures 
have been bifurcated from (0,0) at two distinct values 
of Φ = 2πr/k, and thus of μ (because k and r are rela­
tively prime) the area between them contains either 
regular closed invariant curves or closed invariant 
curves passing through an infinity of singular points 
[points of cycles k(r) for which k ∞, r ∞, lim k/r < 
< finite constant, λ1(k(r)) 1, p1 - p2 0, Φ(k(Γ)) 0]. 
The distribution of closed invariant curves near (0,0) 
is thus extremely irregular in theory but quite smooth 
in practice. 

Because the construction of an iterated recurrence 
like (4) does not produce any intrinsically new data, 
the solution structure near a centre k(r), k > 1, is 
the same as near the centre (0,0), i.e. one has a "box 
within a box" behaviour. The growth of the rotation 
angle as a function of s(μ) of the centre (), bifur­
cated from the centre k(r) and characterized by the 
property that contains the factor k/r, is much fas­
ter than the growth of Φ(k(r)). In other words, the 
bifurcation speed is higher inside the inner boxes. 

Since the rotation angle of a centre increases 
with the parametric distance from its generating bifur­
cation, it may eventually reach the value Φ = π. If the 
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traversal (in the direction of decreasing μ) of the cor­
responding critical case λ = -1 is examined from the bi­
furcation point of view, it is found11 that the cycle 
centre k(r) turns into a cycle saddle k(r) of type 3 
with a simultaneous release of a cycle centre (2k)(2r), 
or schematically 

centre kr(r) saddle k(r) of type 3 + 
(19) 

centre (2k)(2r). 
Since the companion saddles k(r) of type 1 remain un­
changed, the bifurcation (19) converts the centre-saddle 
of type 1-pair into a saddle of type 3-saddle of type 
1-pair. Several examples of such saddle-saddle pairs 
appear in Tables 2 and 3. The presence of cycles gener­
ated by means of the bifurcation (19) appears to be a 
sufficient condition of the presence of local stochasticity, 
i.e. of the presence of interesting invariant 
curves in the neighbourhood of the saddle-saddle pair. 
Small islands of closed trajectories may persist near 
the centres (2k)(2r). 

The bifurcations (17) and (19) are insufficient to 
explain the origin of all cycles of the recurrence (3), 
(12), (13). There are, for example, two cycles saddle 
13(2) of type 1 in Table 3, and it is found that the 
cycle pair 3(1) exists also when μ > -½, whereas accord­
ing to (17) it should appear at μ = -½. The study of 
this difficulty has disclosed the existence of two ad­
ditional bifurcations, related to the critical case 
λ = +1 (Φ = 0 ) 1 1 . The first is of the type: 

composite cycle k(r) centre k(r) + 
saddle k(r) of type 1 (20) 

The composite cycle k(r) appears as an isolated double 
root of (5), and is unrelated to any close simple root. 
After traversal of the bifurcation the double root sepa­
rates into two simple ones, giving rise to the usual 
pair centre k(r)-saddle k(r) of type 1. The second 
cycle saddle 13(2) of Table 3 and the cycle pair 3 ( 1 ) 
originate in this way (at μ 0.23 and μ 0.41, respec­
tively). 

When μ = cos (2π/3) = -½, only the 3(1) sad­
dles merge with the centre (0,0), the 3(1) centres 
remaining some distance away [one point at (-0.33,0)] 
Furthermore, λ1(3(1)) 1 as μ . The bifurcation 
is of the type 

(21) 

with k = 3 and = 1. Six invariant curve segments 
traverse the composite singular point (0,0) when μ = , 
resulting from the coalescence of the three saddles 
3(1) of type 1. The bifurcation (21) produces an un­
stable point singularity. 

Consider now the structure of invariant curves of 
(3), (12), (13) when μ ≠ -½. According to the theory 
of Birkhoff the island structures around (0,0) should 
turn into instability rings (degenerate island struc­
tures formed when the invariant curves traversing the 
saddles of type 1 have other intersections but remain 
nevertheless inside a domain bounded by a finite closed 
curve) as their geometric distance from (0,0) increases. 
Stochasticity thus exists inside an instability ring, 
but it does not lead to an "orbital" instability. 
Since instability rings require the existence of a 
centre-saddle pair, they must give way to a different 
configuration when the bifurcation (19) is reached. 

The corresponding geometric distance from (0,0) can be 
estimated from Tables 1-3. It has been found, however, 
that instability rings cease to exist sooner1, 10. From 
Tables 1-3 it can be seen that λ1(k(r)) and the angle 
between p1 and p2 increase simultaneously with the ef­
fective order k/r. Beyond a critical value the geome­
tric distance between (0,0) and a point on a singular 
invariant curve through a saddle k(r) is found to in­
crease first at an algebraic rate and then at an expo­
nential one. The slow increase has been called diffu­
sion and the fast one stochastic instability1,10. 

Application to longitudinal motion 

When the solution structure of the recurrence (3) 
(12), (13) is expressed in the terminology of accelera­
tor theory [recurrence (1)], RF acceleration is found 
to produce bunches with a dense structured core (region 
of closed trajectories, including island structures), 
surrounded first by a dense but unstructured shell (ins­
tability rings) and then by a halo (diffusion region). 
Since the separatrix of the RF bucket (main invariant 
curve) is not closed, random particle losses occur from 
the halo (stochastic instability). The size of each 
region depends on the specific accelerator parameters. 
The RF acceleration process is unstable at the 1/3 pa­
rametric resonance between the synchrotron and beam 
revolution frequencies [exceptional case Φ = 2π/3 at 
(0,0)]. 

As far as the PSB is concerned, all longitudinal 
stochastic effects are negligible (μ ≥ 0.99). Analo­
gous circumstances prevail in the CPS (μ ≥ 0.90). 
Stochastic effects may, however, occur inside self-buckets 
produced by beam-induced high-frequency volta­
ges. 

An accelerator likely to be subject to consider­
able stochastic effects is the microtron. Assume that 
the recurrence4,17,18 

(22) 

is a valid description of the longitudinal motion 
(some doubts have been expressed in a paper by 
Turrin). By a linear change of variables (22) trans­
forms into 

(23) 

Since an RF voltage V sin Φ below transition is equiva­
lent to -V sin(Φ - 2Φs) above transition20, transfor­
ming (22) into an equivalent form "below transition" and 
replacing cos Φ by sin Φ yields the recurrence (3), (12), 
(13) with 0 < Φs < arctg (2/π) 32.5°. The solutions of 
(22) therefore exhibit considerable stochasticity even for 
relatively small Φs. Figure 3 corresponds to Φs = 15.6°; 
on the x-axis, stochastic instability starts at x 0.51. 
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Table 1 

Cycles of the recurrence 
(3), (12), (13), μ = 0.8 

Centres or Saddles of type 3 Saddles of type 1 

k r x y Φ or λ2 
(> 0) (< 0) p1 p2 x y λ1 p1 p2 

10 1 0.250529 0 0.0001 0.241025 0.036592 1.0001 -1.900 -1.893 
11 1 0.541454 0.049673 0.0037 0.553773 0 1.0037 138.1 
12 1 0.701253 0 0.0103 0.690883 0.042725 1.0103 -2.135 -2.021 
13 1 0.784250 0.033848 0.0188 0.792358 0 1.0190 48.78 
14 1 0.852864 0 0.0296 0.846697 0.025965 1.0300 -2.269 -2.023 
15 1 0.889912 0.019596 0.0434 0.894539 0 1.0444 25.71 
16 1 0.923864 0 0.0616 0.920418 0.014651 1.0635 -2.425 -1.964 
17 1 0.942223 0.010888 0.0859 0.944776 0 1.0897 14.19 
18 1 0.959820 0 0.1187 0.957934 0.008060 1.1258 -2.706 -1.840 
19 1 0.969314 0.005949 0.1631 0.970704 0 1.1767 7.818 

Table 2 

Cycles of the recurrence 
(3), (12), (13), μ = 0.5 

Centres or Saddles of type 3 Saddles of type 1 

k r x y Φ or λ2 
(> 0) (< 0) p1 p2 x y λ1 p1 p2 

7 -0.453247 0 0.4374 0.611988 0 1.531 2.349 
8 -0.519721 0 1.1355 0.763198 0.090499 2.766 1.084 -4.284 
9 -0.541178 0 2.9517 0.872783 0 5.685 1.277 
10 -0.548847 0 -9.366 30.47 0.915006 0.038910 13.10 1.057 -1.375 
11 -0.5S1694 0 -29.21 25.90 0.931111 0.054332 32.41 1.040 -1.419 
12 0.971773 0 -81.08 -1.043 0.968120 0.015436 82.94 1.120 -1.082 
13 0.961612 0.037471 -216.9 -1.072 0.881 0.973774 0.021412 215.3 1.127 -1.086 
13 2 -0.364999 0 0.0319 0.455375 0 1.032 36.39 
15 2 -0.495642 0 0.5326 0.707595 0 1.685 5.355 
17 2 -0.532975 0 -2.357 128.0 0.848055 0 6.938 1.665 
19 2 0.899388 0.024261 -43.33 -0.732 1.318 0.885209 0 53.98 1.345 
19 3 -0.313851 0 0.0013 0.375926 0 1.0013 986.2 

Table 3 

Cycles of the recurrence 
(3), (12), (13), μ = 0.125 

Centres or Saddles of type 3 Saddles of type 1 

k r x y Φ or λ2 
(> 0) (< 0) p1 p2 x y λ1 p1 p2 

5 1 -0.502858 0 2.525 0.551511 0 3.849 1.011 
6 1 -0.577941 0 -25.97 2.731 0.754058 0.163018 20.18 1.297 -1.084 
7 1 -0.594668 0 -114.5 2.511 0.892309 0 80.35 1.347 
8 1 0.953152 0 -423.3 -1.458 0.932867 0.054883 291.3 1.423 -1.446 
9 1 -0.600442 0 -1494 2.452 0.970033 0 1024 1.514 
9 2 -0.288774 0 0.1467 0.318515 0 1.157 4.245 
11 2 -0.545848 0 -85.46 3.311 0.621978 0 70.28 1.259 
12 2 0.861806 0.029972 -395.1 -1.282 1.141 0.641711 0 251.8 1.377 
13 2 0.647291 0 874.8 1.418 
13 2 0.802214 0.226028 1611 1.202 
14 3 0.455590 0 0.4915 0.440250 0.052857 1.617 -4.440 -1.292 
15 3 -0.460141 0 -8.748 1.772 -0.511499 0 5.072 -4.768 
16 3 0.608929 0 -286.8 -1.183 0.597869 0.029811 253.1 1.089 -1.300 
17 3 0.613179 0.040647 802.0 1.117 -1.527 
19 4 -0.387920 0 1.048 0.505232 0 2.615 1.917 
20 4 -0.525779 0 40.96 -0.413 
25 5 -0.504186 0 0.0378 
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Fig. 1 μ = 0.8. Main invariant curves and positions of some cycles 

Fig. 2 μ = 0.5. Main invariant curves and positions of some cycles 

Fig. 3 μ = 0.125. Main invariant curves and positions of some cycles 
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