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Summary and Conclusions 

Increasing the PSB and CPS intensities to 1013 ppp 
will require more powerful octupoles in order to over­
come the transverse instabilities that are to be expect­
ed. Unfortunately, theory fails to give quantitative 
predictions at low energies, where direct space-charge 
forces dominate over image forces. To be able to speci­
fy the future needs more precisely, an extension of the 
theory would be desirable, particularly since experimen­
tal evidence is such that it is hard to extrapolate to 
higher intensities. 

The theory presented here solves the dispersion 
relation, including the influence of external and space-charge 
induced non-linearities in both transverse dimen­
sions as well as a spread in the LNS coefficient U. 
Results are preliminary in the sense that modulation of 
the space-charge forces due to synchrotron motion is not 
included. They show that the combined effect of exter­
nal and space-charge non-linearities in the two trans­
verse planes can considerably enhance Landau damping in 
low-energy machines (up to 10 GeV, say). The sign of 
the octupole current is important especially for a flat 
beam, and should be chosen in such a way that V increas­
es with amplitude in the direction where the beam is 
wide. 

Stability diagrams for several typical conditions 
are presented and applied to the PSB. 

1· Introduction 

Octupole lenses have been installed both in the CPS 
and its Booster years ago, and they have successfully 
cured transverse instabilities. It is planned to 
use more powerful lenses in the CPS, and possibly in 
the Booster too, in order to tame future intensities. 
It is puzzling, however, to observe that the currents 
needed to avoid instabilities are considerably lower 
than predicted by theory1,2. In addition, lower thresh­
olds for radial rather than for vertical resistive wall 
instability were observed frequently in the PSB. These 
observations suggest that the influence of space-charge 
non-linearities and the spreads due to motion in the 
second transverse direction might be important. 

An attempt to include these effects3 already showed 
the importance of the variations due to the betatron am­
plitudes in the second transverse plane. This approach, 
however, still predicted too high octupole strengths and 
failed to give the correct behaviour in the limit of 
vanishing external octupole force. In this limit in­
coherent space-charge forces should have no influence 
on dipole motion, a fact which can be deduced from the 
single particle-equation4 and is fully confirmed by 
computer simulation5. 

To make more reliable extrapolation it was felt 
necessary to extend the theory in order to remove these 
deficiencies. The main difference of the present work 
in comparison with Ref. 3 is that we include space-charge 
non-linearity in both the driving term (the U-term of Ref. 1) 
and in the single-particle frequency. 

A general model would have to include: 

i) frequency spreads due to external non-linearities 
in both transverse (x and y) directions; 

ii) spreads due to x- and y-non-linearities of space-charge 
forces; 

iii) spreads due to the energy distribution of the beam; 

iv) spreads due to longitudinal variation of transverse 
space-charge forces; 

and probably other effects. In the present paper we 
content ourselves with considering the effects (i) and 
(ii). This is a valid approximation at least for the 
coasting beam experiments which were performed in the 
Booster and which exhibited the "anomalities" discussed 
above. We shall find that the combination of external 
and space-charge non-linearities can considerably en­
hance the stability conditions, and that the spreads 
from both transverse directions are important. 

2. Dispersion Relation 

Let us discuss dipole oscillations in one trans­
verse (x) direction. Neglecting energy spread, the dis­
persion relation of Laslett, Neil and Sessler (LNS) 
can be written as 

(U + V + iV) 
∞ -½ h'(a)a2 da ·= 1. (1) (U + V + iV) ∫ 

-½ h'(a)a2 da ·= 1. (1) (U + V + iV) ∫ ω - (n - νx)Ω ·= 1. (1) (U + V + iV) 
0 

ω - (n - νx)Ω ·= 1. (1) 

Here the tune νx = νx(a) depends on a, the amplitude 
of the incoherent betatron oscillation; h(a) is the 
corresponding distribution function, ∫0∞ h(a)a da = 1. 
The coefficient U + V + iV can be expressed in terms of 
the revolution frequency (Ω) and the incoherent ( νic) 
and coherent ( νc) Laslett tune shifts (generalized to 
include wall resistivity and equipment interaction): 

U + V + iV = Ω(Δνc - Δ ν i c ) . (2) 
1 

Finally ω = (n - ν)Ω is the mode frequency (coasting 
beam mode n) to be obtained by solving Eq. (1); Ιm(ω) is 
the growth rate, V being the collective betatron frequen­
cy. 

To include space-charge non-linearities as well as 
y-variation of νx we can use the derivation of Eq. (1) 
given by Hereward6. We start from the single-particle 
equation 

i + Ω2 [ν2(xi,yi) - 2ν0Δνic(xi,Υi)]xi 

= 2Ω2ν0 [Δνc - Δνic(xi,yi)] , (3) 
w h e r e i s the dipole motion of the beam and Xi the mo­
tion of the test particle (coherent and incoherent). 
The corresponding dispersion relation is 

∫0∞ 
(U + V + iV)(a,b) {-½ h'(a)a2)b g(b) dadb = 1 . (1a) 

∫0∞ ω -[n - ν(a,b)]Ω 
= 1 . (1a) 

Here b is the incoherent y-amplitude, g(b) the corres­
ponding distribution, ∫0∞ g(b)bdb = 1. The tune ν(a,b) 
= ν0(a,b) - Δνic(a,b) includes the incoherent tune 
shift, and so does U + V + iV through Eq. (2). The terms 
v(a,b) and (U + V + iV)(a,b) are obtained by averaging 
over the incoherent betatron motion. 

To evaluate Eq. (la) we make some further approxi­
mations: We assume that only the incoherent tune shift 
is non-linear, whereas the image term Δν is the same 
for all particles. This is a valid approximation at 
low energy, where Δνc << Δνi and/or for thin beams. 
The case where both Δν = Δνc(a,b) and Δνic = Δνic(a,b) 
but where external non-linearities are negligible 
(νi = const) was discussed in Ref. 4. We shall further 
expand ν(a,b) and only retain terms up to the octupole 
moment: 

380 



νic(a,b) = νic(0) + 
νic a2 + νic b 2 νic(a,b) = νic(0) + 2 

a2 + 
b 2 b 2 

= Δ - Δa a2 - b 2 , (4) 
and 

ν0(a,b) = ν0(0) + ν0 a2 + ν0 b 2 ν0(a,b) = ν0(0) + a2 
a2 + 2 b 2 

= ν0 + νa a2 + ν b b 2 . 

The symbols Δ, Δ , Δ (all positive) and νa, νb are 
hereby defined and will be used throughout the rest of 
the paper. Quantities such as ν, etc., will 
be denoted as "external spread" and "space-charge 
spread", respectively; and are typical amplitudes 
to be defined below; "a"corresponds to the plane of the 
instability. 

3. Results 

Here we shall present the solution of the disper­
sion relation (la) for two different distributions and 
for several typical conditions. We assume νa = 0, 
νb = 0 in Section 3.1j » in Section 3.2 and Figs. 1 
and 2; 2â = in Section 3.3 and Figs. 3 and 4; and 
3 « in Section 3.3 and Fig. 5. 

3.1 Mo external non-linearities (i.e. νa = 0, νb = 0) 

In this case incoherent space-charge has no effect, 
as was found already in Ref. 4. In fact it is easily 
verified from the single-particle equation (3) that 
xi = is a solution provided that νi2 = ν02 - 2ν0Δνc is 
the same for all particles. Under this condition Δνic 
simply drops out from Eq. (3). 

3.2 ν-spread due to betatron amplitudes in the plane 
of the instability only (i.e. >> ) 
3.2.1 "Semicircular" distribution 

It is instructive to start with the distribution 
which -- without space charge forces -- leads to a cir­
cular range of stability and gives the rule-of-thumb 
criterion 

4 |U + v + iv| ≤ δνFWHH (5) 4 Ω ≤ δνFWHH (5) 

for the stabilizing ν-spread. The derivative of this 
function which enters into Eq. (la) is a half circle: 

- a2 h'(a2) da2 = 2 √1 - ( a2 - 1)2 da2, (6) - 2 h'(a2) da2 = π2 √1 - ( - 1)2 da2, (6) 
0 ≤ a2 ≤ 2 2 

Including now space-charge, the solution of the dis­
persion relation gives the stability boundary 

V2 + (U + V )
2 

= Ω
2 

(νa Ω2 
( δ ν F W H H ) 2 . (7) V2 + (1+  = 4 (νa 16 ( δ ν F W H H ) 2 . (7) 

Here we have introduced a parameter qa = νa/ a, the ra­
tio of external spread to space-charge spread. U in­
volves an average of Δνic 

U = Δνc - (Δ - Δaâ2)· (8) Ω = Δνc - (Δ - Δaâ
2)· (8) 

For 1/qa = 0 we recover the rule of thumb (5). With 
space-charge spread, the stability circle is distorted 
into an ellipse with real half-axis: 

= (Ω/4) δνFWHH (1+2/qa).(( 

The stable range is thus increased or decreased depending 
on the sign of qa, i.e. depending on the polarity of the 
octupoles. Typically the space-charge non-linearity is 

such that 2/qa = ± |U|/(Ωνa2) (see Appendix). Hence 
for V << |U| -- the case of interest in the PSB and in 
the CPS below 10 GeV -- the stability condition reduces 
to 

4 M ≤ δ ν F W H H 
δν

FWHH {0.672, (9) 4 Ω ≤ 
1 + ½ δν

FWHH {0.672, (9) 

and the stabilizing octupole ν-spread is about 0.67 or 
twice the value obtained from conventional theory 
(1/qa = 0). 

Normalization: In the following we shall use a suitable 
normalization to reduce the number of parameters. We 
normalize frequencies (U,V) and spreads to the space-
charge spread S = ΩΔ in the plane of the instability. 
We denote 

u = U + V |beam centre, ν = V · (10) u = S |beam centre, ν = S · (10) 

This normalization is convenient because the range over 
which u can reasonably vary is small (values between-3 
and-5 depending on the emittance ratio and the plane 
considered, are typical for the PSB), see Appendix. 

Figure 1 displays stability boundaries2 for the 
distribution (6) in this normalization. Note that the 
normalization (10) shifts the ellipse (7) towards more 
negative u-values because u refers to the beam centre. 

The reduction of the stable area for the "wrong" 
octupole polarity (qa < 0) can be seen from a comparison 
between Fig. 1a and Fig. lb for given |qa|, and is obvious­
ly due to cancellation of external and space-charge 
spread. 

3.2.2 Parabolic distribution 
Figure 2 gives similar results for a parabolic 

distribution: 

h(a) = 1 [1 -a2 ], 0 ≤ a2 ≤ 2â2. (11) h(a) = 
2â2 [1 -2â2 

], 0 ≤ a2 ≤ 2â2. (11) 

Again for negative qa the stable area is largely reduced. 
One particularity of Fig. 2 is that all curves intersect 
the point v = 0, u = -2. It appears that this effect is 
due to the sharp cut-off of this distribution. 

3.3 ν-spread due to betatron amplitudes in both 
transverse directions (parabolic distribution 
in each plane) 

Now we have to introduce another two parameters: 

Ρ = 
νb , r = ; (12) Ρ = 
ν 

, r = ; (12) 

p denotes the ratio of the two external spreads and r 
the ratio of the space-charge spreads; b is the equiva­
lent of â for the second transverse direction. Note 
that r is determined by the emittance ratio and varies 
from 0 for â » to about 2 for a << ; r = 1 corres­
ponds to = 2 . 

Figures 4 and 5 refer to parabolic distributions 
h(a) g(b) in Eq. (la) and demonstrate the influence of 
the second transverse plane. In Figs. 3 and 4, r = 1, 
i.e. the same spreads Δ and Δ have been assumed. 

The case ρ = 1 as taken in Fig. 3 assumes that two 
sets of octupoles (in F- and D-sections say) are used 
such that νa and νb have the same sign. In this case 
we recover the reduction of the stable area for negative 
qa as for the one-dimensional case (Figs. 1 and 2). 

In Fig. 4, νa and νb have been taken of 
opposite sign, which is typical for simple lens arran­
gements. 
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In this case, the reduction of stable areas is less 
noticeable, because the tendency of cancellation for 
the one octupole polarity is to some extent smoothed 
out: cancellation in one plane goes together with addi­
tion in the other plane. 

Finally Fig. 5 corresponds to a beam which is wide 
in the direction perpendicular to the plane of insta­
bility ( >> ), as is usually the case for vertical 
instability of a multiturn beam. Hence we take r = 2 
and assume in addition "simple octupoles" with large 
negative p. 

One finds again that one octupole polarity is fa­
vourable although the "right" sign is now the opposite 
to the preferred one in the case of a beam which is 
wide in the other direction (p = 0, r = 0). We conclu­
de that the octupole moment in the direction where the 
beam is wide should be chosen with care. 

Application to the PSB 

The coasting beam and bunched beam instabilities 
observed in the PSB7,8 occur sometimes horizontally, 
sometimes vertically, in an apparently irregular way. 
In order to explain this feature, we apply the results 
of Section 3.3 to the PSB. We compute the thresholds 
for both planes as a function of the emittance ratio 
ΕΗ/ΕV, assuming the product EHEV and hence the area of 
the beam cross-sections to be a constant. We include 
image forces and averaging over the strongly varying 
beam dimensions within a machine period. The arrange­
ment of the octupoles is as described in Ref. 9. Tresh¬ 
olds are expressed by the octupole currents required 
to stabilize the beam. 

Figure 6 shows the result for N = 2.5 1012 p/p and    
V = 5200 (π mrad mm) 2 at 50 MeV. One observes that 
positive octupole current ( ν/ r2 > 0) is more favou­
rable and that for this polarity vertical stability 
requires stronger octupole currents for EH/EV ≤ 1.7 
whereas horizontal stability is more critical for 
EH/Ev ≥ 1.7, The intersection point EH/EV = 1.7 falls into 
the region of emittance ratios actually observed in many 
machine experiments. This might explain why slight dif­
ferences in beam parameters can favour the one or the 
other direction. 

The predicted octupole currents are still higher 
than measured values. This is probably owing to the 
neglect of synchrotron motion in our model for the case 

Fig. 1 : Stability diagram for a beam with amplitude 
distribution (6). The LNS-coefficients u and v are nor­
malized to the space-charge ν-spread (for this distri­
bution and vanishing image forces, u is around -3). The 
beam is stable if the point (u,v) is on the left-hand 
side of the curve. 

Fig. 2 : Same physical conditions as in Fig. 1, but 
parabolic amplitude distribution (11). For this distri­
bution u is typically between -3.5 and -5. 

qa is a measure of the octupole ν-spread due to 
betatron oscillations in the plane of the instability. 
Parts (a) and (b) of Figs 1-5 refer to the two polari­
ties of the octupoles, respectively; p is the ratio of 
the octupole ν-spreads due to incoherent motion in the 
two transverse directions; r is the corresponding ratio 
for space-charge ν-spreads.In Figs 1 and 2, p and r 
are 0 because the beam is wide in the direction of the 
instability ( >> ). 
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Fig. 3 : Parabolic amplitude distributions (11) in both 
transverse directions: r=1 means ; p -1 is 
typical for one set of octupoles and not too flat a beam 

Fig. 4 : As for Fig. 3, but p 1 requires two sets of 
octupoles. 

Fig. 5 : As for Fig. 3, but for a beam wide in the di­
rection perpendicular to that of the instability ( > > ) . 

Fig. 6: Octupole currents required to stabilize the 
PSB beam versus emittance ratio, calculated for para­
bolic amplitude distributions (11) in both transverse 
planes. Nominal parameters at 50 MeV: EHEV = 130×40 
(π mrad mm) 2, N = 2.5 1012 p/p. 
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of bunched beams and because of neutralization in the 
coasting beam case. To conclude, let us make a corapa¬ 
rison with conventional theory (external spread in one 
transverse direction, no spread in ν i c ) : the latter 
requires stabilizing octupole currents of 400 A (hori­
zontal) and 520 A (vertical instability), for the nomi­
nal EH/EV = 130/40, all other parameters as for Fig. 6. 
This is to be compared with the values of 180 A and 
70 A taken from Fig. 6. 
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Appendix 

Calculation of incoherent ν-shift and 
V-spreads 

In order to assure self-consistency with the para­
bolic distribution that we mainly use, we should solve 
the potential problem for the corresponding charge dis­
tribution. This seems to be difficult for the kind of 
factorized amplitude distribution h(a)g(b) assumed above, 
which represents a beam of rectangular cross-section. 
Hence we restrict ourselves to the computation of 
ν-shifts and ν-spreads for a beam of elliptical cross-section 
and parabolic density 

p(x.y) = λ [1- (x - ) 2 - y2 ] , (A1) p(x.y) = 
â [1- 2â2 

-
2 2 ] , (A1) 

where λ is the linear density and â/2, √2 are the beam 
radii, corresponding to the ellipse p(x,y) = 0, which 
contains all particles. This choice provides at least 
approximate self-consistency: projected densities ob­
viously do agree with those obtained from the factorized 
amplitude distribution. 

Neglecting image forces, the force in the x-direc¬ 
tion is given by 

eFx = e
2λ 1 

{(x - ) -
1 2â+ 

(x - ) 3 -eFx = 
πE0 â(â + 

{(x - ) -
6 â2(â + ) 

(x - ) 3 -

- 1 2 ( x - )}· (A2) -
2 ( â + ) 

2 ( x - )}· (A2) 

Performing an averaging process over incoherent 
betatron motion (e.g. by the method of harmonic balance), 
x - = a cos (νxΩt), y = b cos (νyΩt), we take 

<(x - 3 a3 cos νxΩSt = 3 a2(x - ) 
( 3) 

<(x - 4 a
3 cos νxΩSt = 4 a

2(x - ) 
( 3) 

<y2(x - )> = 1 b 2 a cos νxΩt = 1 b 2 ( x - ) , 
<y2(x - )> = 

2 
b 2 a cos νxΩt = 

2 
b 2 ( x - ) , 

and obtain for νic(a,b): 

Δνic. (a,b) = 
NrpR 1 [1 - 2â + a2 -Δνic. (a,b) = ε0πβ2γ3 â(â + ) 

[1 -
8(â + ) â2 

-

b b2 
], (A4) 4(â + ) 2 ], (A4) 

where the r.h.s. should be averaged over the circumfe­
rence. We identify the quantities introduced in Eq.(A4): 

Δ = 
NrpR 1 

Δ = εnπβ2γ3 â(â + ) 

Δ = 
1 + â 

( 5) Δ = 
1 + 

â + ( 5) Δ = 
â2 8 ( 5) 

Δb 

Δ 1 
4 

b · 
Δb 

2 
1 
4 â + 

· 

This gives a rough estimate of the order of u Lof Eq.(10) J 
to be expected. For our parabolic distribution, u re­
presents the normalized ν-shift in the beam centre: 

u - Δ - Δνc - Δ = 8 · u - Δa - Δ a
2 = 1+ 

· 

This would imply values of u between-4 and-8, which is 
valid only for a machine of small wiggle in the β-func¬ 
tions. 

Computed values for the PSB, assuming nominal emit¬ 
tances (EH = 130π, EV = 40π mrad at 50 MeV and inclu­
ding image contributions, give values of 

u = -3.8 (horizontal) and u = -4.8 (vertical). 
Note that r is approximately given by r = 2/(2â + ) 
and can only take values of 0 < r < 2 (Eqs.(12), (A5)). 

For the semicircular distribution (6), a numerical 
estimate gives u = -Δ/Δ = - 3. 

This value of u is used to derive the stability 
criterion (9). From (8) and (10) we obtain for V<<|u| 

1 = = U/Ω + Δ 
= U - u , qa 

= 
νaâ2 

= νaâ
2 

= 

Ωνaâ2 
-

qa 
, 

and 
2 = ± | U | 2 

- ± f 
U 

|, (A6) 
qa 

= ± | Ωνaâ
2 | |u + 1| - ± f Ωνaa2 |, (A6) 

f = 2 
1. f = |u + 1| 1. 

Hence 

|u| < = Ω νaâ2| + 2 |, |u| < = 
2 

νaâ2| + 
qa 
|, 

2 
|U| |1 ± f ≤ νaâ2 ~ 

1 δν F W H H, 2 Ω |1 ± 2 ≤ νaâ2 ~ 2 
δν F W H H, 

or 

4 |U| ≤ δ ν F W H H 
1 

δνFWHH {0.672· 4 Ω ≤ δ ν F W H H 

|1 + f/2| δνFWHH {0.67
2· 
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