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A new integration algorithm is found, and an 
implementation is compared with other programmed 
algorithms. The new algorithm is a step-by-step 
procedure for solving the initial value problem in ordinary 
differential equations. It is designed to approximate 
poles of  small integer order in the solutions of the 
differential equations by continued fractions obtained by 
manipulating the sums of truncated Taylor series 
expansions. 

The new method is compared with the Gragg- 
Bulirsch-Stoer, and the Taylor series method. The 
Taylor series method and the new method are shown to 
be superior in speed and accuracy, while the new method 
is shown to be most superior when the solution is 
required near a singularity. The new method can 
finally be seen to pass automatically through singularities 
where all the other methods which are discussed will have 
failed. 
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1. Introduction 

The Taylor series method has proved to be a very 
efficient procedure for solving the initial value problem 
in ordinary differential equations when the solutions 
are well approximated by polynomials in the independ- 
ent variable (see Barton, Willers, and Zahar  [1], and 
Willers [2]). In this paper a new algorithm is described 
that enables one to obtain a similar improvement  over 
another class of problems, while still maintaining the 
superiority of the Taylor series method for the former 
class. The most commonly  used algorithms which 
numerically solve ordinary differential equations are 
based on a polynomial or truncated Taylor  series repre- 
sentation of the solution. The most common exception 
to this is the algorithm due to Bulirsch and Stoer [3], 
which was based on work done by Gragg [4]. It is 
well known that some functions are not well represented 
by polynomials and in any case a Taylor series is only 
valid within a circle whose radius is limited by the 
nearest singularity. 

In this paper it is shown how a new step-by-step 
integration algorithm based on continued fraction ex- 
pansions is able to overcome the problem of poles of 
small integer order. The algorithm arrives at con- 
tinued fraction approximations by manipulating the 
sums of truncated Taylor series expansions. Since the 
algorithm is able to approximate poles of small integer 
order, the region of validity of  the approximation is 
extended beyond such poles. Also singularities which 
are not poles of  integer order may be more accurately 
approximated by continued fractions, so an appro- 
priate gain is also possible here. It  should be realized 
that it is possible to pass beyond integer order poles on 
the real axis via the complex plane, but it is mathe- 
matically impossible to do so uniquely for singularities 
which are not poles of integer order. 

2. A Preliminary Comparison of Four Methods 
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Consider the differential equation y '  = _y2, with 
y(1) = I. It  has the solution y = 1/t, where t is the 
independent variable and will be integrated from t = 1 
toward the value t = 0. The following routines were 
compared for this problem: Gragg-Bulirsch-Stoer (B.S.), 
the Taylor series method (T.S.), Adams predictor 
(A.P.) and Runge-Kutta-Gil l  (R.K.). Each routine had 
set an initial step length of 2 -5 and an accuracy per 
step of 10 -~°. The programs were stopped, either when 
the program gave up or when it had exhausted 30 see of 
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Table I. Step Lengths Taken by Four Methods 

t Step for T.S. Step for R.K. StepJor A.P. Step for B.S. 
10 -I 1.4 X 10 -2 4.8 X 10 -4 2.5 X 10 -~ 5.8 X 10 -2 
10 -2 9.2 X 10 -4 2.6 X 10 -4 9.0 X 10 -z 
10 -~ 5.2 X 10 -6 2.7 X 10 -5 6.0 X 10 -4 
10-4 2 .8  × 10 -6 8 .0  X 10 -~ 
10-5 2 .4  X 10 -7 
10-~ 2.5 X 10 -8 

computing time. Table 1 was then produced showing 
the modulus of the step lengths taken by each method 
for different values of t. 

Each algorithm showed remarkably different be- 
havior from the other three. The most efficient al- 
gorithm was Gragg-Bulirsch-Stoer; this result is quite 
expected if the algorithm is studied. The Taylor series 
method performed quite well until t = 10 -2, after which 
it became excessively slow. The Adams predictor 
method continued to produce good results with a step 
length which was a constant fraction of the theoretical 
limit, which was equal to the value of t. The Adams 
predictor method was able to progress to 10 -6 in a 
reasonable amount  of computing time. Runge-Kutta-  
Gill could make very little progress. 

It was examples of this nature which motivated the 
author to find an integration algorithm which has good 
behavior near singularities. The new algorithm takes 
large step lengths when integrating the problem under 
consideration and does in fact integrate past the singu- 
larity (e.g. the step taken at t = 10 -~ was - 6 . 7  × 10-1). 

3.  T h e  A l g o r i t h m  

The algorithm is designed to take advantage of the 
Taylor series principle used in solving ordinary differen- 
tial equations. Let it be assumed therefore that there 
exists a mechanism for calculating the coefficients of 
the Taylor series of functions that are the solutions of 
ordinary differential equations, at any point t, which 
may be defined by the new algorithm. Barton, Willers, 
and Zabar  [5] describe how an efficient recurrence 
algorithm may be automatically generated from a set 
of ordinary differential equations and how it may be 
used to calculate the Taylor series for the dependent 
variables. 

The new part of the algorithm is that, when given a 
truncated Taylor series, that series is manipulated as if it 
were the expansion of a rational function. If  it is dis- 
covered that the original Taylor series is a better ap- 
proximation to the fi,nction than a rational approxima- 
tion, then it is to be expected that the work so done is 
an overhead on the ordinary Taylor series method. 

However,  equally accurate results will be obtained. 
When the rational approximation is superior, there 
will be an increase in accuracy and one may expect 
a corresponding reduction in computing time. In order 
to remain competitive with the Taylor series over the 
complete range of problems, an at tempt  was made to 
keep the overhead as small as possible. 

Given the truncated Taylor series A J  = ~]~=0 n"-'t  ~, 
the series are manipulated using the quantities, A~ ~, Cd, 
and D, ~, which are defined below. Equations (1) are 
used to define the quantities A0L C0" and D0L and eqs. 
(4) are used to evaluate the Ad, Cd, and Dd,  for u > 0. 
The A, ~ are a combination of polynomial and rational 
approximations to the value of the function at the point 
t. The following defines the A, ~, C~ ~, and Dd,  and in- 
dicates how the complete algorithm given by eqs. (1) 
and (4) may be deduced. 

THEOREM. I f  Ao ~ , C J  and D J  are given by 

Cg = O, D j  = 1, A o ' =  no t ,  (I) 
v = O  

, o" and A~ , C. , and D~" are given by 

2p--I 

A u¢ = "q~-lF -~- t ~+' ~ z/x', # > 0, 
u=O k = 0  

¢ l I a + u  

Cu -- U+ 1 ?}2(p--v--l) [ ,+,+1 1 X=0 n~" u > 0 ,  (2) 

p--1 

D, H a + v  t¢+v+l " = n ' , ( , - , -~ )  , u > 0.  ( 3 )  
v~0  

where no -x are coefficients o f  a truncated Taylor series 
~"~  2~--1 

expansion and ~x ~ are funct ions o f  t where A.~x=0 nx" is 
the Euler expansion and the terms o f  the expansion are 
defined by the recurrences (see Bauer [6]) 

t ~ = Z1 -k- ;+l,  
7}2p÷i 7}2p--i 7}2 u 

1 [7/~t~_1 71_ n~#] 712#+--12 + n~.~,, and (5) 
t 

1/nL1 = O. 

Then it can be shown that , for  the quantities A . ' ,  C. ' ,  D. ' ,  
the following relationships exist  

o" I~o '÷1 C." : ,~.-I~.-I~-Hr A~+I _ A.-x)  -}- ~ . - 1 ,  

" n '+ l{A~+i  Au_l), /z 1 2, 3, " "  (6) D~ = /J#--i \ ~--I -- ¢ = , , 

m~ : z,~-i -{-~ ~ ~ ~. - -  

Note: the Euler expansion is in agreement with a 
continued fraction expansion up to the point of trunca- 
tion. Therefore, the Ad represent an approximation 
which consists of a combination of a truncated Taylor  
series expansion and a truncated continued fraction 
represented by the Euler expansion. In the case of 

= 0, A0 ~ represents the traditional truncated Taylor 
series expansion. 

It  may also be considered as a generalization of the 
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Taylor series method which permits consideration of 
the other elements in the lower half of the Pad6 table, 
in addition to the partial sums of the Taylor series 
itself• 

The flow of the paper is not interrupted if the reader 
avoids the following proof. 

PROOF. 

~+1 L A ;  +1 Ag ~ . -1 . . -1 v 
- -  * = ~7~ t - -  '00. t 

v=0 v=0 
2.--1 2~--I 

+ t "+~ ~ '0~+~ - t "+1 ~ C 
X=O X=O 

= '0o~,t~,+I_{_ t~,+2 ~ '0~+I - -  m," 
X=O 

= ' 0 ( F  +' + t "+2 
),.=0 

F 0.+1 0.1-1 1 0. 0. 1 
._1 

+ t °+~ ['0~. - C ] .  

By eqs. (4) and (5) this gives 

A~ + 1 -  A f  = '0~.t ~+1. (7) 

Then from the definition of D f  given by eq. (3) 
a o"+1 

D (  = '00 t ;by eqs. (3) and (7) DI* = D((A~ +1 Ao~); 
and for # > 0 

• f l  ~+v Ov+l  = xx  ~2(.-v) t *+"+1, 
v=0 

Du1-1 '02(.--,--1) f + , + 2  r o- f+ l~  = t'0 2. J; 

and by eqs. (3) and (7) 

9 ; + 1  = D;+](A; + ' -  A f ) .  

From the definition of C~0. given by eq. (2) 

1 1 C ( =  1, and 
C (  = t ~  [ C r  +~] '00 ' 

, , 
c;=t~ ~ '0.+"1-' = 

1 r 0.t0.+, 0 .+1~+~, [10 .  1 10.] 
C~ ~ =  t~t '0~ '00 t ~ ~ + - - +  

'010. ~ 2  a ' 

and by eq. (4) 

C~ ~ = '02~t~+~ -y '0~+~t ~+~ 

= C ~ + I ( A ~  +1 - -  A ( )  + D~ +l.  

Then for u > 0 by eq. (2) 

. 1 0.+. 
= '02 (#--v--l) t *+"+l l 

C. t ~ L.=o x=o '0x0. 

- -  '02 (~t--v) /.+.+2 ~ if+l] 
U +l L , , ~ O  

) ] • ~+A_ + ~  
'0~x+1 '0~(.-~) ; 

by eq. (4) 

C.0. o- 
= '02 (~--I) ~=~02 0.+r+l 1 '02 ( . -v )  /0.+v+2 

= t'02(.--1) '02(.--,,) 1 °"+'+'1 
my=0 

1 
L x=o '0~+t '02~-1)J ; 

by eqs. (2), (3), and (7) 
¢ g-w0.+ 1 / A a + l  0. /'$0.+1 

C .  = ~-~#--1%zI.--1 - -  .4,-i) -{- ~ ' , - l .  

A~+I  /-) 0.F}~i-l(/~ = / ~ + I  Now consider the quantity ~.,-t + - ,  ~ ,  ~ ~ 

-- D;+Icg')  -1. Then, for ~ = 1, this gives 

n qlr~a+I{l"~ ~g--,0.+l Ag +1 @ J-~l .t-J1 ku1  ',--,1 - -  D ~ + l c t r )  -1 
o-+1 
E v--Iv - -  '0~+1ta+2]--1 = '00 t + ('0oo.t~+')('0~o+'t'+l)['0~o-'F+2 
v=0 

E v--1 . f+2 = '00 t +  - - t  
v=0 '00 ..I 
o+1 

= ~ nV' t  ~ + r + ' C ,  

and by eq. (4) 

v--1 v f + l  cr 
= '0o t + ~ ' 0 x  ~ = A 1 .  

v=0 X~0 

In a similar way the following relationship may be 
established 

0. A0.+ t  DfD;+~ _ n.+,c. %-~ A .  = ~" , -1  + (Duo.C;  +1 ~ ~ ,  ~ • [] 

Hence it is possible to establish the algorithm. The 
algorithm is algebraically equivalent to the epsilon 
algorithm (Shanks [7]). Computationally it has the 
advantage of only including one division per applica- 
tion unlike the epsilon or ~ algorithm. This makes 
control of the algorithm much simpler, and the avoid- 
ance of arithmetic overflow due to the division by 
zero or a small number easier. It is partly for this reason 
that in practice this algorithm has been proved to be 
superior to using the epsilon or ~ algorithm. The al- 
gorithm may be enclosed within one programmed loop. 

To show the algorithm in operation, consider the 
series A (  = ~ = 0  t ". Then 

C {  = 1, D {  = t ~+~, 

0.+1 t20.+3 0.+1 10.+2 1 

A (  = ~ t ~ + to.+ , _ t ,+2  - ~ t" + - . .=0 .=0 1 - -  t 1 - -  t 

It is interesting to notice that while Ad was not con- 
vergent outside [ t{ = 1 for increasing ~, the approxi- 
mation At ~ is valid everywhere. 
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4.  T h e  M e a s u r e m e n t  o f  Error  5. S t e p  L e n g t h  C o n t r o l  

It  is now necessary to establish the error committed 
in truncating the series A~ ~. 

k 2~t--1 
a ,--I , t,r+l ~' At = n0 t + ~ nx, u > 0. 

v=0 ~.=0 

The exact expression for the function being approxi- 
mated is given by 

k v-i v t ' + l k  a A~ ~ = ~70 t + ~Tx, 
r ~ 0  X=0 

although the region in which this is valid may be local 
about  t = 0 and may depend on the value of ~. How- 
ever, locally it is possible to discuss the function E,~(t), 
which is defined as 

E, ( t )  A ,  Ai a /o'+1 ~ o" = - -  ~ = ~Tx, ~z # 0. 
k=2~t 

In the case when u = 0, A (  is given by 

k v--1 v 
A0 ~ = r/0 t ,  

v=0 

and the exact expression locally is given by 

k V--1 v 
A0 ~ = n0 t ,  

u=0 

giving E((t)  Ao ~ A (  ~,~=,+1 "-~" = - -  = no t .  
From the theory for the Taylor series, it is known 

that there exists a point ~ and a point t for which 
Ed(t) = no'(~)(t -- ~),+1 in a region [a,  a + X]. So 
roughly Eo'(t) may be estimated by Ed(t) ~, ndt ~+~, 
which is a good approximation if nd varies only slightly 
over the region of interest. 

For  E,~(t) = t "+t Y'.x~2, nx ~, the sum represents a 
continued fraction expansion which locally is in agree- 
ment with the Taylor series expansion. A similar argu- 
ment is deduced from this and E,'(t) is estimated by 
E,~(t) ~-~ n~,t "+~, which is now also a valid expression 
for all u -> 0. By eq. (7) this becomes 

o" Ettq(t) = a~, +1 - -  A**. (S)  

If  the original Taylor series is of length a, it is 
possible for the quantities E, ~, E, 2, . . . ,  E~ -~ to be 
estimated in this manner. The criterion used is to 
estimate an error per step E(t), which is given by the 
relation 

E(t) = max, {max (] E~ -2 I, ]E~, - t  I)/(  1 + [Y' ]), a}, 

where max, represents the maximum over the dependent 
variables y , ,  and a is the machine accuracy relative to 1. 
The quantity a is introduced to avoid the erroneous 
setting of E(t) to the value zero. 

This measure leads to a very efficient method of 
estimating an upper bound to the possible error com- 
mitted per step. It should also be noted that the measure 
is essentially relative for large l Y~I and essentially 
absolute for small I yi [. This has in practice been found 
to be the type of error measure usually required. 

The criterion for selecting a step is based on the 
error E(t) committed by the previous step. Initially it is 
assumed that a step of h-~ = 1 has just been taken, 
and E(t) is calculated on this basis. I f  E is the local 
error per step requested, a step is accepted if E(h,) < 
and rejected if E(h,) > ~. In both cases a new h is 
calculated using the formula hnew = ci(6e/E(hi)) 1/(~+1). 

Where ~ -- 0.2 after a rejected step and 1 otherwise, 
Co = 1 and c ,~  = c, for an accepted step, and 

(c0.e,v = (~/E(hi))~/(~+'(COold after a rejected step. 
The error control is similar to the control used for the 
Taylor series system, and it is designed to control the 
Taylor series accuracy by the use of the E(h). 

6. A l g o r i t h m  C o n t r o l  

Algorithm control is also accomplished by an error 
measure. After each application, as ** increases, the 
effectiveness can be estimated by measuring the values 
Eu 1, E, 2, . . . ,  E~ -1. I f  the value max [ E~, -2 I, [ E~,-1 I 
does not decrease as u increases, the algorithm is 
halted. A~,+~ is taken as the result of applying the 
algorithm to the Taylor series of length c~. If  the al- 
gori thm has been completely applied, the result is 

¢ 0"--2 
taken as A , .  The error is then based on E~-I and 
E~,-x~ since the appropriate  values are not then avail- 
able. 

7. P e r f o r m a n c e  

Returning to the example discussed at the beginning 
of this paper: y' = _y2, y(1) = 1, which is integrated 
toward zero. 

At t = 10 -1, the longest step length taken was 5.8 X 
10 -2 by the Gragg-Bulirsch-Stoer method. This step 
was much longer than that taken by other methods. 
The algorithm described in this paper took a step of 
6.7 X 10-k With the default settings for accuracy of 

= 10 -1° and the length of series set to 14, the method 
integrated up to t = - 1  and produced an absolute 
error of 7 X 10 -n  at this point (on the Cambridge Com- 
puting Laboratories Atlas machine, which has a 39-bit 
mantissa). This involved passing through the singu- 
larity at t = 0. This is accomplished with no extra 
user information concerning the position or order of 
the pole. 

The new algorithm has been tested and found to 
be efficient and reliable over a large class of problems 
[see Willers [2]). Comparisons have been made with 
other methods on the basis of observed final error versus 
computat ion time on the Cambridge Atlas computer.  
Three graphs are included here showing the performance 
of the Gragg-Bulirsch-Stoer method (B.S.), the Taylor  
series method (T.S.), and the new algorithm (N.A.) 
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on three  different p rob lems .  The Gragg-Bul i r sch -S toe r  
me thod ,  which  is general ly  recognized  as good,  see 
[8], was wri t ten  in F o r t r a n  special ly for the C a m b r i d g e  
At las .  The  t ime for  c o m p u t a t i o n  and code genera t ion  
are  no t  inc luded,  bu t  for the  Tay lo r  series system and  
the new a lgor i thm code,  genera t ion  takes  less than  0.1 
sec of  c o m p u t i n g  t ime for each prob lem.  The  e r ror  
E was ca lcu la ted  using the L1 norm,  E = ~ : L 0 l  Ei  [, 

where Ei  is the e r ror  in the  dependen t  var iable  y i  at  the 
end of  the range.  Each poin t  on the graph was p r o d u c e d  
by vary ing  the m i n i m u m  a l lowed accuracy  per step. 

P r o b l e m  I 

y/ , 2 a 
= z, z = _ y ( y 2  q_ z )  ~, y = O, z = 1 

when t = 0. 

Range :  0 < t < 5. 
So lu t ion :  y = sin (t), z = cos (t). 

~T $ ~. " 

1o910 (E) 

tog~o (time) 

-5 

-10 

Prob lem 2 

y '  = 1 q- y~, y = 1 when t = 0. 

Range :  0 < t < 0.75. 
So lu t ion :  y = tan  [(7r/4) + t]. 

Log lo (E) 
IOglo (time) 

-1 

-10 

Prob lem 3. This is the same case as p r o b l e m  2 except  
tha t  the range is ex tended  to 0 < t < 1. On ly  the  new 
a lgor i thm was capab le  of  solving this p r o b l e m  owing 
to the s ingular i ty  at  t = ~ / 4  ~ 0.79. 

-1 
Loglo (El 

tOglO (time) 

-10 
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