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Abstract

Let E be an arbitrary real Banach space, T : E ! E a Lipschitz �-strongly accretive operator

and let f be in the range of T . It is proved that the new iteration methods introduced by Xu

(J. Math. Anal. Appl. 224 (1998), 91-101) converge strongly to the solution of the equation

Tx = f . Related results deal with the iterative approximation of �xed points of Lipschitz

�-pseudocontractions with the new iteration methods in arbitrary real Banach spaces.
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1. INTRODUCTION Let E be a real Banach space and J the normalized duality mapping

from E into 2E
�

given by

J(x) = ff 2 E� : hx; fi = jjxjj2 = jjf jj2g;

where E� denotes the dual space of E and h:; :i denotes the generalized duality pairing. It is

well known that if E� is strictly convex then J is single-valued. In the sequel we shall denote

the single-valued normalized duality mapping by j.

An operator T is called strongly accretive if for all x; y 2 D(T ) there exist j(x � y) 2 J(x � y)

and a constant k > 0 such that

hTx� Ty; j(x � y)i � kjjx� yjj2: (1)

T is called �-strongly accretive if for all x; y 2 D(T ) there exist j(x�y) 2 J(x�y) and a strictly

increasing function � : [0;1) ! [0;1) with �(0) = 0 such that

hTx� Ty; j(x� y)i � �(jjx� yjj)jjx� yjj: (2)

It is shown in [19] that the class of strongly accretive operators is a proper subclass of the class

of �-strongly accretive operators.

If I denotes the identity operator, then T is called strongly pseudocontractive (respectively, �-

strongly pseudocontractive) if and only if (I � T ) is strongly accretive (respectively, �-strongly

accretive). Thus the mapping theory for strongly accretive operators (respectively, �-strongly

accretive operators) is closely related to the �xed point theory for strongly pseudocontractive

operators (respectively, �-strongly pseudocontractive operators). Recent interest in mapping

theory for strongly accretive operators and �-strongly accretive operators particularly as it

relates to the existence theorems for nonlinear ordinary and partial di�erential equations, has

prompted a corresponding interest in �xed point theory for strong pseudocontractions and �-

strong pseudocontractions (see for example [8],[9],[17]).

It is well known (see for example [8]) that if E is a real Banach space and T : E ! E is

continuous and strongly pseudocontractive, then T has a unique �xed point. Furthermore, It is

proved in ([9], Theorem 13.1 p.125) that the equation

Tx = f (3)

has a unique solution if E is an arbitrary real Banach space and T : E ! E is continuous and

strongly accretive, or E is uniformly smooth and T : E ! E is demicontinuous.

Let E be a real Banach space and K a nonempty closed convex subset of E. Recently several

authors have applied the Mann iteration method [16] and the Ishikawa iteration method [13] to

approximate �xed points of Lipschitz strong pseudocontractions

T : K ! K, and to approximate solutions of equation (3) when T : E ! E is a Lipschitz

strongly accretive operator (see for example [1-7],[10-13],[15],[18-26]).
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Recently Xu [25] introduced the following Mann and Ishikawa iteration methods with errors:

(a) The Ishikawa Iteration Method with Errors For K a nonempty convex subset of a

Banach space E and T : K ! K a given operator. The sequence is de�ned from an arbitrary

x0 2 K by

yn = anxn + bnTxn + cnun; n � 0

xn+1 = a0nxn + b0nTyn + c0nvn; n � 0

where fang; fbng; fcng; fa
0
ng; fb

0
ng; fc

0
ng are sequences in [0; 1] with

an + bn + cn = a0n + b0n + c0n = 1 and fung and fvng are bounded sequences in K.

(b) the Mann Iteration Method with Errors With K, T and x0 as in (a), the Mann

iteration method with errors de�ned by

xn+1 = a0nxn + b0nTxn + c0nvn; n � 0

is a special case of (a) for which an = 1; bn = cn = 0; 8n � 0.

In [25] Xu showed that his Mann and Ishikawa iteration methods with errors are better than the

earlier Mann and Ishikawa iteration methods with errors introduced by Liu [15]. He then used

these iteration methods to prove convergence theorems for the iterative approximation of �xed

points of strong pseudocontractions in uniformly smooth Banach spaces. Xu [25] also proved

convergence theorems for the iterative approximation of the equation (3) when E is a uniformly

smooth Banach space and T : E ! E is a strongly accretive operator.

Let E be a real Banach space, T : E ! E a Lipschitz �-strongly accretive operator and let f

be in the range of T .

It is our purpose in this paper to prove that the new Mann and Ishikawa iteration methods

with errors introduced by Xu [25] converge strongly to the solution of the equation Tx = f .

Furthermore, if K is a closed convex subset of E and T : K ! K is a Lipschitz �-strong

pseudocontraction with a �xed point, we prove that these iteration methods converge to the

�xed point of T . Our results generalized, extend and unify several important recent results.

2. MAIN RESULTS

For the rest of this paper, L denotes the Lipschitz constant of T , L� = (1+L) and R(T ) denotes

the range of T .

Theorem 1 Let E be an arbitrary real Banach space and T : E ! E a Lipschitz �-strongly

accretive operator. Let f 2 R(T ) and generate fxng from an arbitrary x0 2 E by

yn = anxn + bn(f + (I � T )xn) + cnun; n � 0 (4)

xn+1 = a0nxn + b0n(f + (I � T )yn) + c0nvn; n � 0; (5)

where fung and fvng are bounded sequences in E and fang, fbng, fcng, fa
0
ng, fb

0
ng and fc0ng

are real sequences in [0; 1] satisfying the conditions:

(i) an + bn + cn = a0n + b0n + c0n = 1
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(ii) lim bn = lim b0n = lim cn = 0

(iii)
P
1
n=0 b

0
n =1 and

(iv)
P
c0n <1;

P
b0n

2
<1;

P
b0nbn <1;

P
b0ncn <1:

Then the sequence fxng converges strongly to the solution of the equation Tx = f .

Proof De�ne S : E ! E by Sx = f +(I �T )x, and let x� denote the solution of the equation

Tx = f . Then x� is a �xed point of S and for all x; y 2 E we have

h(I � S)x� (I � S)y; j(x � y)i � �(jjx� yjj)jjx� yjj

�
�(jjx� yjj)

(1 + �(jjx� yjj) + jjx� yjj)
jjx� yjj2

= r(x; y)jjx� yjj2; (6)

where r(x; y) =
�(jjx�yjj)

(1+�(jjx�yjj)+jjx�yjj)
2 [0; 1) 8x; y 2 E. It follows from Lemma 1.1 of Kato [14]

and inequality (6) that

jjx� yjj � jjx� y + �[(I � S)x� r(x; y)x� ((I � S)y � r(x; y)y)]jj; (7)

for all x; y 2 E and for all � > 0. Set �n = bn + cn, and �n = b0n + c0n, then (4) and (5) become

yn = (1� �n)xn + �nSxn + cn(un � Sxn); n � 0 (8)

xn+1 = (1� �n)xn + �nSyn + c0n(vn � Syn); n � 0: (9)

From (9) we obtain

xn = (1 + �n)xn+1 + �n[(I � S)xn+1 � r(xn+1; x
�)xn+1]

�(1� r(xn+1; x
�))�nxn + (2� r(xn+1; x

�))�2n(xn � Syn)

+�n(Sxn+1 � Syn)� [1 + (2� r(xn+1; x
�))�n]c

0
n(vn � Syn)

Furthermore,

x� = (1 + �n)x
� + �n[(I � S)x� � r(xn+1; x

�)x�]� (1� r(xn+1; x
�))�nx

�;

so that

xn � x� = (1 + �n)(xn+1 � x�)

+�n
h
(I � S)xn+1 � r(xn+1; x

�)xn+1 � ((I � S)x� � r(xn+1; x
�)x�)

i

�(1� r(xn+1; x
�))�n(xn � x�) + (2� r(xn+1; x

�))�2n(xn � Syn)

+�n(Sxn+1 � Syn)� [1 + (2� r(xn+1; x
�))�n]c

0
n(vn � Syn):
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Hence

jjxn � x�jj � (1 + �n)
���
���xn+1 � x�

+
�n

(1 + �n)

h
(I � S)xn+1 � r(xn+1; x

�)xn+1 � ((I � S)x� � r(xn+1; x
�)x�)

i���
���

�(1� r(xn+1; x
�))�njjxn � x�jj � (2� r(xn+1; x

�))�2njjxn � Synjj

��njjSxn+1 � Synjj � [1 + (2� r(xn+1; x
�))�n]c

0
njjvn � Synjj

� (1 + �n)jjxn+1 � x�jj � (1� r(xn+1; x
�))�njjxn � x�jj

�(2� r(xn+1; x
�))�2njjxn � Synjj � �njjSxn+1 � Synjj

�[1 + (2� r(xn+1; x
�))�n]c

0
njjvn � Synjj; (using (7)):

Hence

jjxn+1 � x�jj �
[1 + (1� r(xn+1; x

�))�n]

(1 + �n)
jjxn � x�jj+ 2�2njjxn � Synjj

+�njjSxn+1 � Synjj+ [1 + (2� r(xn+1; x
�))�n]c

0
njjvn � Synjj

� [1 + (1� r(xn+1; x
�))�n][1� �n + �2n]jjxn � x�jj

+2�2njjxn � Synjj+ �njjSxn+1 � Synjj+ 3c0njjvn � Synjj

� [1� r(xn+1; x
�)�n + �2n]jjxn � x�jj+ 2�2njjxn � Synjj

+�njjSxn+1 � Synjj+ 3c0njjvn � Synjj (10)

Furthermore, we have the following estimates:

jjyn � x�jj � (1� �n)jjxn � x�jj+ �njjSxn � x�jj+ cnjjun � Sxnjj

� [(1 � �n) + �nL�]jjxn � x�jj+ cnjjun � x�jj+ cnL�jjxn � x�jj

� [1 + 2L�]jjxn � x�jj+ cnjjun � x�jj

jjxn � Synjj � jjxn � x�jj+ L�jjyn � x�jj � [1 + L�(1 + 2L�)]jjxn � x�jj+ L�cnjjun � x�jj

jjSxn+1 � Synjj � L�jjxn+1 � ynjj

� L�

h
(1� �n)jjxn � ynjj+ �njjSyn � ynjj+ c0njjvn � Synjj

i

� L�

h
�njjxn � Sxnjj+ cnjjun � Sxnjj+ c0njjvn � Synjj

i
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+L�(1 + L�)�njjyn � x�jj

� L�

h
�n(1 + L�)jjxn � x�jj+ cnjjun � x�jj+ cnL�jjxn � x�jj+ c0njjvn � x�jj

i

+[c0nL
2
� + �nL�(1 + L�)]jjyn � x�jj

�
h
L�(1 + L�)�n + cnL

2
� + (L2

�c
0
n + L�(1 + L�)�n)(1 + 2L�)

i
jjxn � x�jj

+[L�cn + (c0nL
2
� + L�(1 + L�)�n)cn]jjun � x�jj+ L�c

0
njjvn � x�jj

jjvn � Synjj � jjvn � x�jj+ L�jjyn � x�jj

� jjvn � x�jj+ L�(1 + 2L�)jjxn � x�jj+ L�cnjjun � x�jj:

Hence

jjxn+1 � x�jj � [1� r(xn+1; x
�)�n + �2n]jjxn � x�jj

+2�2n

h
(1 + L�(1 + 2L�))jjxn � x�jj+ L�cnjjun � x�jj

i

+�n
n
[L�(1 + L�)�n + cnL

2
� + (L2

�c
0
n + L�(1 + L�)�n)(1 + 2L�)]jjxn � x�jj

+[L�cn + (c0nL
2
� + L�(1 + L�)�n)cn]jjun � x�jj+ L�c

0
njjvn � x�jj

o

+3c0n[jjvn � x�jj+ L�(1 + 2L�)jjxn � x�jj+ L�cnjjun � x�jj]

�
n
1 + [2L3

� + 7L2
� + 3(1 + L�)]�

2
n + L�(1 + L�)�n�n + L2

�(1 + 2L�)�nc
0
n

+L2
��ncn + 3L�(1 + 2L�)c

0
n

o
jjxn � x�jj � r(xn+1; x

�)�njjxn � x�jj

+[2L��
2
ncn + L��ncn + L2

��ncnc
0
n + L�(1 + L�)�

2
ncn + 3L�cnc

0
n]jjun � x�jj

+(3 + L�)c
0
njjvn � x�jj: (11)

Since fung and fvng are bounded, we have jjun�x�jj �M1; jjvn�x�jj �M2 for some positive

constants M1 and M2. Set M = maxfM1;M2g. Then it follows from (11) that

jjxn+1 � x�jj �
n
1 + [2L3

� + 7L2
� + 3(1 + L�)]�

2
n + L�(1 + L�)�n�n + L2

�(1 + 2L�)�nc
0
n

+L2
��ncn + 3L�(1 + 2L�)c

0
n

o
jjxn � x�jj � r(xn+1; x

�)�njjxn � x�jj

+[2L��
2
ncn + L��ncn + L2

��ncnc
0
n + L�(1 + L�)�

2
ncn + 3L�cnc

0
n]M

+(3 + L�)c
0
nM

= [1 + �n]jjxn � x�jj � r(xn+1; x
�)�njjxn � x�jj+ �n; (12)
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where

�n = [2L3
� + 7L2

� + 3(1 + L�)]�
2
n + L�(1 + L�)�n�n

+L2
�(1 + 2L�)�ncn + L2

��ncn + 3L�(1 + 2L�)c
0
n;

�n = [2L��
2
ncn + L��ncn + L2

��ncnc
0
n + L�(1 + L�)�

2
ncn + 3L�cnc

0
n + (3 + L�)c

0
n]M

Observe that condition (iv) implies that
P
1
n=0 �n < 1, and

P
1
n=0 �n < 1, so that it follows

from inequality (12) that fjjxn� x�jjg is bounded. Let jjxn�x�jj � D 8 n � 0. Then it follows

from (12) that

jjxn+1 � x�jj � jjxn � x�jj+D�n + �n = jjxn � x�jj+ �n;

where �n = D�n + �n. Since
P
1
n=0 �n <1; it follows from Lemma 1 of [24] that

lim
n!1

jjxn � x�jj exists. Let lim jjxn � x�jj = � � 0: We prove that � = 0. Assume that � > 0.

Then there exists a positive integer N0 such that jjxn � x�jj � �
2
8 n � N0. Since

r(xn+1; x
�)jjxn�x

�jj =
�(jjxn+1 � x�jj)

1 + �(jjxn+1 � x�jj) + jjxn+1 � x�jj
jjxn�x

�jj �
�( �

2
)�

2(1 + �(D) +D)
; 8 n � N0;

it follows from (12) that

jjxn+1 � x�jj � jjxn � x�jj �
�( �

2
)�

2(1 + �(D) +D)
�n + �n 8 n � N0:

Hence

�( �
2
)�

2(1 + �(D) +D)
�n � jjxn � x�jj � jjxn+1 � x�jj+ �n 8 n � N0:

This implies that

�( �
2
)�

2(1 + �(D) +D)

nX

j=N0

�j � jjxN0
� x�jj+

nX

j=N0

�j � jjxN0
� x�jj+

1X

j=0

�j ;

so that
P
1
n=0 �n <1, contradicting

P
1
n=0 �n =

P
1
n=0(b

0
n + c0n) =1.

Hence lim jjxn � x�jj = 0, completing the proof of Theorem 1. 2

Corollary 1 Let E be an arbitrary real Banach space and T : E ! E a Lipschitz �-

strongly accretive operator, where � is in addition continuous. Suppose lim inf
r!1

�(r) > 0 or

jjTxjj ! 1 as jjxjj ! 1. Let fang; fbng; fcng; fa
0
ng; fb

0
ng; fc

0
ng; fung; fvng; fyng and fxng

be as in Theorem 1. Then for any given f 2 E, the sequence fxng converges strongly to the

solution of the equation Tx = f .
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Proof The existence of a unique solution to the equation Tx = f follows from Deimling ([8],

Corollary 3, p.370) and the result follows from Theorem 1. 2

Theorem 2 Let E be a real Banach space and K a nonempty closed convex subset of E. Let

T : K ! K be a Lipschitz �-strong pseudocontraction with a nonempty �xed-point set. Let

fang; fbng; fcng; fa
0
ng; fb

0
ng; and fc0ng be as in Theorem 1. Let fung and fvng be bounded

sequences in K. Let fxng be the sequence generated iteratively from an arbitrary x0 2 K by

yn = anxn + bnTxn + cnun; n � 0

xn+1 = a0nxn + b0nTyn + c0nvn; n � 0:

Then fxng converges strongly to the �xed point of T .

Proof As in the proof of Theorem 1, set �n = bn + cn; and �n = b0n + c0n to obtain

yn = (1� �n)xn + �nTxn + cn(un � Txn); n � 0

xn+1 = (1� �n)xn + �nTyn + c0n(vn � Tyn); n � 0:

Since T is a �-strong pseudocontraction, (I � T ) is �-strongly accretive so that for all x; y 2 E,

there exist j(x� y) 2 J(x� y) and a strictly increasing function

� : [0;1) ! [0;1) with �(0) = 0 such that

h(I � T )x� (I � T )y; j(x� y)i � �(jjx� yjj)jjx � yjj � r(x; y)jjx� yjj2:

The rest of the argument now follows as in the proof of Theorem 1 and is therefore

omitted. 2

Remark 1 An operator T with domain D(T ) and range R(T ) in E is called

�-hemicontractive (see for example [19]) if F (T ) = fx 2 D(T ) : Tx = xg 6= ; and for all

x 2 D(T ) and x� 2 F (T ) there exist j(x � x�) 2 J(x � x�) and a strictly increasing function

� : [0;1) ! [0;1) with �(0) = 0 such that

hTx� x�; j(x � x�)i � jjx� x�jj2 � �(jjx� x�jj)jjx � x�jj:

The example in [6] shows that the class of �-strongly pseudocontractive operators with nonempty

�xed-point sets is a proper subclass of the class of �-hemicontractive operators. It is easy to see

that Theorem 2 easily extends to the class of �-hemicontractive operators.
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Remark 2 If we set an = 1; bn = cn = 0 8 n � 0 in our Theorems and Corollary, we obtain

the corresponding results for the Mann iteration method with errors.

Remark 3 Let f�ng and f�ng be real sequences satisfying the conditions:

(i) 0 � �n; �n � 1; n � 0 (ii) lim�n = lim�n = 0 (iii)
P
1
n=0 �n =1 (iv)

P
1
n=0 �n�n <1 and

(v)
P
1
n=0 �

2
n <1. If we set an = (1� �n); bn = �n; cn = 0; a0n = (1� �n);

b0n = �n; c0n = 0; 8 n � 0 in Theorems 1 and 2 respectively, we obtain the corresponding

convergence theorems for the original Mann and Ishikawa iteration methods. Thus our results

extend, generalize and unify several recent results. In particular, our theorems extend recent

results of Chidume and the author [7] (which are themselves generalizations and extensions of

several results (see for example [1-3],[5],[10-12],[23],[26])) from the classes of strong pseudocon-

tractions and strongly accretive operators to the more general classes of operators considered

here. The results of ([19],[21]) are special cases of our present results.

Remark 4 Suitable choices for the real sequences in our results are:

an =
n

n+ 1
; bn = cn =

1

2(n+ 1)
; a0n =

n

n+ 1
; b0n =

n

(n+ 1)2
; c0n =

1

(n+ 1)2
; n � 0:

Hence �n = �n =
1

n+1
; n � 0.
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