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Abstract

We examine the cross sections for the elastic scattering of neutralinos χ on nucleons p, n,

as functions of mχ in the constrained minimal supersymmetric standard model. We find

narrow bands of possible values of the cross section, that are considerably lower than some

previous estimates. The constrained model is based on the minimal supergravity-inspired

framework for the MSSM, with universal scalar and gaugino masses m0, m1/2, and µ and the

MSSM Higgs masses treated as dependent parameters. We explore systematically the region

of the (m1/2, m0) plane where LEP and other accelerator constraints are respected, and the

relic neutralino density lies in the range 0.1 ≤ Ωχh2 ≤ 0.3 preferred by cosmology. We

update previous discussions of both the spin-independent and -dependent scattering matrix

elements on protons and neutrons, using recent analyses of low-energy hadron experiments.
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1 Introduction

One of the most promising candidates for the cold dark matter believed to pervade the Uni-

verse is the lightest supersymmetric particle (LSP) [1], commonly expected to be the lightest

neutralino χ, which is stable in the minimal supersymmetric extension of the Standard Model

(MSSM) with conserved R parity [2]. The quantum stability of the gauge hierarchy sug-

gests that sparticles weigh less than about 1 TeV [3], which is also the range favoured for a

cold dark matter particle [4], and there are indeed generic domains of the MSSM parameter

space in which the relic LSP density falls within the range 0.1 ≤ Ωχh2 ≤ 0.3 favoured by

astrophysics and cosmology [1]. The unsuccessful laboratory searches for sparticles impose

non-trivial constraints on the MSSM parameter space, suggesting that the LSP χ is mainly

a U(1) gaugino (Bino) [5].

Many non-accelerator strategies to search for cosmological relic neutralinos have been

proposed [6], including indirect searches for products of their annihilations in free space

or inside astrophysical bodies, and direct searches for their scattering on target nuclei in

low-background underground laboratories [7]. The rates for such experiments typically have

larger uncertainties than those for producing sparticles at accelerators, since they involve

some astrophysical and/or cosmological uncertainties as well as those due to simulations of

the signatures, over and above the common uncertainties in the MSSM parameters. Nev-

ertheless, such dark matter searches offer interesting prospects for beating accelerators to

the discovery of supersymmetry, particularly during the coming years before the LHC enters

operation.

In this paper, we embark on a programme to clarify the extents of the uncertainties

in searches for supersymmetric dark matter, by re-evaluating the rates to be expected for

the elastic scattering of relic LSPs on protons and neutrons [8, 9]. Large ranges for these

rates are often quoted [10], reflecting general explorations of the MSSM parameter space.

Our approach is to establish as accurately as possible a baseline set of predictions based on

the most plausible assumptions commonly used in constrained MSSM phenomenology, such

as universality in the soft supersymmetry-breaking parameters as suggested by minimal

supergravity models, and requiring the cosmological relic density to lie within the range

favoured by astrophysics and cosmology, namely 0.1 ≤ Ωχh2 ≤ 0.3. These assumptions

can and should be questioned, but they are well motivated and good candidates for default

options in analyses of the MSSM and cold dark matter.

In the course of this re-evaluation of elastic χ − p, n scattering cross sections, we re-

analyze the relevant spin-independent and spin-dependent matrix elements of scalar densities
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and axial currents in protons and neutrons. We update previous analyses using further

information from chiral symmetry [11, 12], low-energy π − p, n scattering [13] and deep-

inelastic lepton-nucleon scattering [14]. We include a discussion of uncertainties in the values

of the scalar and axial-current matrix elements.

We perform a systematic scan of the region of the m0, m1/2 parameter space of the

MSSM with supergravity-inspired universality that is consistent with accelerator constraints

and yields a cosmological relic density within the favoured range 0.1 ≤ Ωχ ≤ 0.3 [15]. We

treat µ as a dependent parameter (modulo a sign ambiguity), and our results are not very

sensitive to A. We order our results in terms of mχ which closely tracks m1/2. For any

given choice of mχ, tanβ and the sign of µ, we find a relatively narrow band of possible cross

sections, reflecting the fact that the accelerator and cosmological constraints [5, 15] favour

a predominant U(1) gaugino (Bino) composition for the LSP. Our results fall considerably

below many of the possible predictions in the literature [10], and may discourage some faint-

hearted experimentalists. However, we think they provide a realistic estimate of the target

sensitivity required for an experiment to have a good chance of success.

2 Theoretical Framework

We review in this Section the theoretical framework we use in the context of the MSSM [2].

The neutralino LSP is the lowest-mass eigenstate combination of the Bino B̃, Wino W̃

and Higgsinos H̃1,2, whose mass matrix N is diagonalized by a matrix Z: diag(mχ1,..,4) =

Z∗NZ−1. The composition of the lightest neutralino may be written as

χ = Zχ1B̃ + Zχ2W̃ + Zχ3H̃1 + Zχ4H̃2 (1)

As already mentioned, we assume universality at the supersymmetric GUT scale for the

U(1) and SU(2) gaugino masses: M1,2 = m1/2, so that M1 = 5
3
tan2 θW M2 at the electroweak

scale. We denote by tanβ the ratio of Higgs vacuum expectation values, and µ is the Higgsino

mass-mixing parameter. We also assume GUT-scale universality for the soft supersymmetry-

breaking scalar masses m0, for the Higgs bosons as well as the squarks and sleptons. We

further assume GUT-scale universality for the soft supersymmetry-breaking trilinear terms

A. Our treatment of the sfermion mass matrices M follows [16]. As discussed there, the

sfermion mass-squared matrix is diagonalized by a matrix η: diag(m2
1, m

2
2) ≡ ηM2η−1, which

can be parameterized for each flavour f by an angle θf and phase γf :(
cos θf sin θfe

iγf

− sin θfe
−iγf cos θf

)
≡

(
η11 η12

η21 η22

)
(2)
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As a simplification, we neglect CP violation in this paper, so that γf = 0 and there are no

CP-violating phases in the neutralino mass matrix, either. We treat m1/2, m0, A and tanβ

as free parameters, and µ and the pseudoscalar Higgs mass mA as dependent parameters

specified by the electroweak vacuum conditions, which we calculate using mt = 175 GeV 1.

The MSSM Lagrangian leads to the following low-energy effective four-fermi Lagrangian

suitable for describing elastic χ-nucleon scattering [16]:

L = χ̄γµγ5χq̄iγµ(α1i + α2iγ
5)qi + α3iχ̄χq̄iqi +α4iχ̄γ5χq̄iγ

5qi + α5iχ̄χq̄iγ
5qi +α6iχ̄γ5χq̄iqi (3)

This Lagrangian is to be summed over the quark generations, and the subscript i labels up-

type quarks (i = 1) and down-type quarks (i = 2). The terms with coefficients α1i, α4i, α5i

and α6i make contributions to the elastic scattering cross section that are velocity-dependent,

and may be neglected for our purposes. In fact, if the CP violating phases are absent as

assumed here, α5 = α6 = 0 [17]. The coefficients relevant for our discussion are:

α2i =
1

4(m2
1i − m2

χ)

[
|Yi|2 + |Xi|2

]
+

1

4(m2
2i − m2

χ)

[
|Vi|2 + |Wi|2

]

− g2

4m2
Z cos2 θW

[
|Zχ3|2 − |Zχ4|2

] T3i

2
(4)

and

α3i = − 1

2(m2
1i − m2

χ)
Re [(Xi) (Yi)

∗] − 1

2(m2
2i − m2

χ)
Re [(Wi) (Vi)

∗]

− gmqi

4mWBi

[
Re (δ1i[gZχ2 − g′Zχ1])DiCi

(
− 1

m2
H1

+
1

m2
H2

)

+ Re (δ2i[gZχ2 − g′Zχ1])

(
D2

i

m2
H2

+
C2

i

m2
H1

)]
(5)

where

Xi ≡ η∗
11

gmqi
Z∗

χ5−i

2mWBi

− η∗
12eig

′Z∗
χ1

Yi ≡ η∗
11

(
yi

2
g′Zχ1 + gT3iZχ2

)
+ η∗

12

gmqi
Zχ5−i

2mW Bi

Wi ≡ η∗
21

gmqi
Z∗

χ5−i

2mWBi
− η∗

22eig
′Z∗

χ1

Vi ≡ η∗
22

gmqi
Zχ5−i

2mWBi
+ η∗

21

(
yi

2
g′Zχ1 + gT3iZχ2

)
(6)

1We have checked that varying mt by ±5 GeV has a negligible effect on our results.
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where yi, T3i denote hypercharge and isospin, and

δ1i = Zχ3(Zχ4) , δ2i = Zχ4(−Zχ3),

Bi = sin β(cosβ) , Ai = cos β(− sin β),

Ci = sin α(cosα) , Di = cos α(− sin α) (7)

for up (down) type quarks. We denote by mH2 < mH1 the two scalar Higgs masses, and α

denotes the Higgs mixing angle 2.

3 Hadronic Matrix Elements

The elastic cross section for scattering off a nucleus can be decomposed into a scalar (spin-

independent) part obtained from the α2i term in (3), and a spin-dependent part obtained

from the α3i term. Each of these can be written in terms of the cross sections for elastic

scattering for scattering off individual nucleons, as we now review and re-evaluate.

The scalar part of the cross section can be written as

σ3 =
4m2

r

π
[Zfp + (A − Z)fn]2 (8)

where mr is the reduced LSP mass,

fp

mp
=

∑
q=u,d,s

f
(p)
Tq

α3q

mq
+

2

27
f

(p)
TG

∑
c,b,t

α3q

mq
(9)

and fn has a similar expression. The parameters f
(p)
Tq are defined by

mpf
(p)
Tq ≡ 〈p|mq q̄q|p〉 ≡ mqBq (10)

whilst f
(p)
TG = 1 −∑

q=u,d,s f
(p)
Tq [19]. We observe that only the products mqBq, the ratios of

the quark masses mq and the ratios of the scalar matrix elements Bq are invariant under

renormalization and hence physical quantities.

We take the ratios of the quark masses from [11]:

mu

md
= 0.553 ± 0.043,

ms

md
= 18.9 ± 0.8 (11)

In order to determine the ratios of the Bq and the products mqBq we use information from

chiral symmetry applied to baryons. Following [12], we have:

z ≡ Bu − Bs

Bd − Bs
=

mΞ0 + mΞ− − mp − mn

mΣ+ + mΣ− − mp − mn
(12)

2We note that (5) is taken from [17] and corrects an error in [16], and that (4, 5) agree with [6, 8] and
the published version of [18].

4



Substituting the experimental values of these baryon masses, we find

z = 1.49 (13)

with an experimental error that is negligible compared with others discussed below. Defining

y ≡ 2Bs

Bd + Bu
, (14)

we then have
Bd

Bu
=

2 + ((z − 1) × y)

2 × z − ((z − 1) × y)
(15)

The experimental value of the π-nucleon σ term is [13]:

σ ≡ 1

2
(mu + md) × (Bd + Bu) = 45 ± 8 MeV (16)

and octet baryon mass differences may be used to estimate that [13]

σ =
σ0

(1 − y)
: σ0 = 36 ± 7 MeV (17)

Comparing (16) and (17), we find a central value of y = 0.2, to which we assign an error

±0.1, which yields
Bd

Bu
= 0.73 ± 0.02 (18)

The formal error in y derived from (16) and (17) is actually ±0.2, which would double the

error in Bd/Bu. We have chosen the smaller uncertainty because we consider a value of y in

excess of 30% rather unlikely. However, we do illustrate later by one example the potential

consequences of a larger error in y.

The numerical magnitudes of the individual renormalization-invariant products mqBq

and hence the f
(p)
Tq may now be determined:

f
(p)
Tu = 0.020 ± 0.004, f

(p)
Td = 0.026 ± 0.005, f

(p)
Ts = 0.118 ± 0.062 (19)

where essentially all the error in f
(p)
Ts arises from the uncertainty in y. The corresponding

values for the neutron are

f
(n)
Tu = 0.014 ± 0.003, f

(n)
Td = 0.036 ± 0.008, f

(n)
Ts = 0.118 ± 0.062. (20)

It is clear already that the difference between the scalar parts of the cross sections for

scattering off protons and neutrons must be rather small.
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The spin-dependent part of the elastic χ-nucleus cross section can be written as

σ2 =
32

π
G2

Fm2
rΛ

2J(J + 1) (21)

where mr is again the reduced neutralino mass, J is the spin of the nucleus, and

Λ ≡ 1

J
(ap〈Sp〉 + an〈Sn〉) (22)

where

ap =
∑

i

α2i√
2Gf

∆
(p)
i , an =

∑
i

α2i√
2Gf

∆
(n)
i (23)

The factors ∆
(p,n)
i parametrize the quark spin content of the nucleon. A recent global analysis

of QCD sum rules for the g1 structure functions [14], including O(α3
s) corrections, corresponds

formally to the values

∆(p)
u = 0.78 ± 0.02, ∆

(p)
d = −0.48 ± 0.02, ∆(p)

s = −0.15 ± 0.02 (24)

whilst perturbative QCD fits to the data for g1 tend to give broader ranges [14]. In our

numerical analysis, we double the formal errors in (24) to ±0.04, essentially 100% correlated

for the three quark flavours. In the case of the neutron, we have ∆(n)
u = ∆

(p)
d , ∆

(n)
d = ∆(p)

u ,

and ∆(n)
s = ∆(p)

s .

4 Cosmological and Experimental Constraints

The domain of MSSM parameter space that we explore in this paper is that defined in [15].

Several convergent measures of cosmological parameters [20] suggest that the cold dark

matter density ΩCDM = 0.3±0.1 and that the Hubble expansion rate H ≡ h×100 km/s/Mpc:

h = 0.7±0.1, leading to the preferred range 0.1 ≤ ΩCDMh2 ≤ 0.3. The upper limit on ΩCDM

can be translated directly into the corresponding upper limit on Ωχ. However, it is possible

that there is more than one component in the cold dark matter, so that Ωχ < ΩCDM , opening

up the possibility that Ωχ < 0.1. Although the MSSM parameters which lead to Ωχ < 0.1

tend to give larger elastic scattering cross sections, the detection rate also must be reduced

because of the corresponding reduction in the density of LSPs in the Galactic halo. Here

we shall neglect this possibility, assuming instead that essentially all the cold dark matter is

composed of LSPs, so that Ωχ ≥ 0.1.

For the calculation of the relic LSP density, we follow [15], where coannihilations between

χ and the sleptons ˜̀, particularly the lighter stau τ̃1, were shown to play an important role. As

we discuss in more detail later, mχ depends essentially on m1/2, and coannihilation increases
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by a factor ∼ 2 the cosmological upper limit on m1/2 to ∼ 1400 GeV, allowing mχ <∼ 600 GeV.

At this upper limit on m1/2, there is a unique allowed value of m0 ∼ 350 GeV, but for lower

values of m1/2 the width of the allowed range of m0 expands, reaching 50 <∼ m0 <∼ 150 GeV

when m1/2 ∼ 200 GeV. At this value of m1/2 and scanning across the cosmological range in

m0, we find that mχ ∼ 80 GeV, with a small variation by ∼ 0.4 GeV. These numbers are

not very sensitive to tanβ in the range from 3 to 10 studied in [15] and here, nor are they

very sensitive to the chosen value of A.

The lower limit on m1/2 and hence mχ depends on the sparticle search limits provided

by LEP [5]. The most essential of these for our current purposes are those provided by

the experimental lower limits on the lighter chargino mass mχ± and the lighter scalar Higgs

mass mH2 . A lower limit mχ± ≥ 95 GeV was assumed in [15]: unsuccessful chargino searches

during higher-energy runs of LEP have now increased this lower limit to mχ± ≥ 100 GeV [21],

which does not reduce very much the range allowed in [15].

The impact of the recently-improved lower limits on the Higgs mass [21] is potentially

more significant, particularly for tanβ = 3, as displayed in Figs. 6 and 7 of [15]. The

present experimental lower limit for tan β = 3 is probably mH2 > 105 to 109 GeV [21].

The mH2 contours shown in Figs. 6a,b and 7b of [15] were not calculated with the most

recent two-loop MSSM code [22], so we take the mH2 = 100 GeV lines in [15] as indicative

constraints. These correspond to m1/2 ∼ 340(720) GeV for µ > (<)0, corresponding in turn

to mχ >∼ 140(310) GeV. On the other hand, for tanβ = 10, the LEP lower limit on mH2

is considerably weaker than 100 GeV [21], and hence does not constrain significantly the

allowed parameter space, as seen in Figs. 6c,d and 7c of [15].

We note in passing that requiring our present electroweak vacuum to be stable against

transitions to a lower-energy state in which electromagnetic charge and colour are broken

(CCB) [23] would divide the parameter regions allowed in [15] into two parts: one at large

m1/2 and the other at small m1/2 and relatively large m0. We do not implement the CCB

constraint in our analysis, since it may be considered optional. Nor do we implement any

constraint due to the observed rate of b → sγ decay [24], but it is well known that this

reduces very substantially the parameter space allowed for µ < 0.

5 Results

As discussed above, we scan the cosmologically preferred set of parameters which yield

0.1 ≤ Ωχh2 ≤ 0.3 and are consistent with the recent LEP accelerator bounds. For each

value of tan β and sign of µ, we vary m1/2 and m0 over all the allowed range. As default, we
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choose A0 = −m1/2 in most of our computations. Then, using the hadronic inputs described

in section 3, we compute separately the spin-dependent and scalar contributions from the

α2 and α3 coefficients, respectively, to the elastic scattering of LSPs on both protons and

neutrons.

In Figure 1, we show the resulting spin-dependent elastic cross section as a function of

the LSP mass, mχ. Although it is barely discernible, the thicknesses of the central curves in

the panels show the ranges in the cross section for fixed mχ that are induced by varying m0.

At large mχ where coannihilations are important, the range in the allowed values of m0 is

small and particularly little variation in the cross section is expected. The shaded regions in

this and the following figures show the effects of the uncertainties in the input values of the

∆
(p)
i (24). In Figure 1a, for tanβ = 3, µ < 0, we see at small mχ the effect of a cancellation

induced by the difference in signs between ∆u and ∆d,s. Cancellations are possible for the

other values of tan β and sign of µ, but not in the preferred range of m1/2 and m0 used here.

Aside from the cancellation, the spin-dependent cross section peaks at about 10−4 pb and

drops rapidly as mχ increases.

In Figure 2, we show the corresponding result for the scalar cross section, based on α3.

As in Figure 1, the thickness of the central curve reflects the range in m0 sampled. The

shaded region now corresponds to the uncertainties in the inputs given in (19). The scalar

cross section is, in general, more sensitive to the sign of µ than is the spin-dependent cross

section. Notice that, in Figure 2c for tanβ = 10 and µ < 0, there is another cancellation.

In this case, Higgs exchange is dominant in α3. We first note that, for µ < 0, both Zχ3

and Zχ4 are negative, as is the Higgs mixing angle α. Inserting the definitions of δ1i(2i), we

see that there is a potential cancellation of the Higgs contribution to α3 for both up-type

and down-type quarks. Whilst there is such a cancellation for the down-type terms, which

change from positive to negative as one increases mχ, such a cancellation does not occur

for the up-type terms, which remain negative in the region of parameters we consider. The

cancellation that is apparent in the figure is due to the cancellation in α3 between the up-type

contribution (which is negative) and the down-type contribution, which is initially positive

but decreasing, eventually becoming negative as we increase mχ.

In Figure 3, we show the effects of varying some of the input assumptions made earlier.

For example, when the assumed uncertainty in y is taken to be ±0.2, we get a thicker shaded

region, as shown for tanβ = 3, µ < 0 in Figure 3a. In Figure 3b, we give one example of

the cross section for the elastic scattering of neutralinos on neutrons. This particular case

was chosen because it displays the largest difference between the neutron and proton cross

sections among those tested. As one can see, our results for the LSP scattering on neutrons
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and protons are almost identical. Similarly, the effects of changing A0 are also relatively

small, as illustrated by two cases with A0 = 0 in Figures 3c and 3d. In the latter example,

there is almost a factor of 2 difference at higher values of mχ, which is due to yet another

cancellation, this time between the squark-exchange and Z-exchange terms in α2u.

Finally, we show in Figure 4 compilations of our results for the spin-dependent and

-independent cross sections, compared with current and projected experimental limits ob-

tained from [25]. The shaded region in panel (a) is the union of the shaded regions in Figure

1, and the shaded region in panel (b) is the union of the shaded regions in Figure 2.

6 Discussion

As seen in Figure 4, the present experimental upper limit [25] on the spin-independent part of

the elastic scattering of the LSP on a nucleon is around 10−5 pb for 50 GeV <∼ mχ <∼ 100 GeV.

On the other hand, the maximum scalar cross section we find is around 10−8 pb, which is

attained for mχ ∼ 50 GeV. This means that present experiments searching directly for

supersymmetric dark matter are far from constraining the parameter space of our baseline

theoretical framework, in which LEP constraints are applied to MSSM models with universal

supergravity-inspired soft supersymmetry-breaking parameters m1/2, m0.

The literature contains predictions for the elastic LSP-nucleus scattering rates that vary

considerably, with some estimates lying considerably higher than ours [6, 10]. There are

various ways in which such differences might arise, of which we mention a few here. We

have imposed the requirement that the LSP relic density lie in the favoured range 0.1 ≤
Ωχh2 ≤ 0.3, whereas other calculations often include models with lower relic densities. Such

models would normally have larger χχ annihilation cross sections, and correspondingly larger

elastic scattering cross sections. Hence the predicted scattering rates would be larger, if the

conventional halo density ρ ∼ 0.3 GeV/cm3 is assumed for the LSP [25]. However, we

believe this assumption is unreasonable: if not all the total cold dark matter density ΩCDM

is composed of LSPs, the density of LSPs in the halo should be reduced by the corresponding

factor Ωχ/ΩCDM .

Other possible differences may arise in the treatment of the LEP constraints: we find it

to be almost excluded that the LSP be Higgsino-like [5], even if the assumptions of universal

soft supersymmetry breaking are relaxed, and Higgsino dark matter is certainly excluded

if universality is assumed, as is the case here. In addition to the LEP constraints, this is

because the value of µ is predicted as a function of m1/2 and m0, placing the LSP firmly in

the Bino-like region. The same considerations exclude an LSP with mixed Higgsino/gaugino

11



0 100 200 300 400 500 600
       10

       10

       10

       10

       10

       10

       10

       10

-13

-12

-11

-10

-9

-8

-7

m    (GeV)χ

σs
ca

la
r

(p
b)

tan β = 3 µ < 0
(σ   = 0.2)y

0 100 200 300 400 500 600
       10

       10

       10

       10

       10

       10

       10

-9

-8

-7

-6

-5

-4

-3

m    (GeV)χ

σs
pi

n
(p

b)

tan β = 3 µ < 0
(neutron)

       10

       10

       10

       10

       10

-7

-6

-5

-4

-3

σs
pi

n
(p

b)

tan β = 3 µ < 0
(A   = 0)0

12



10 100 1000
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

     10

     10

     10

     10

     10

     10

     10

     10

     10

   10

   10

   10

   10

UKDMC Na + I

Modane NaI

m    (GeV)χ

σs
pi

n
(p

b)

10 100 1000
      10 -13

      10 -12

      10 -11

      10 -10

     10-9

     10-8

     10-7

     10-6

     10-5

     10-4

 

σs
ca

la
r

(p
b)

m    (GeV)χ

UKDMC

DAMA

Heidelberg

CDMS

Heidelberg- Genius (projected)

CDMS Soudan (projected)

Figure 4: Summary plot compiling our predictions in the constrained MSSM for (a) the spin-
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content.

The prediction of µ may be circumvented by postulating non-universality for the soft

scalar supersymmetry-breaking parameters in the Higgs sector, which might have appeared

to resurrect the possibility of a Higgsino-like LSP [26]. However, such a possibility goes

beyond the universality framework adopted here, and, moreover, the LEP constraints now

appear to exclude this possibility [5], as mentioned above.

There are no differences between the effective Lagrangians we and others [8, 16, 17, 18] use

to describe the four-fermion χ− q interaction that determines the elastic χ− p, n scattering

cross sections. We have found differences of detail between our and other treatments of

the hadronic matrix elements of the scalar and axial-current q̄q operators appearing in this

Lagrangian [27], but this is not responsible for any big difference between the results.

We should not want our experimental colleagues to be too downcast by the long road

they appear to have to cover in order to probe the minimal universal MSSM framework

utilized here. For example, there are surely some supersymmetric models that predict larger

scattering rates. However, we think it best to have in mind a plausible and realistic target

sensitivity, which is what our universal framework and implementation of the LEP and

cosmological constraints provide. Our results also have the merit of being relatively specific:

as seen in Figure 4, the elastic scattering cross sections we predict for any given value of the

LSP mass mχ lie in a comparatively narrow band. As discussed earlier, this is essentially

because the LSP is always mainly Bino-like in our framework, so its couplings do not depend

greatly on other MSSM parameters such as m0. The principal causes of broadening are the

uncertainties in the hadronic inputs and the possibilities of cancellations that may reduce

the cross sections for some specific values of the constrained MSSM parameters.

This tight correlation we find between the LSP mass and its elastic scattering rate means

that future experiments [28] should be able to phrase their sensitivities directly in terms of

the LSP mass in the universal supergravity-inspired version of the MSSM. For example, our

results suggest that the proposed Genius experiment [28] would be sensitive to mχ <∼ 100 GeV

for almost all MSSM parameter choices in Figure 5b. More optimistically, if/when a signal

is observed, its plausibility would be enhanced if its recoil spectrum was correlated with the

rate in the manner suggested by Figure 5. Thus our analysis provides experiments with an

additional tool that may assist in the extraction of a signal that might be significantly smaller

than they could have hoped. In any case, the importance of the search for supersymmetric

matter remains unchanged, and there are still several years before the LHC comes into

operation, so these experiments still have both motivation and opportunity.
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