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Abstract

Using conformal field theory methods we construct a metric that describes

the distortion of space-time surrounding a D(irichlet)-brane (solitonic) defect

after being struck by another D-brane. By viewing our four-dimensional

universe as such a struck brane, embedded in a five-dimensional space-time, we

argue on the appearance of a band of massive Kaluza-Klein excitations for the

bulk graviton which is localized in a region of the fifth dimension determined

by the inverse size of the band. The band incorporates the massless mode

(ordinary graviton) and its thickness is determined essentially by the width of

the Gaussian distribution describing the (target-space) quantum fluctuations

of the intersecting-brane configuration.
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I. INTRODUCTION

Considerable scientific interest has been concentrated recently on the revival and exten-
sion of the rather old idea that space-time is actually (4 + n)-dimensional, with our four-
dimensional world being a membrane (Dirichlet brane [1, 2]) of some string theory living in
a 4 + n-dimensional bulk space-time [3–8].

In some of these models, the extra (bulk) dimensions are taken to be relatively large,
compared to the traditional Planck scale, implying, for instance, a bulk gravitational scale
at the range of a few TeV [5–7]. Considerable effort has been devoted to a discussion of
possible phenomenological consequences of these scenarios in immediate-future accelerators
such as LHC.

In the case of extra compact dimensions, which is the one assumed in [5–7], there are
induced modifications of the four-dimensional Newton’s law, which may become phenomeno-
logically important for TeV scale gravity [9,10]. Notice that such modifications are distinct
from earlier modifications proposed in the context of supergravity [11]. It is straightforward
to check that at least two extra dimensions are needed in order to avoid contradiction with
the known laws of gravity at large (solar) distances. On the other hand, for n = 2, astro-
physical considerations [12] imply a scale M ≥ 10TeV which marginally solves the hierarchy
problem. For larger n there are less restrictions, however, it has been argued that in this
approach the hierarchy problem essentially is re-formulated in terms of another parameter
which is now the compactification volume.

In the above scenario, the experimental success [13] of the inverse-square law of Newton
seemed to imply precisely four non-compact dimensions only. More recently, however, the
work of ref. [8] has demonstrated that the situation is completely different in cases where
the higher-dimensional metric was not factorizable [14], namely the case where there is a
warp factor in front of the four-dimensional metric which depends on the coordinates of the
bulk extra dimensions. According to this approach, our universe is a static flat domain-wall
which, in the simplest case of five dimensions, separates two regions of five-dimensional Anti
de Sitter (AdS) space-time. In its simplest version [8], the scenario is realized by introducing
a positive energy brane at the origin and a negative energy brane at distance z where our
world is located and where the graviton amplitude is exponentially suppressed. Modifica-
tions to the above picture with positive energy branes allowing also the possibility of infinite
extra dimensions, multi-brane solutions, and supergravity embedded versions were consid-
ered in the literature [15–22]. Thus, it is worth noticing that the bulk dimensions are not
necessarily compact. The rather important point of [8], however, was the demonstration of
the localization of the bulk gravitational fluctuations on the three-dimensional brane, which
plays the rôle of our world. This localization property was demonstrated by mapping the
problem of the dynamics of these fluctuations into a one-dimensional Schrödinger eigenvalue
problem.

A characteristic feature of such models was the presence of a massless mode for the
graviton (in agreement with Lorentz covariance on the brane) together with a continuum of
massive Kaluza-Klein (KK) states on the four-dimensional world. These KK modes have
different properties as compared with the factorizable case. The presence of such KK states
leads to corrections of the four-dimensional Newton’s law; such corrections, however, are
suppressed by quadratic powers of the inverse Planck mass scale, and hence are unobservable
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for all practical purposes. In some variants of the model [23] one considers a periodic lattice
of three branes, which generates bands in the Kaluza-Klein spectrum, separated from the
massless graviton mode by a gap.

As a result of the above localization, a solution to the mass hierarchy emerges in the
sense that the weak scale is generated from a large scale of the order of Planck mass through
an exponential hierarchy, induced by the presence of the warp factor in the metric of the
four-dimensional world.

The above models are very attractive, and indeed may offer a viable solution to the
hierarchy problem. However, we find it rather restrictive that the discussions so far were
concetrated only on static brane configurations without including dynamics.

Indeed, it is known [24, 25] that when one considers scattering of strings (or branes) off
a D-brane, there is a non-trivial recoil of the latter which distorts the surrounding space-
time [26], implying a sort of back reaction. Such a back reaction curves the space-time
around the stringy defect in an non-trivial way. What we shall argue in this article is that,
as a result of such a back reaction, one can obtain a different sort of mass hierarchy from
that of [8], though the concept of an induced non-factorizable bulk metric also appears here.

The recoil problem is treated at present perturbatively for heavy branes, within the
context of a world-sheet logarithmic conformal field theory [24, 25, 27]. What we shall do
in this work is to construct explicitly the space-time deformation due to the recoil of a 4-
brane, viewed as our Euclideanized four-dimensional space-time embedded in a higher (five)
dimensional bulk space-time, after being struck by another brane. We shall demonstrate
the localization of a thin band of KK massive bulk graviton modes (including the massless
one) on our four-dimensional world, with thickness determined by a weak supersymmetry
breaking scale α due to recoil [28]. We shall also demonstrate the formation of an horizon at
distances given by the inverse of the thickness of the band of the localized KK modes. On
this horizon there is localization of the rest of the massive KK modes, with masses higher
than ∼ α. We shall also demonstrate that in this scenario the induced modifications of the
four-dimensional Newton’s law are suppressed by powers of α/M2

s , where Ms is the string
scale which in our case may be taken to be close to the Planck scale Ms ∼ 1018 GeV. Hence,
such corrections are essentially unobservable for α ∼ TeV, which is the case dictated by the
gauge hierarchy in our universe, given that α is the scale of the induced supersymmetry
breaking on the 4-brane.

The structure of the article is the following: In section 2 we present the salient features
of the world-sheet approach to the D-brane struck by another D-brane or string. In section
3, we construct the space-time deformation due to the recoil effects and show that a non-
factorizable five-dimensional metric arises. We show the existence of a horizon located at
a distance z = 1/α and discuss analytic continuation beyond the horizon. In section 4 we
show that this metric is a solution to the Einstein equations describing an AdS universe
with negative bulk-cosmological constant which vanishes at z = 0. We further show in
the same section that the linearized Einstein equation leads to a Schrödinger type equation
with attractive potential for graviton modes in a thin band of mass up to order m ≤

√
2α,

including the massless graviton mode (expected on account of Lorentz covariance on the
observable brane world). We associate the scale α with that of supersymmetry-breaking on
the 4-brane, as a result of the recoil process [28], and demonstrate that the corrections to
the four-dimensional Newton’s law are suppressed by powers of α/M2

s , with Ms ∼ 1018 GeV
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in our scenario. Conclusions and outlook are presented in section 5.

II. WORLD-SHEET APPROACH TO D-BRANE/D-BRANE SCATTERING: A

REVIEW

We first review the world-sheet formalism based on logarithmic operators that was de-
veloped in a series of papers [24,25,29,30], for the mathematical description of the recoil of
a D-brane when struck by a closed-string state or by another D-brane. Logarithmic confor-
mal field theory [27] lies on the border between finite conformal field theories and general
renormalizable two–dimensional quantum field theories. It is the relevant tool [24,25,29] for
this problem, because the recoil process involves a change of state (transition) in the string
background, and as such is not described by a conformal field theory. This change of state
induced by the recoil process can be described as a change in the σ-model background, and
as such is a non-equilibrium process. This is reflected [25, 29] in the logarithmic operator
algebra itself.

As discussed in references [24, 25, 29] in the case of D-brane string solitons, their recoil
after interaction with a closed-string (graviton) state is characterized by a σ-model deformed
by a pair of logarithmic operators [27]:

CI
ǫ = ǫΘǫ(X

I), DI
ǫ = XIΘǫ(X

I), I ∈ {0, . . . , 3} (1)

defined on the boundary ∂Σ of the string world sheet. Here XI , I ∈ {0, . . . , 3} obey Neumann
boundary conditions on the string world sheet, and denote the brane coordinates, whilst
Θǫ(X

I) is the regularized step-function, to be defined below. The remaining yi, i ∈ {4, . . . , 9}
denote the transverse bulk directions.

In the case of D-particles, which were examined in [24,25,29], the index I takes the value
0 only, in which case the operators (1) act as deformations of the conformal field theory
on the world-sheet. The operator Ui

∫

∂Σ ∂nX
iDǫ describes the movement of the D-brane

induced by the scattering, where Ui is its recoil velocity, and Yi

∫

∂Σ ∂nX iCǫ describes quantum
fluctuations in the initial position Yi of the D-particle. It has been shown rigorously [25]
that the logarithmic conformal algebra ensures energy–momentum conservation during the
recoil process: Ui = ℓsgs(k

1
i + k2

i ), where k1(k2) is the momentum of the propagating closed
string state before (after) the recoil, and gs is the string coupling, which is assumed here to
be weak enough to ensure that D-branes are very massive, with mass MD = 1/(ℓsgs), where
ℓs is the string length.

In the case of Dp-branes, the pertinent deformations are slightly more complicated. As
discussed in [24], the deformations are given by

∑

I

gD
Ii

∫

∂Σ
∂nX

iDI
ǫ and

∑

I

gC
Ii

∫

∂Σ
∂nX

iCI
ǫ . (2)

The 0i components of the two-index couplings gα
Ii, α ∈ {C, D} include the collective mo-

menta and coordinates of the D-brane as in the D-particle case above, but now there are
additional couplings gα

Ii, I 6= 0, which describe the folding of the D-brane. Such a folding
may be caused by scattering with another macroscopic object, namely another D-brane,

4



propagating in a transverse direction, as shown schematically in Fig. 1 for the case of a
D1-brane hitting a D3-brane. This situation is the most interesting to us, since it generates
an AdS3 space, as we show below. For symmetry reasons, in the situation depicted in Fig.
1, the folding of the D3-brane occurs symmetrically around the axis of the D1-brane. In
this case, the precise logarithmic operator deformations shown in (2), which pertain only
to the spatial region yi > 0 for the Dirichlet coordinates, should be supplemented with
their counterparts for the yi < 0 region as well. This would, in principle, require additional
Θ(±yi) factors, which would complicate the analysis without introducing any new points
of principle. Therefore, for simplicity, we restrict ourselves here to the yi > 0 patch of
space-time, away from the hypersurface yi = 0. This will be implicit in what follows.

D3

D1

U

(a) (b)

D3

D3

D1

FIG. 1. Schematic representation of the folding effect in D-brane/D-brane collisions: (a) a D1

brane moving with velocity U along a ‘bulk’ direction perpendicular to a D3 brane embedded in a

D-dimensional Euclidean space-time ED strikes the D3 brane (b), which is then folded, and the

space-time around it is distorted into AdS3 ⊗ ED−3. The dashed circle around the D1 direction in

(b) indicates the angular deficit that appears when the bulk direction along which the D1 brane was

moving is compactified to a circle. A generalization to a higher-dimensional case for the incident

brane is straightforward. In that case the deficit (in the compact case) is a higher-dimensional solid

hyperangle.

The correct specification of the logarithmic pair in equation (2) entails a regulating
parameter ǫ → 0+, which appears inside the Θǫ(t) operator:

Θǫ(X
I) =

∫

dω

2π

1

ω − iǫ
eiωXI

. (3)

In order to realize the logarithmic algebra between the operators C and D, one takes [24]:

ǫ−2 ∼ ln[L/a] ≡ Λ, (4)
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where L (a) are infrared (ultraviolet) world–sheet cutoffs. The recoil operators (2) are
relevant, in the sense of the renormalization group for the world–sheet field theory, having
small conformal dimensions ∆ǫ = −ǫ2/2. Thus the σ-model perturbed by these operators is
not conformal for ǫ 6= 0, and the theory requires Liouville dressing [29, 31, 32]. Momentum
conservation is assured during the scattering process [25].

The folding couplings gD
Ii ≡ gIi, I ∈ {0, . . . , p}, i ∈ {p+1, . . . , 9}, are relevant couplings

with world-sheet renormalization-group β functions of the form

βgIi
=

d

dt
gIi = − 1

2t
gIi, t ∼ ǫ−2 . (5)

This implies that one may construct an exactly marginal set of couplings gIi by redefining

gIi ≡
gIi

ǫ
. (6)

The renormalized couplings g0i were shown in [25] to play the rôle of the physical recoil
velocity of the D-brane, while the remaining gIi, I 6= 0, describe the folding of the Dp-
brane for p 6= 0. Here we shall assume, generalizing the case of ref. [25] that the (bare) recoil
couplings for all I are of equal strength and related to the transverse momentum transfer as

gIi = gs
∆Pi

Ms
, I = 0, . . . , m, i = m + 1, . . .D (7)

for a D–brane embedded in a D-dimensional (bulk) space-time.
A technical but important remark is now in order, concerning the world-sheet recoil

formalism [24]. For reasons of convergence of the world-sheet path integral, the Neumann
coordinate X0 must be Euclideanized. It is only in this case that the identification (4), with
ǫ2 > 0, leads to a mathematically consistent logarithmic algebra of operators. This can be
understood simply by the fact that in the pertinent world-sheet computations of correlation
functions of logarithmic operators (1) one encounters [24], due to (3), the free propagator of
the Neumann coordinates XI :

G0 = limσ→0 < XI(σ)XJ(0) >∗∼ ηIJ ln[L/a] (8)

where < · · · >∗ denotes world-sheet partition function with respect to the free-string world-
sheet action on a flat target space-time manifold {XI}, and ηIJ is the target space metric.
For Euclidean world-sheets one takes ηIJ = δIJ , and this is essential for the convergence of
world-sheet path integral expressions entering in the respective correlators. Indeed, let us
illustrate this by a simple example of the one-point function < C >. This involves (c.f. (3))
the computation of

<
∫ +∞

−∞

dω

ω − iǫ
exp

(

−iωX0
)

>∗∼
∫ +∞

−∞

dω

ω − iǫ
exp

(

−ω2

2
< X0X0 >∗

)

.

There are world-sheet ultraviolet infinities coming from the coincidence limit of the X0

propagator in this expression, which after regularization give [24]:

∫ +∞

−∞

dω

ω − iǫ
exp

(

−ω2

2
η00 ln[L/a]

)

.
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Such integrals are convergent only for Euclidean X0, which we have assumed in [24] and
here.

The Euclideanization of the Neumann coordinates implies that in our picture, of viewing
the (3+1)-dimensional world as a brane, the (longitudinal) Neumann coordinates will define
a D4 domain wall in the bulk space-time, which, after analytic continuation of the coordinate
X0, will result in our four-dimensional space-time. However, the analytic continuation will
take place only at the very end of the calculations. This will be very important for our
purposes here, and will always be understood in what follows.

III. RECOIL-INDUCED SPACE-TIME METRIC DEFORMATIONS

As discussed in [26, 29], the deformations (1) create a local distortion of the space-time
surrounding the recoiling folded D-brane, which may be determined using the method of
Liouville dressing. In [26, 29] we concentrated on describing the resulting space-time in the
case when a D-particle, embedded in a D-dimensional space-time, recoils after the scattering
of a closed string off the D-particle defect. To leading order in the recoil velocity ui of the
D-particle, the resulting space-time was found, for times t ≫ 0 long after the scattering
event at t = 0, to be equivalent to a Rindler wedge, with apparent ‘acceleration’ ǫui [26],
where ǫ is defined above (4). For times t < 0, the space-time is flat Minkowski 1.

This situation is easily generalized to Dp-branes [33]. The folding/recoil deformations
of the Dp-brane (2) are relevant deformations, with anomalous dimension −ǫ2/2, which
disturbs the conformal invariance of the σ model, and restoration of conformal invariance
requires Liouville dressing [32]. To determine the effect of such dressing on the space-time
geometry, it is essential to write [29] the boundary recoil deformations as bulk world-sheet
deformations

∫

∂Σ
gIzxΘǫ(x)∂nz =

∫

Σ
∂α (gIzxΘǫ(x)∂αz) (9)

where the gIz denote the renormalized folding/recoil couplings (6), in the sense discussed
in [25]. As we have already mentioned, such couplings are marginal on a flat world sheet.
The operators (9) are marginal also on a curved world sheet, provided [32] one dresses the
(bulk) integrand by multiplying it by a factor eαIiφ, where φ is the Liouville field and αIi

is the gravitational conformal dimension, which is related to the flat-world-sheet anoma-
lous dimension −ǫ2/2 of the recoil operator, viewed as a bulk world-sheet deformation, as
follows [32]:

αIi = −Qb

2
+

√

Q2
b

4
+

ǫ2

2
(10)

1There is hence a discontinuity at t = 0, which leads to particle production and decoherence for

a low-energy spectator field theory observer who performs local scattering experiments long after

the scattering, and far away from the location of the collision of the closed string with the D

particle [26].
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where Qb is the central-charge deficit of the bulk world-sheet theory. In the recoil problem
at hand, as discussed in [26],

Q2
b ∼ ǫ4/g2

s > 0 (11)

for weak folding deformations gIi, and hence one is confronted with a supercritical Liouville
theory. This implies a Minkowskian signature Liouville-field kinetic term in the respective σ-
model [34], which prompts one to interpret the Liouville field as a time-like target-space field.
However, in our context, this will be a second time coordinate [35], which is independent of
the (Euclideanized) X0. The presence of this second ‘time’ for us will not affect the physical
observables, which will be defined for appropriate slices of fixed Liouville coordinate, e.g.
φ → ∞, or equivalently ǫ → 0. From the expression (11) we conclude (c.f. (10)) that αIi ∼ ǫ
to leading order in perturbation theory in ǫ, to which we restrict ourselves here.

We next remark that, as the analysis of [29] indicates, the XI-dependent field operators
Θǫ(X

I) scale as follows with ǫ: Θǫ(X
I) ∼ e−ǫXI

Θ(XI), where Θ(XI) is a Heavyside step
function without any field content, evaluated in the limit ǫ → 0+. The bulk deformations,
therefore, yield the following σ-model terms:

1

4πℓ2
s

∫

Σ

3
∑

I=0

(

ǫ2gC
Ii + ǫgIiX

I
)

e
ǫ(φ(0)−XI

(0)
)
Θ(XI

(0))∂αφ∂αyi (12)

where the subscripts (0) denote world-sheet zero modes, and gC
0i = yi.

Upon the interpretation of the Liouville zero mode φ(0) as a (second) time-like coordinate,
the deformations (12) yield space-time metric deformations (of the generalized space-time
with two times). The metric components for fixed Liouville-time slices can be interpreted
in [29] as expressing the distortion of the space-time surrounding the recoiling D-brane
soliton.

For clarity, we now drop the subscripts (0) for the rest of this paper, and we work in a
region of space-time on the D3 brane such that ǫ(φ−XI) is finite in the limit ǫ → 0+. The
resulting space-time distortion is therefore described by the metric elements

Gφφ = −1, Gij = δij, GIJ = δIJ , GiI = 0,

Gφi =
(

ǫ2gC
Ii + ǫgIiX

I
)

Θ(XI) , i = 4, . . . 9, I = 0, . . . 3 (13)

where the index φ denotes Liouville ‘time’, not to be confused with the Euclideanized time
which is one of the XI . To leading order in ǫgIi, we may ignore the ǫ2gC

Ii term. The presence
of Θ(XI) functions and the fact that we are working in the region yi > 0 indicate that the
induced space-time is piecewise continuous 2. In the general recoil/folding case considered in
this article, the form of the resulting patch of the surrounding space-time can be determined
fully if one computes the associated curvature tensors, along the lines of [26].

2The important implications for non-thermal particle production and decoherence for a spectator

low-energy field theory in such space-times were discussed in [26, 29], where only the D-particle

recoil case was considered.

8



We now conclude this section with some remarks about the metric (13). First we restrict
ourselves to the case of a single Dirichlet dimension z, playing the rôle of a bulk dimension in a
set up where there are XI , I = 0, . . . 3 Neumann coordinates parametrizing a D4 (Euclidean)
brane (our four-dimensional space-time). Upon performing the time transformation φ →
φ − 1

2
ǫgIzX

Iz, the line element of the above-mentioned space-time becomes:

ds2 = −dφ2 +
(

δIJ − 1

4
ǫ2gIzgJz z2

)

dXIdXJ +
(

1 +
1

4
ǫ2gIzgJz XI XJ

)

dz2 − ǫgIz z dXI dφ ,

(14)

where φ is the Liouville field (which, we remind the reader, has Minkowskian signature, in
the case of supercritical strings we are dealing with here.)

One may now invoke a general coordinate transformation on the brane XI so as to
diagonalize the pertinent induced-metric elements in (14) 3. For instance, to leading order
in the deformation couplings gIzgJz, one may redefine the XI coordinates by

XI → XI − ǫ2

8
z2gIz

∑

J 6=I

gJzX
J ,

z → z



1 +
ǫ2

8

∑

I 6=J

gIzgJzX
IXJ



 (15)

which leaves only the diagonal elements of the metric tensor on the (redefined) hyperplane
XI . In that case, the metric becomes (to leading order in g2

Iz):

ds2 = −dφ2 +
(

1 − α2 z2
)

(dXI)2 +
(

1 + α2 (XI)2
)

dz2 − ǫgIz z dXI dφ ,

α =
1

2
ǫgIz ∼ gs|∆Pz|/Ms (16)

where in the last expression we wanted to make clear that, upon utilizing (6),(7), one can
actually express the parameter α (in the limit ǫ → 0+) in terms of the (recoil) momentum
transfer along the bulk direction. As we shall see later on, this parameter is responsible
for the mass hierarchy in the problem, assuming that the string scale Ms is close to Planck
mass scale 1018 GeV, for ordinary string-theory couplings of order g2

s/2π = 1/20. The above
metric element is derived in the case where ǫgIzz << 1.

A last comment concerns the case in which the metric (16) is exact, i.e. it holds to all
orders in gIzz. This is the case where there is no world-sheet tree level momentum transfer.
This naively corresponds to the case of static intersecting branes. However, the whole
philosophy of recoil [24, 25] implies that even in that case there are quantum fluctuations
induced by summing up genera on the world-sheet. The latter implies the existence of a
statistical distribution of logarithmic deformation couplings of Gaussian type about a mean
field value gc

Iz = 0. Physically, the couplings gIz represent recoil velocities of the intersecting

3Note that general coordinate invariance is assumed to be a good symmetry on the brane, away

from the ‘boundary’ XI = 0.
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branes, hence the situation of a Gaussian fluctuation about a zero mean value represents the
effects of quantum fluctuations about the zero recoil velocity case, which may be considered
as a quantum correction to the static intersecting brane case. Such Gaussian quantum
fluctuations arise quite naturally by summing up higher world-sheet topologies [25]. We
therefore consider taking a statistical average << · · · >> of the line element (14)

<< ds2 >>= −dφ2 +
(

1 − 1

4
ǫ2 << gIzgJz >> z2

)

dXIdXJ +
(

1 +
1

4
ǫ2 << gIzgJz >> XI XJ

)

dz2 − ǫ << gIz >> z dXI dφ ,

(17)

where

<< · · · >>=
∫ +∞

−∞
dgIz

(√
πΓ
)−1

e−g2
Iz

/Γ2

(· · ·) (18)

where the width Γ has been calculated in [25], after proper summation over world-sheet
genera, and in fact is found to be proportional to the string coupling gs.

Obviously, from (18), and assuming that gIz = |Ui|, where Ui = gs∆Pi/Ms is the recoil
velocity [24, 25], the average line element ds2 becomes:

<< ds2 >>= −dφ2 +
(

1 − α2 z2
)

(dXI)2 +
(

1 + α2 (XI)2
)

dz2,

α =
1

2
√

2
ǫΓ (19)

The definition of α comes from evaluating the quantity << g2
Iz >> using the statistical

distribution (18). Thus, in that case, averaging over quantum fluctuations leads to a metric
of the form (16), but with a parameter α much smaller, being determined by the width
(uncertainty) of the pertinent quantum fluctuations [25]. The metric (19) is exact, in contrast
to the metric (16) which was derived for z << 1/α. However, for our purposes below we
shall treat both metrics as exact solutions of some string theory associated with recoil.

An important feature of the line element (19) is the existence of an horizon at z = 1/α
for Euclidean Neumann coordinates XI . Also notice that the Liouville field φ has decoupled,
upon the averaging procedure, and this allows one to consider slices of this field, defined by
φ=const, on which the physics of the observable world can be studied. From a world-sheet
renormalization-group view point this slicing procedure corresponds to selecting a specific
point in the non-critical string theory space. Usually, the infrared fixed point φ → ∞ is
selected. In that case, from (4), one considers a slice for which ǫ2 → 0. But any other choice
could do, so α may be considered a small but otherwise arbitrary parameter of our effective
theory.

The presence of an horizon raises the issue of how one could analytically continue so as
to pass to the space beyond the horizon. The simplest way, compatible, as we shall show
later with the low-energy Einstein’s equations, is to take the absolute value of 1−α2z2 in the
metric element (16). We therefore consider the following metric defined in all space z ∈ R
at a slice of the Liouville time φ=const:

10



ds2
f =

∣

∣

∣1 − α2 z2
∣

∣

∣ (dXI)2 +
(

1 + α2 (XI)2
)

dz2, (20)

For small α, which is the case studied here, and for Euclidean Neumann coordinates XI , the
scale factor in front of the dz2 term does not introduce any singular behaviour, and hence
for all qualitative purposes we may study the following metric element:

ds2
f =

∣

∣

∣1 − α2 z2
∣

∣

∣ (dXI)2 + dz2, (21)

which is expected to share all the qualitative features of the full metric (20) induced by
the recoil process in the case of an uncompactified ‘bulk’ Dirichlet dimension z we restrict
ourselves here 4.

A point that we would like to make concerns the fact that, formally, our analysis leading
to (21) is valid in the region of bulk space-time for which z > 0. However, one may consider
a mirror extension of the space-time for the region z < 0, which we assume in this article.
From now on, therefore, we treat the metric (21) as being defined over the entire real axis
for the bulk coordinate z ∈ R. However, to make contact with the original recoil picture we
restrict ourselves in regions of space-time for which XI > 0.

IV. A MASS HIERARCHY FROM RECOILING D-BRANES

In this section we show that the metric obtained by the dynamical mechanism of D-brane
scattering predicts a natural scale hierarchy. A crucial role is played by the value of the only
parameter of the theory, i.e. α, which is directly related to the D-brane recoil and appears
in the warp factor in front of the four-dimensional part of the metric. With the above in
mind we now write the metric (21) as:

ds2
f = e−2σ(z) (dXI)2 + dz2,

σ(z) = −1

2
ln
(∣

∣

∣1 − α2 z2
∣

∣

∣

)

(23)

4For the case of compact dimension z the situation changes drastically, since in that case, for

compact z and at fixed XI ∼ 1/ǫ ≫ 0 and t ≫ 0, such that α2 X2 ≃ g2
Xz/4, we observe from the

metric (20) that there exists a deficit angle in the circle around z [33]:

δ ≃ (πg2
Iz/4) (22)

implying the dynamical formation of a conical-like singularity. Such singularities in general break

bulk space-time supersymmetry [28]. However, in view of the fact that the folded D- brane is

an excited state of the string/D-brane system, the phenomenon should be viewed as a symmetry

obstruction rather than a spontaneous breaking of symmetry, in the sense that, although the

ground state of the string/D-brane system is supersymmetric, recoil produces a particular excited

state that does not respect that symmetry [36]. We shall not, however, deal any further with the

compact case in what follows, but instead assume a non-compact bulk dimension.
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The only non-zero components of the Christoffel symbol corresponding to the metric (23)
read (in Euclidean signature for XI , I = 0, . . . 3):

Γ0
04 = Γ0

40 = σ′(z)

Γ4
00 = −σ′(z)e−2σ(z)

Γ4
ii = σ′(z)e−2σ(z) , i = 1, 2, 3

Γi
i4 = Γi

4i = −σ′(z) (24)

where the prime denotes differentiation with respect to z. Notice that in the case of
Minkowskian signature for the Neumann time coordinate X0, the only change will be
Γ4

00 → −Γ4
00. This implies a similar sign change for the corresponding components of the

Ricci curvature R00 → −R00. The curvature scalar therefore remains unchanged upon the
analytic continuation of the time variable X0.

For future use we note the following mathematical identities:

σ′(z) = −1

2

α

|1 + αz| [Θ(1 + αz) − Θ(−1 − αz)] +
1

2

α

|1 − αz| [Θ(1 − αz) − Θ(−1 + αz)] ,

σ′′(z) =
1

2

α2

(1 + αz)2
[Θ(1 + αz) − Θ(−1 − αz)] +

1

2

α2

(1 − αz)2
[Θ(1 − αz) − Θ(−1 + αz)]

− α2

|1 + αz|δ(1 + αz) − α2

|1 − αz|δ(1 − αz) . (25)

We next check on whether the metric (23) is a solution of the Einstein’s equations:

Rµν −
1

2
GµνR = Tµν ,

Tµν = − 1

4M3
s

GµνΛ − 1

4M3
s

∑

i

√
G(i)G

(i)
IJδI

µδ
J
ν V(i)(z)/

√
G , µ, ν = 0, . . . 4 , I, J = 0, . . . 3, (26)

where Ms is the string mass scale and Λ is a cosmological constant in the bulk space-time,
and the sum

∑

i is over possible D-brane defects. The index (i) denotes quantities pertaining
strictly to such D-brane domain walls. In our case we can assume i = 1, since originally we
have a (struck) D-brane at the origin z = 0. Note that, in a similar spirit to [8], we have
subtracted a vacuum energy contribution, proportional to V (z) from such D-brane defects.

It is easy to check from (25) that, by placing such domain walls at the horizon points
z = ±1/α, one obtains that the metric (23) is indeed a solution of (26), provided that

3σ′′(z) =
1

4M3
s

∑

i

V(i)(z)

√
G(i)G

(i)
00√

Ge−2σ
, (σ′)2 = − 1

24M3
s

Λ

For a single D-brane at z = 0, the solution is:

Λ

24M3
s

= −1

4

α2

(1 + αz)2
− 1

4

α2

(1 − αz)2
+

1

2

α2

(1 − (αz)2)
E ,

V (z)

4M3
s

=
3

2

α2

(1 + αz)2
+

3

2

α2

(1 − αz)2
−

3α2

|1 + αz|δ(1 + αz) − 3α2

|1 − αz|δ(1 − αz) (27)
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where E = [Θ(1 + αz) − Θ(−1 − αz)] [Θ(1 − αz) − Θ(−1 + αz)] = +1, if −1/α < z < 1/α,
and E = −1 otherwise.

The negative cosmological constant (anti-de-Sitter type Universe) is a generic feature of
intersecting branes [8], but also of the recoil formalism [33, 35], and signals compatibility
with space-time supersymmetry in the case of static non-recoiling intersecting branes [8].
Notice, however, that the cosmological constant vanishes on the original brane z = 0 and
becomes infinitely negative on the horizon |z| = 1/a.

On the other hand, the vacuum energy distribution on the brane hypersurface, V(z), is
positive (V (0) = 12α2) at z = 0, which is compatible with the fact that the recoil excites
the D-brane at z = 0, and the excitation energy is of the same order as the kinetic energy
transfer, due to energy-momentum conservation [25]. V(z) also blows up negative at the
horizon, signaling the formation of domain walls there.

Next we consider the issue of localization of bulk graviton states inside the horizon
−1/α < z < 1/α. To this end, we follow [8] and use the following ansatz for separating
variables XI and z, as far as (small) quantum fluctuations of the bulk graviton state ĥ(XI , z)
about the background (23) are concerned:

ĥ(XI , z) = λ(z)eipE

I
XI

(28)

where the notation pE
I in the momenta on the brane has been explicitly state to remind

the reader that we are working on a Euclidean set up for {XI}, and hence for massive KK
excitations, of mass squared m2 > 0 the on-shell condition should read

(pE
I )2 = −m2 < 0 (29)

The equation for such small fluctuations, can be obtained by linearizing Einstein’s equations
(26) around the AdS background and choosing appropriate gauge for the fluctuations of the
metric. The final equation then reads:

(

−∂I∂
I − ∂z∂

z + V(z)
)

ĥ(XI , z) = 0 (30)

where the “potential” V(z) arises from curvature.
Upon introducing the ansatz (28), and using (29), the above equation becomes a one-

dimensional Schrödinger-type eigenvalue equation for the bulk modes λ(z) [8]

− λ′′(z) +
(

4(σ′)2 − 2σ′′
)

λ(z) = −m2e2σλ(z) (31)

where the various quantities are given in (25) for the problem at hand. It is important to
note the minus sign in front of the mass term on the right-hand-side of (31), which is due to
the Euclidean nature of XI hyperplane (29). As we shall see soon this will play an important
physical rôle. Substituting (25) in (31) one obtains after some straightforward algebra:

−λ′′(z) −
(

2α2

|1 − α2z2|E − α2

|1 + αz|δ(1 + αz) − α2

|1 − αz|δ(1 − αz) +
m2

|1 − α2z2|

)

λ(z) = 0 ,

E = +1 − 1/α < z < 1/α , E = −1 otherwise (32)

The equation (31) has the form of a one-dimensional Schrödinger’s equation. The potential
is drawn in figure 2 for various values of the mass parameter m.

We observe the following:
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• For mass parameters 0 < m < mcr ≡
√

2α the potential is attractive, and the wave
function peaks at z = 0 (see figure 3).

• For mass parameter m >
√

2α the wavefunctions are sharply peaked at the horizon
|z| = 1/α .

For illustration purposes, the wavefunctions (arbitrarily normalized) for three distinct
cases, m = 0, m = 0.2mcr and m = 0.8mcr are depicted in figure (3). For m = 0 (massless
graviton state), the corresponding wavefunction (solid curve) peaks at the D4-brane at z = 0.
As m approaches the critical value mcr the wavefuction (dashed-dotted curve) spreads out
along the z-direction. Wavefunctions for m > mcr (not shown in the figure) are localized on
the two boundaries z = ±1/α.

-1 -0.5 0.5 1
z

-5

5

10

15

V

FIG. 2. Schematic representation of the potential of the equivalent Schrödinger equation in the

bulk direction. The solid curve corresponds to the massless case while the dashed one represents the

potential for the critical value m =
√

2α. Beyond this value, the massive gravitons wavefunctions

are no-longer localized on the z = 0 D3-brane; the dashed-dotted curve represents the potential for

such a case.

The spectrum is continuous in both cases and these are not bound states, in contrast
to the case of [8] for the massless graviton mode. This is easily seen from the form of the
corresponding zero energy eigenvalues in the Schrödinger equation (32). However there is
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localization within the horizon of a thin band of Kaluza-Klein modes, with masses up to√
2α.

-1 -0.5 0.5 1
z

0.2

0.4

0.6

0.8

h

FIG. 3. The solution of the Schrödinger equation for three Kaluza-Klein modes with masses

0 ≤ m <
√

2α. Solid curve corresponds to m = 0 wavefunction. We observe that the modes are

localized within the horizon |z| < 1/α, while they start to spread as m grows. For m ≥
√

2α they

are peaked on the boundaries ±1/α.

This leads to modifications of the Newton’s law on the brane hypersurface {XI}, I =
0, . . . 3 at z = 0 (where the light band of modes including the massless one peaks, and where
the cosmological constant vanishes). This can be easily calculated from the corresponding
Green’s function in the static potential between two mass sources m1, m2. The corrections
are generated by the exchange of massive modes with masses up to

√
2α:

V (r) ∼ GN
m1m2

r

(

1 +
∫

√
2α

0

1

M2
s

me−mrdm

)

=

GN
m1m2

r
+

GNm1m2

r3M2
s

(

1 − e−
√

2αr
)

≃ GN
m1m2

r
+

GNm1m2

√
2α

r2M2
s

(33)

for small thickness of the band α. Thus, we see that the presence of massive Kaluza-Klein
modes in the space-time (23), due to the presence of a recoiling brane (our world), struck by
another string soliton, results in attractive corrections to Newton’s law of r−2 scaling, which
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are suppressed by a power of α/Ms. In our case above the string scale may be assumed to
be the conventional one, unlike the models of [5, 7], Ms ∼ 1018 GeV. In the (formal) limit
α → ∞ one recovers the situation discussed in [8], but as we have explained above our
logarithmic formalism is valid for small α.

The existence of thin bands of Kaluza-Klein modes sets a new mass hierarchy, in the
sense that masses of order α may determine the supersymmetry-breaking scale on the brane
XI , due to the recoil process, as discussed in [28], where we refer the reader for details.
Here we simply mention that the fact that the vacuum energy V(z=0) on the initial brane
located at z = 0 is positive and of order 12α2 (c.f. (27)) signals supersymmetry breaking
on the brane at a scale determined by α << Ms, which may be taken to be of TeV scale,
according to standard arguments on the gauge hierarchy problem of quadratic divergencies
in four-dimensional spontaneously broken gauge theories. Notice that our picture for the
hierarchy is different from that of [8], where the low mass scale (compared to Ms) on our
world arises because of the small overlap of the bulk graviton wavefunction with that on the
brane. In our picture, such small scale factors are valid only on the horizon at |z| = 1/α,
which, however, lies far away from the observable world.

The above considerations concern one non-compact bulk direction. The issue of compact
bulk directions is complicated in our case because of the form of the metric (14), which
implies deficits (c.f. (22)), as discussed in [33]. It will be left for a future publication.
Nevertheless, we believe that the results presented here are sufficient to demonstrate the
important rôle of recoil (and in general quantum fluctuations) on the physics of large extra
dimensions in string theory. The formation of bands of Kaluza-Klein modes, localized within
the horizon of the metric (23) occurs here without the necessity of considering periodic
lattice of branes. And actually the localization is obtained in a dynamical way, consistent
with conformal field theory on the world-sheet of the underlying string theory.

V. CONCLUSIONS

In this paper, we have made an attempt to generate dynamically the MP lanck−MW scale
hierarchy in the context of D-brane scattering. Assuming a D4-brane embedded in a five
dimensional space-time we showed that scattering with another D-brane generates a bulk
AdS5 space-time. The original D4-brane located at the origin of the fifth dimension, is in-
terpeted as our Euclideanized four-dimensional space-time, where the cosmological constant
is found to be zero. Taking into account deformations due to incorporated recoil effects,
we calculated the space-time metric and showed that it satisfies the classical Einstein equa-
tions. Solving the linearized equation for the graviton modes, we find that there appears
a band of massive lower Kaluza-Klein excitations, including the massless ordinary graviton
state, which is localized in a small region of the fifth dimension around the origin where the
D4-brane is located.

More precisely, due to the recoil quantum fluctuations of the D4-brane there is localiza-
tion of a (continuous) thin band of massive KK states with masses up to

√
2α, for small

α << Ms, where the parameter α is related to the strength of the quantum fluctuations and
sets the supersymmetry-breaking scale on the D4-brane. In this sense, the above approach
generates dynamically a mass hierarchy, given the smallness of α as compared to the string
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scale Ms, which in our approach is assumed of order 1018 GeV. There is also the appearance
of an horizon located at |z| ∼ 1/α.

At present, our considerations pertain to non compact fifth dimension. In the case of
compact bulk dimensions there is a discrete set of allowed KK states, with masses quantized
in units of the radius of the compact dimension. However, in that case, within the context
of the recoil approach, there are induced deficits [33] which complicate the analysis. Such
issues, togheter with the extension of the above approach to include more than one extra
bulk dimension, are left for future work. However, we believe that the results presented here
are of sufficient interest to motivate further studies along this direction.
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