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Abstract

We provide an algebraic classification of all supersymmetric domain wall solutions of

maximal gauged supergravity in four and seven dimensions, in the presence of non-

trivial scalar fields in the coset SL(8, IR)/SO(8) and SL(5, IR)/SO(5) respectively. These

solutions satisfy first-order equations, which can be obtained using the method of Bo-

gomol’nyi. From an eleven-dimensional point of view they correspond to various con-

tinuous distributions of M2- and M5-branes. The Christoffel–Schwarz transformation

and the uniformization of the associated algebraic curves are used in order to determine

the Schrödinger potential for the scalar and graviton fluctuations on the corresponding

backgrounds. In many cases we explicitly solve the Schrödinger problem by employing

techniques of supersymmetric quantum mechanics. The analysis is parallel to the con-

struction of domain walls of five-dimensional gauged supergravity, with scalar fields in the

coset SL(6, IR)/SO(6), using algebraic curves or continuous distributions of D3-branes

in ten dimensions. In seven dimensions, in particular, our classification of domain walls

is complete for the full scalar sector of gauged supergravity. We also discuss some general

aspects of D-dimensional gravity coupled to scalar fields in the coset SL(N, IR)/SO(N).
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1 Introduction

Recent years have seen an increasing interest in gauged and ungauged supergravities

in various dimensions following the conjectured duality between gauge theories and

string/M-theory [1, 2, 3]. The AdS/CFT correspondence offers the possibility to un-

derstand strongly coupled gauge theories from a dual supergravity description. The

relevant backgrounds have Poincaré invariance along the boundary directions and are

asymptotic to Anti-de Sitter (AdS) space. The deviations from the AdS geometry in

the interior correspond either to the broken phase of the theory due to non-zero vacuum

expectation values of scalar fields [1], [4]-[12] or to deformations of the conformal field

theory [13]-[21].

In this paper we shall be concerned only with the first possibility. In particular, we

will construct a large class of solutions of D = 7 and D = 4 supergravity that are dual to

the (2, 0) theories in six dimensions [22] and the three-dimensional theories with sixteen

supersymmetries [23] on the Coulomb branch. These theories correspond to the world

volume theories of parallel M5- and M2-branes respectively. In contrast to the conformal

cases, the solutions include also non-zero scalar fields, which, although they vanish at the

boundary, become large in the interior. These solutions can be lifted to eleven dimensions

describing the gravitational field of distributions of a large number of M2- or M5-branes.

The location of the branes is directly related to scalar Higgs expectation values on the

field theory side. Using such solutions, the spectrum of scalar and graviton excitations as

well as the expectation values of Wilson loops can be calculated, shedding new light on

the AdS/CFT correspondence. Such investigations have been carried out for supergravity

duals of N = 4 SYM, sometimes with surprising findings [8, 9, 10]. Interestingly, many

of these backgrounds arise as limits of charged AdS black holes in the lower-dimensional

gauged supergravity theories or as extremal limits [5, 6, 11] of rotating brane solutions

[24, 5, 25, 26]; they have null singularities near the continuous distributions in the higher

dimensional backgrounds. Such singularities arise generically in the flows from confor-

mal to non-conformal theories and it would be interesting to understand them better

from the field theory side.1 Furthermore, these geometries can be viewed as examples

of consistent truncations in various dimensions. The embedding of lower-dimensional

into higher-dimensional supergravities has been worked out explicitly only for a couple of

cases including the S4 and S7 compactifications of eleven-dimensional supergravity [28]

to D = 7 [29] and D = 4 [30] gauged supergravity, respectively. More examples of explicit

Kaluza–Klein Ansätze which relate gauged supergravities to ten/eleven-dimensional su-

pergravity have been worked out in the recent papers [31].

1Recently, supergravity duals of supersymmetric gauge theories with eight supersymmetries were

constructed and a mechanism for resolving a certain type of space-time singularity was proposed [27].

However, the situation in [27] is different because, in N = 2 SYM, the classical superconformal point at

the origin of the Coulomb branch is removed by quantum effects, whereas the Coulomb branch of N = 4

SYM is uncorrected. Therefore, it is not expected that a similar mechanism is at work for backgrounds

with sixteen supersymmetries.
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An additional motivation for investigating solutions of gauged supergravity in detail,

as well as the spectra associated to quantum fluctuations, stems from the possibility

to apply them to scenarios that view our world as a membrane embedded non-trivially

in a higher dimensional non-factorizable space-time [32]. This old idea has been revived

recently in relation to the mass hierarchy problem [33] (see also [34]). In the latter work a

slice of the AdS5 space, where our four dimensional world is embedded, was cut out, thus

resulting in a normalizable graviton zero mode. However, it turns out that there exists

in addition a continuum of massive graviton modes with no mass gap separating them

from the massless one. It was shown in [33] that these modes have negligible effect to

Newton’s law. However, it is quite desirable in this context to find ways to model possible

modifications of Newton’s law, since any deviations from it at the sub-millimeter scale

have not been ruled out by the present day experiments (see, for instance, [35]). It is

known, on the other hand, that there are Yukawa-type modifications to Newton’s law

in theories that possess a mass gap separating massless from massive graviton modes.

Besides the obvious phenomenological advantage of such models, the existence of a mass

gap leads to a well-defined effective field theory of the standard model of particles plus the

massless graviton. This mass gap should be independent of the details of the slicing or at

least be practically insensitive to them. Toy models possessing such desired features have

already been constructed in [36] in the context of five-dimensional gauged supergravity.

In this sense, many of the models, that we will describe in the present paper, as well as

many of the models in [11], can also be used to further pursue these ideas.

This paper is organized as follows: In section 2 we describe the bosonic sector of

gauged supergravity in D dimensions. The non-zero scalars take values in the coset

space SL(N, IR)/SO(N) common to gauged supergravities in any dimension. We re-

strict to vacua with (D − 1)-dimensional Poincaré invariance and find that for certain

values of D and N the equations can be cast in first-order form. These Bogomol’nyi-

type equations are equivalent to Killing spinor equations and these solutions preserve

sixteen supersymmetries. In section 3 we present solutions in arbitrary dimensions that

preserve part of the SO(N) isometries and examine some of their general features. We

explain how these solutions, for the cases that correspond to gauged supergravity, can

be lifted to string/M-theory, thus showing that they are consistent truncations of ten-

or eleven-dimensional supergravity respectively. These higher-dimensional backgrounds

arise in the AdS/CFT correspondence as supergravity duals of the field theories living

on D3, M2 or M5 branes on the Coulomb branch. In section 4 we give a general dis-

cussion of the scalar field equations and graviton fluctuations in these backgrounds, and

the mass spectrum of operators in the dual field theory. Our discussion is facilitated by

the fact that the corresponding equations can be cast into one-dimensional Schrödinger

equations with appropriately chosen potentials. We also make contact with the theory of

supersymmetric quantum mechanics and outline the necessary elements that will be used

for solving explicitly the Schrödinger problem in some cases of current interest. Section

5 is devoted to a detailed discussion of the differential equation for the conformal factor

of the background metrics written in conformally flat form. We present a complete clas-
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sification of solutions with different unbroken isometries in terms of irreducible algebraic

curves. The problem of solving the domain-wall equations is then essentially reduced to

the uniformization of the relevant curves and the inversion of the corrsponding functions.

In Section 6 we treat in detail distributions of M2-branes, which correspond to curves

with genus g ≤ 1. We present their uniformization and obtain explicit expressions for

the conformal factor and the Schrödinger potential of the equation for the scalar and

graviton field fluctuations, whenever this is possible in analytic form. In almost all cases

of genus zero, the spectrum can be found exactly, whereas for the other models we uti-

lize the WKB approximation to determine the mass gap and spacing in the spectra. In

section 7 we repeat the same analysis for distributions of M5-branes. We also include, as

application, the calculation of vacuum expectation values of Wilson surface operators in

the six-dimensional (0, 2) theories on the Coulomb branch using the eleven-dimensional

backgrounds. Section 8 contains a summary of the Lamé equation and its generaliza-

tions, which arise in the study of scalar and graviton fluctuations in the background

of domain walls associated to elliptic functions. Elements of supersymmetric quantum

mechanics are also used to expose connections between different elliptic potentials, and

discuss briefly some features of their exact spectrum beyond the WKB approximation.

Finally, we end with a short discussion in section 9 and list some open problems.

The present paper generalizes previous work by two of the authors [11], where all

domain-wall solutions of five-dimensional gauged supergravity with non-trivial scalar

fields in the coset SL(6, IR)/SO(6) were classified in terms of algebraic curves. In various

places we include for completeness, but with no further explanation, results on the D =

5, N = 6 theory, which correspond to continuous distributions of D3-branes in ten-

dimensional type-IIB supergravity.

2 Gauged supergravity and first-order equations

We consider the sector of gauged supergravity theories with non-trivial fields in the coset

space SL(N, IR)/SO(N). This is in general only a subset of a larger coset space and is

common to gauged supergravity theories in any dimension. To be specific we will study

the following Lagrangian in D dimensions

L =
1

4
R− 1

2

N−1
∑

I=1

(∂αI)
2 − P (αI) , (2.1)

although we will be mainly interested in the two cases (D,N) = (4, 8) and (D,N) = (7, 5)

that correspond to a sector of the four- and seven-dimensional gauged supergravities

[30, 29]. Another case of interest, corresponding to a sector of the five-dimensional

gauged supergravity [37, 38], is (D,N) = (5, 6). All other fields including the fermions

are zero. In this subsector the scalar potential P can be expressed in terms of a symmetric

N ×N matrix M = STS, where S is an element of SL(N, IR). Using an SO(N) rotation
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matrix, M can be diagonalized

M = diag{e2β1 , . . . , e2βN} ,
N
∑

i=1

βi = 0 . (2.2)

In addition, since the determinant of M is 1, it depends on N −1 independent fields. We

parametrize the fields βi by the N − 1 independent scalars αI in the following way

βi =
N−1
∑

I=1

λiIαI , (2.3)

where λiI is an N × (N − 1) matrix. The rows of this matrix correspond to N weights of

the fundamental representation of SL(N), which obey the following normalizations:

N−1
∑

I=1

λiIλjI = 2δij −
2

N
,

N
∑

i=1

λiIλiJ = 2δIJ ,
N
∑

i=1

λiI = 0 . (2.4)

Then the potential takes the form

P = −g
2

32

[

(trM)2 − 2tr(M2)
]

. (2.5)

The equations of motion that follow from varying the action (2.1) with respect to the

metric GMN and the scalars αI are

1

4
RMN − 1

2

N−1
∑

I=1

∂MαI∂NαI −
1

D − 2
GMNP = 0 ,

∂M(
√
−GGMN∂NαI) −

√
−G ∂P

∂αI
= 0 . (2.6)

For the applications we have in mind we need the metric to exhibit (D− 1)-dimensional

Poincaré invariance, namely

ds2 = e2A(z)
(

ηµνdx
µdxν + dz2

)

=

= e2A(r)ηµνdx
µdxν + dr2 , (2.7)

where the ralation between the coordinates z and r is such that dr = −eAdz. Furthermore

we assume that the scalars depend only on z and we concentrate on solutions arising from

first order equations.

The traditional way would be to consider the Killing spinor first-order equations in

the three different cases, when (2.1) corresponds to a sector of gauged supergravity, as

it was done for (D,N) = (5, 6) in [8]. That would leave half of the supersymmetries

unbroken. However, there is an alternative way to arrive at first-order field equations

using a method à la Bogomol’nyi [39]-[42] that will be useful for further generalizations.
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For this task we have to plug the ansatz (2.7) into the action and rewrite the potential

in terms of the prepotential

W = −1

4
trM = −1

4

N
∑

i=1

e2βi . (2.8)

We find

P =
g2

8

(

N−1
∑

I=1

(

∂W

∂αI

)2

− 4

(

1 − 2

N

)

W 2

)

. (2.9)

The resulting one-dimensional effective action

S =

∫

dre(D−1)A

(

∑

I

(

dαI

dr

)2

− 1

2
(D − 1)(D − 2)

(

dA

dr

)2

+ 2P

)

, (2.10)

can be written as a functional, which is a complete square plus a boundary term

S =

∫

dre(D−1)A

(

∑

I

(

dαI

dr
− g

2
∂IW

)2

− (D − 1)(D − 2)

2

(

dA

dr
+

g

(D − 2)
W

)2
)

+

+ 2g(D − 2)e(D−1)AW
∣

∣

∞

r=−∞
, (2.11)

provided that the number of scalar fields and the dimension of space-time are related as

N = 4
D − 2

D − 3
. (2.12)

This relation will be used to simplify various expressions in the rest of the paper.

Then, from (2.11) we can read off the first-order differential equations:

dA

dr
= − g

D − 2
W ,

dαI

dr
=
g

2

∂W

∂αI
. (2.13)

Note that (2.12) has integer solutions only for the values of N and D that were mentioned

at the beginning of this section, namely (D,N) = (5, 6), (D,N) = (7, 5) and (D,N) =

(4, 8). In these three cases there exists a maximally supersymmetric solution of the

equations of motion (2.6) that preserves all 32 supercharges, in which all scalar fields are

set to zero and the metric is just AdSD. In these cases the potential in (2.5) becomes

P = −g2N(N − 2)/32 and equals by definition to the negative cosmological constant.

This defines the mass scale g that we have already used. The associated length scale R

defined by g = 2/R will also be used in this paper. The same AdSD space is obtained for

general values of D and N when all scalars are set to zero, but then, there is no notion

of supersymmetry.

3 The general solution

We begin this section with the construction of the most general solution of the non-

linear system of equations within the D-dimensional ansatz (2.7) that preserves Poincaré
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invariance in the embedded (D−1)-dimensional space-time. To keep our considerations as

general as possible we will assume that the scalar field potential is given by (3.1), but we

will not assume from the very beginning that the relation between the number of scalars

and the dimensionality of the space-time (2.12) holds. After discussing some general

properties of the corresponding configurations, we concentrate on those cases where the

relation (2.12) holds, and therefore the solutions originate from gauged supergravity in

the appropriate number of dimensions. Then, we lift our solutions to eleven or ten

dimensions in the context of eleven- or ten-dimensional supergravity. Our analysis is

based on an analogous treatment of the case (D,N) = (5, 6) that was developed in

reference [11].

3.1 Solutions in arbitrary dimensions

It is possible to find the most general solution of the coupled system of equations (2.13).

As we have already mentioned, we will consider the potential arising from expression

(2.9) after using (2.12). We find that

P =
g2

8

(

N−1
∑

I=1

(

∂W

∂αI

)2

− 2
D − 1

D − 2
W 2

)

. (3.1)

Unless otherwise specified, we will no longer restrict N and D to obey (2.12). The

resulting theory is that of N − 1 scalars coupled to D-dimensional gravity with the

interaction potential (3.1). However, even though it no longer represents, for arbitrary

values of N and D, a sector of some gauged supergravity theory, it still admits interesting

solutions arising from the first-order Bogomol’nyi equations (2.13).

In order to proceed further, we first compute the evolution of the auxiliary scalar

fields βi. Using (2.3) and (2.13) we find

β ′
i = 2

D − 2

N
A′ +

g

2
e2βi+A , i = 1, 2, . . . , N , (3.2)

where the prime denotes derivative with respect to the argument z. It is easy to inte-

grate these N decoupled first-order equations for the βi’s. For further convenience we

reparametrize the function A(z) in terms of an auxiliary function F (zg2) as follows

eA = g(−F ′)
N

4(D−2)+N , (3.3)

where the prime denotes here derivative with respect to the argument zg2. The minus

sign we have included in this definition implies that, for consistency, the function F

should be monotonously decreasing with z. Then, according to this ansatz we find that

the general solution for the D-dimensional metric (2.7) is

ds2 = g2f
1

2(D−2) ηµνdx
µdxν + g−2f− 2

N dF 2 , (3.4)

with

f =
N
∏

i=1

(F − bi) , (3.5)
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and the solution for the scalar fields in (3.2) is given by

e2βi =
f 1/N

F − bi
, i = 1, 2, . . . , N . (3.6)

The bi’s are N constants of integration, which can be ordered as

b1 ≥ b2 ≥ . . . ≥ bN , (3.7)

without loss of generality. Also, since the sum of the βi’s is zero, we find that the function

F has to satisfy the differential equation

(−F ′)∆ =
N
∏

i=1

(F − bi) = f , ∆ =
4(D − 2)N

4(D − 2) +N
. (3.8)

If we assume that our models arise from gauged supergravity, and therefore the rela-

tion (2.12) between the number of scalar fields N and the dimensionality of space-time

D holds, the metric (3.4) will become

ds2 = g2f
1

2(D−2)ηµνdx
µdxν + g−2f− D−3

2(D−2)dF 2 , (3.9)

whereas the scalar fields are still given by (3.6). The function F (zg2) is determined by

solving the equation

(F ′)4 =

N
∏

i=1

(F − bi) = f , (3.10)

since the constant ∆ equals 4 in all three cases (D,N) = (4, 8), (5, 6) and (7, 5). Although

the relation (2.12) guarantees that our models originate from gauged supergravity, it

should be emphasized that it is not the only possibility that results into an integer

value for ∆. As an example, choosing D = 5 and N = 4 we obtain ∆ = 3. Another

interesting case, but with non-integer ∆, arises for D = 3 and N = 2: it has ∆ = 4/3

and describes three-dimensional gravity coupled to a single scalar in the presense of a

negative cosmological constant (since the potential (3.1) turns out to be constant).

So far, we have presented our general solution in a coordinate system where F is

viewed as the independent variable.2 If we insist on presenting the solution in a confor-

mally flat form, as given by the first line in (2.7), the differential equation (3.8) needs to

be solved to obtain F (zg2). This will be studied in detail in section 5, using the theory

of algebraic curves and their uniformization, as it is a necessary step for investigating the

Schrödinger equations that arise for the massless scalar and graviton fluctuations.

If the constants bi are all equal, our solution becomes nothing but AdSD (with radius

2(D − 2)R/N) with all scalar fields turned off to zero. In the opposite case, when all

constants bi are different from one another, there is no continuous subgroup of SO(N)

preserved by our solution. If we let some of the bi’s coincide, we restore various continuous

2To compare this with the results of [11] for the values D = 5 and N = 6, we should replace the

function F (z/R2) and the constants bi used in [11] by 4F (zg2) and 4bi, respectively.
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subgroups of SO(N) accordingly. Imposing the reality condition on the scalars in (3.6)

restricts the values of F to be larger that the maximum of the constants bi; then, according

to the ordering in (3.7), this means that F ≥ b1. For F ≫ b1 the scalars tend to

zero and f ≃ FN , in which case the metric in (2.7) approaches AdSD (with radius

2(D− 2)R/N) as expected. In the conformally flat form of the metric, where z is viewed

as the independent variable, we have eA ∼ 1/z and therefore z = 0 is taken as the origin

of the z-coordinate. Hence, in solving the differential equation (3.10), we will choose the

constant of integration so that in the limit F ≫ b1 we have the asymptotic behaviour

F ∼ 1/z4(D−2)/N .3 For intermediate values of F we have a flow in the D-dimensional

space spanned by all scalar fields βi. In general we may have b1 = b2 = . . . = bn, with

n ≤ N , when b1 is n-fold degenerate. In this case, the solution preserves an SO(n)

subgroup of SO(N) and the flow is actually taking place in N − n dimensions. On the

other hand, let us consider the case when F approaches its lower value b1. Then, the

scalars in (3.6) are approaching

e2βi ≃











f
1/N
0 (F − b1)

(n−N)/N , for i = 1, 2, . . . , n

f
1/N
0

b1−bi
(F − b1)

n/N , for i = n+ 1, . . . , N











, (3.11)

where f0 =
∏N

i=n+1(b1 − bi). Consequently, we have a one-dimensional flow in this limit

since the scalar fields βi can be expressed in terms of a single (canonically normalized)

scalar α as

~β ≃
√

2

Nn(N − n)
(n−N, . . . , n−N, n, . . . , n) α ,

α ≃ 1

2

√

n(N − n)

2N
ln(F − b1) . (3.12)

When our solutions correspond to gauged supergravities and the relation (2.12) ap-

plies, it is also useful to find the limiting form of the metric (3.9) when F → b1. Changing

the variable to ρ as

F = b1 +
(

(1 − n/N)f
1/N
0 gρ

)
N

N−n
, (3.13)

the metric (3.9) becomes, for ρ→ 0+

ds2 ≃ dρ2 +
(

(1 − n/N)nf0g
(D−3)(N−n)+n

)
2

(D−3)(N−n) ρ
2n

(D−3)(N−n) ηµνdx
µdxν . (3.14)

Hence, at ρ = 0 (or equivalently at F = b1) there is a naked singularity that can be

interpreted, as we will see later in a higher-dimensional context, as the location of a

distribution of M5-, M2- or D3-branes for (D,N) = (7, 5), (4, 8) and (5, 6) respectively.

It will also be seen that this singularity is time-like for n = 1, 2, 3 and null for 4 ≤ n < N .

3Using (3.6) we can show that the scalar fields go to zero as αI ∼ zD−3, when (2.12) is obeyed. This

is consistent with the interpretation that these scalars parametrize states in the Coulomb branch of the

N = 4 SYM theory and they do not correspond to explicit mass deformations.
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3.2 M-theory branes

It is possible to lift our seven- and four-dimensional solutions with metric and scalars

given by (3.9) and (3.6) with (D,N) = (7, 5) and (4, 8), respectively, to supersymmetric

solutions of eleven-dimensional supergravity, where only the metric and the three-form

are turned on. The eleven-dimensional solutions will correspond to the gravitational

field of a large number of M5-branes and M2-branes in the field theory limit with a

special continuous distribution of branes in the transverse to the brane space. It shows

that they are true compactifications of eleven-dimensional supergravity on S4 or S7,

respectively; this is also what is expected on general grounds [43]. The method we follow

is the same as that used in [11] to lift the five-dimensional solution with (D,N) = (5, 6)

to a supersymmetric solution of the ten-dimensional type-IIB supergravity representing

distributions of D3-branes in the field theory limit. A brief summary of the main results

will also be included for completeness in this case.

The higher-dimensional metrics for the various distributions of branes have the form

M5−brane : ds2 = H
−1/3
0 ηµνdx

µdxν +H
2/3
0 (dy2

1 + dy2
2 + . . .+ dy2

5) , (3.15)

M2−brane : ds2 = H
−2/3
0 ηµνdx

µdxν +H
1/3
0 (dy2

1 + dy2
2 + . . .+ dy2

8) , (3.16)

and

D3−brane : ds2 = H
−1/2
0 ηµνdx

µdxν +H
1/2
0 (dy2

1 + dy2
2 + . . .+ dy2

6) . (3.17)

In all cases H0 is a harmonic function in the N -dimensional space IRN transverse to

the brane parametrized by the yi coordinates. However, instead of being asymptotically

flat, the metrics (3.15)–(3.17) will become asymptotically AdSD × SN−1 for large radial

distances, with D and N taking their appropriate values. The radius of the sphere

is always R, whereas, in agreement with our previous normalization, it is 1
2
(D − 3)R

for AdSD. Under these conditions, the higher-dimensional solutions break half of the

maximum of 32 supersymmetries (see, for instance, [44]). It is only for coinciding branes,

when the metric is exactly AdSD × SN−1, that the maximal number of supersymmetries

is preserved and the backgrounds are presumably exact vacua.

We proceed further by first performing the coordinate change

yi = 2g(D−5)/2(F − bi)
1/2x̂i , i = 1, 2, . . . , N , (3.18)

where the x̂i’s define a unit N -sphere. It can be shown that the N -dimensional flat metric

in the transverse part of the brane metric (3.15)–(3.17) can be written as

N
∑

i=1

dy2
i = gD−5

N
∑

i=1

x̂2
i

F − bi
dF 2 + 4gD−5

N
∑

i=1

(F − bi)dx̂
2
i . (3.19)

The harmonic function H0 is determined by comparing the massless scalar equation for

the eleven- and ten-dimensional metrics (3.15)–(3.17), with the same equation arising
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using the D-dimensional metric (3.9). In both cases one makes the ansatz that the

solution does not depend on the sphere coordinates, i.e. Φ = eik·xφ(z). Since the solutions

for the scalar Φ should be the same in any consistent truncation of the theory, the

resulting second-order ordinary differential equations should be identical. A comparison

allows to determine the function H0 as follows

H−1
0 =

4

R4
f 1/2

N
∑

i=1

y2
i

(F − bi)2
. (3.20)

The coordinate F is determined in terms of the transverse coordinates yi as a solution

of the algebraic equation
N
∑

i=1

y2
i

F − bi
= 4gD−5 . (3.21)

Note that the algebraic equation (3.21) for F cannot be solved analytically for general

choices of the constants bi. However, this becomes possible when some of the bi’s coincide

in such a way that the degree of the corresponding algebraic equations is reduced to 4 or

less. We also note that H0 as defined in (3.20) and (3.21) is indeed a harmonic function

in IRN . The proof was made in [11] for the case N = 6, but even if N is kept general all

intermediate steps are essentially the same. We note that one may use as independent

variables, instead of the yi’s, spherical coordinates since the constraint (3.21) is then

automatically satisfied. For D3-branes, this was done for the various cases of interest in

[11]. For M2- and M5-branes we expect to recover the metrics found in [12]. Various

subcases were also considered before in [5, 6, 8, 9] in connection with the Coulomb branch

of gauge theories at strong coupling.

Brane solutions that are asymptotically flat are obtained by replacing H0 in (3.15)–

(3.17) by H = 1 +H0. Then, in this context, the length parameter R has a microscopic

interpretation using the eleven-dimensional Planck scale lP or the string scale
√
α′ and

the string coupling gs, and the (large) number of branes Nb. For M5-branes we have

R3 = πNbl
3
P, for M2-branes R6 = 32πNbl

6
P, and for D3-branes R4 = 4πNbgsα

′2.

4 The spectrum of fluctuations

In this section we investigate the problem of solving the differential equations that arise

for the massless scalar field as well as for the graviton fluctuations in our general D-

dimensional background metrics (3.9). After presenting some general features, we make

contact with supersymmetric quantum mechanics, which will prove useful for making

further progress in computing the exact spectrum later in sections 6, 7 and 8.

4.1 Generalities

Within the AdS/CFT correspondence [1, 2, 3] (assuming (2.12)), the solutions and eigen-

values of the massless scalar equation have been associated, on the gauge theory side,
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with the spectrum of the operator TrF 2, whereas those of the graviton fluctuations po-

larized in the directions parallel to the brane, with the energy momentum tensor Tµν

[45, 2, 3, 46]. A priori these two spectra are different. However, it can be shown, sim-

ilarly to the case of five-dimensional gauged supergravity investigated in [36], that the

two spectra and the corresponding eigenfunctions coincide. Hence, in what follows, Φ

will denote either a massless scalar field or any component of the graviton tensor field.

We proceed further by making the following ansatz for the solution

Φ(x, z) = exp(ik · x) exp

(

−D − 2

2
A

)

Ψ(z) , (4.1)

which represents plane waves propagating along the (D − 2)-brane with an amplitude

function that is z-dependent. The mass-square is defined as M2 = −k · k. Then the

equation for Ψ can be cast into a time-independent Schrödinger equation for a wave

function Ψ(z) as

− Ψ′′ + VΨ = M2Ψ , (4.2)

with a potential given by

V =
(D − 2)2

4
A′2 +

D − 2

2
A′′ . (4.3)

It should be noted and will be further discussed later in this section, that this potential

is of the form that appears in supersymmetric quantum mechanics and therefore the

spectrum is non-negative [47, 48].4 However, this does not guarantee that the massless

mode is normalizable. In our case, Ψ0 ∼ exp((D − 2)A/2) and it is clearly not square-

normalizable due to its behaviour near z = 0, namely Ψ0 ∼ 1/z(D−2)/2. Using the general

formulae (3.3) and (3.8) it turns out that the potential takes the form

V =
f 2/∆

4R4

[

(

1 +
8

∆

)

(

N
∑

i=1

1

F − bi

)2

− 8
N
∑

i=1

1

(F − bi)2

]

. (4.4)

We note that in deriving (4.4) from (4.3) the relation (2.12) has not been used.

The expression (4.4) for the potential depends, of course, on the variable z through

the function F (zg2). Even without any knowledge of the explicit z-dependence of the

potential, we may deduce some general properties about the spectrum in the various cases

of interest. In general, F takes values between the maximum of the constants bi (which

according to the ordering made in (3.7) is taken to be b1) and +∞. When F → +∞ (or

equivalently z → 0+), the space approaches AdSD and the potential becomes

V ≃ D(D − 2)

4

1

z2
, as z → 0+ , (4.5)

and hence it is unbounded from above. Let us now consider the behaviour of the potential

close to the other end, namely when F → b1. Consider the general case where b1 appears

4In the context of five-dimensional gauged supergravity this has been first hinted in [11] and explicitly

noted in [49].
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n times, as in the corresponding discussion made at the end of subsection 3.1. Using

(4.4) we find that the potential behaves (including the subscript n to distinguish among

various cases) as

Vn ≃ f
2/∆
0

4R4

(

(1 + 8/∆)n2 − 8n
)

(F − b1)
2n
∆

−2 , as F → b1 , (4.6)

with f0 being a constant given, as before, by f0 =
∏

i(b1 − bi). Hence, for ∆ < n ≤ N ,

the potential goes to zero and the spectrum is continuous. For n = ∆ the potential

approaches a constant value, which is given by V∆,min = 1
4R4 ∆2f

2/∆
0 . Therefore, although

the spectrum is continuous, it does not start from zero, but there is a mass gap whose

squared value is given by the minimum of the potential. Hence, for ∆ ≤ n ≤ N the range

of z necessarily extends to +∞, i.e. 0 ≤ z < ∞, with z = ∞ corresponding to a null

naked singularity (except in the AdS case where n = N). If ∆ < n < N we have that

(F − b1)
1−n/∆ ≃ (n/∆ − 1)g2f

1/∆
0 z near F = b1, and therefore the potential behaves as

∆ < n < N : Vn ≃ Cn,∆

z2
, as z → ∞ ,

Cn,∆ =
1

64

(

n(∆ + 4) − 4∆

∆ − n

)2

− 1

4
. (4.7)

For n = ∆ we have instead that F −b1 ≃ e−f
1/n
0 g2z, as z → ∞ with the potential reaching

the constant value that we have mentioned above. For n < ∆ the potential goes to

either +∞ or −∞, as F → b1 and therefore the spectrum cannot be continuous but

discrete. Therefore there should be a maximum value for z, denoted by zmax, that is

determined by solving the algebraic equation F (zmaxg
2) = b1. The value of z = zmax

corresponds to a time-like naked singularity. Then, using the relation (F − b1)
1−n/∆ ≃

(1 − n/∆)g2f
1/∆
0 (zmax − z) near F = b1, we find that

n < ∆ : Vn ≃ Cn,∆

(z − zmax)2
, as z → z−max ,

Cn,∆ =
1

64

(

n(∆ + 4) − 4∆

∆ − n

)2

− 1

4
. (4.8)

One may worry that there are cases where the potential goes to −∞ at z = zmax with

a coefficient Cn,∆ that is smaller than −1/4; then, it is well known from elementary

quantum mechanics, that the spectrum might be unbounded from below. However,

this does not happen because we are dealing with supersymmetric quantum mechanics

and the spectrum is bounded from below by zero. In addition, the coefficient Cn,∆ in

(4.8) is manifestly greater or equal than −1/4; the limiting value −1/4 is reached for

n = 4∆/(∆ + 4). The qualitative analysis of the spectrum we just presented agrees with

that performed for (D,N) = (5, 6) in [11] and for (D,N) = (7, 5) and (D,N) = (4, 8) in

[12].

As we see later, solving the Schrödinger equation (4.2) and determining the spectrum

is a non-trivial problem, except for a few particular cases where explicit calculations can
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be carried out in detail. However, when the spectrum is discrete, as for n < ∆, we

may use the approximate method of WKB. Since the quantum mechanical potentials are

supersymmetric, WKB is expected to be an excellent approximation, not only for high

quantum numbers, but also for low ones [48]. Moreover, if the potential turns out to be

shape-invariant, the WKB approximation is also exact [48]. It is convenient at this point

to use F as an independent variable instead of z. Then, changing the dependent variable

in (4.2) as Ψ = e(D−2)A/2φ, we find the equation

g4∂Ff
1
4
+ 1

∆∂Fφ+M2f
1
4
− 1

∆φ = 0 . (4.9)

Using well-developed methods for studying this type of differential equations (see, for

instance, [25]), the spectrum is found to be given approximately by

M2
m =

π2

z2
max

m

(

m+
D − 3

2
+

|(n/4 − 1)∆ + n|
2(∆ − n)

)

+ O(m0) , m = 1, 2, . . . , (4.10)

where, as usual, zmax is the maximum value of z and ∆ is the constant defined in (3.8).

It turns out that the validity of the WKB approximation requires that the inequality

n < ∆ be satisfied. This is also consistent with the fact that the potential should be

unbounded at the end points F = +∞ and F = b1.

4.2 Relation to supersymmetric quantum mechanics

We have already mentioned that the potential (4.3) has the form encountered in super-

symmetric quantum mechanics [47, 48]. Let us make this relationship more explicit by

first recalling that in supersymmetric quantum mechanics, two potentials are supersym-

metric partners of one another provided that there is a superpotential W (z) so that

V1(z) = W 2 −W ′ , V2(z) = W 2 +W ′ . (4.11)

Then, in terms of the ladder operators

a =
d

dz
+W (z) , a† = − d

dz
+W (z) , (4.12)

the eigenstates of the two Hamiltonians H1, H2 are related to each other as

ψ(2)
n =

1
√

E
(1)
n+1

aψ
(1)
n+1 , ψ

(1)
n+1 =

1
√

E
(2)
n

a†ψ(2)
n , (4.13)

whereas for the energy levels, in the case that the spectra of the two partner potentials

are discrete, we have the relation

E(2)
n = E

(1)
n+1 , n = 0, 1, 2, . . . , (4.14)

with E
(1)
0 = 0. Notice that if ψ

(1)
n+1 of H1 is normalized then the wave-function ψ

(2)
n of H2

will be also normalized and vice-versa. Thus, on general grounds, knowing the spectrum
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of H1 one can construct the spectrum of H2; conversely, from the spectrum of H2 one can

deduce the spectrum of H1 apart from the ground state with E
(1)
0 = 0 which is not paired.

This relation is true only for the case of unbroken supersymmetry. When supersymmetry

is broken, there is a 1-1 pairing of all eigenstates of H1 and H2 and the relations become

modified by replacing ψ
(1)
n+1 with ψ

(1)
n and E

(1)
n+1 with E

(1)
n in the equations above. Then,

the potentials V1 and V2 have degenerate positive ground state energies. We also recall

that when two partner potentials have continuum spectra the corresponding reflection

and transmission probabilities are identical.

The Schrödinger potential (4.3) that arose in the study of quantum fluctuations on

domain wall backgrounds has indeed the form V2(z) with superpotential

W (z) =
D − 2

2
A′(z) . (4.15)

Then, using (3.3) and (3.8) we find that the partner potential V1(z) in (4.11) takes the

form

V1 =
f 2/∆

4R4

[

(

1 − 8

∆

)

(

N
∑

i=1

1

F − bi

)2

+ 8
N
∑

i=1

1

(F − bi)2

]

. (4.16)

which is analogous to the form (4.4) for V2. Specific examples of this relation will be

considered in detail in later sections.

5 Algebraic classification

The underlying mathematical structure for solving the differential equation

(F ′(z))4 = (F (z) − b1)(F (z) − b2) · · · (F (z) − bN) , (5.1)

with arbitrary moduli bi, is that of the Christoffel–Schwarz transformation in complex

analysis. This transformation is familiar from electrostatics, where one applies the tech-

nique to find the electric potential for a given distribution of charges. From this point of

view, it is not surprising that the ansatz we made for constructing static domain walls

in theories of gauged supergravity amounts to solving a similar mathematical problem.

It is useful to think of the variable z as being complex, whereas F takes values in the

complex upper-half plane. Of course, appropriate restrictions have to be made at the end

in order to ensure the reality of the variable z and hence the reality of our domain wall

solutions. As we will see in detail, the solutions are characterized by the uniformization

of Riemann surfaces, which are naturally associated to the Christoffel–Schwarz transfor-

mation. Hence, the explicit derivation of the Schrödinger potential V (z) requires, for all

practical purposes, going through such a mathematical framework, apart from its own

value in providing a systematic classification of all domain-wall solutions in terms of alge-

braic curves. Also note that the variable F is a function F (zg2), but for simplicity we set

g = 1 in the following; this parameter can be easily reinstated at the end by appropriate

scaling in z. Here, we do not assume any particular ordering of bi.
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We will treat the Christoffel–Schwarz transformation in a unified way for all three

cases of interest, namely (D,N) = (4, 8) (M2-branes), (D,N) = (5, 6) (D3-branes), and

(D,N) = (7, 5) (M5-branes), since there is a hierarchy of algebraic curves within this

transformation that depends on the isometry groups of the distributions of branes. It

is useful to start with N = 8 and consider an octagon in the complex z-plane, which is

mapped onto the upper-half plane via a Christoffel–Schwarz transformation

dz

dF
= (F − b1)

−ϕ1/π(F − b2)
−ϕ2/π · · · (F − b8)

−ϕ8/π . (5.2)

This transformation maps the vertices of the octagon to the points b1, b2, · · · , b8 on the

real axis of the complex F -plane, whereas its interior is mapped onto the entire upper-

half F -plane. The variables ϕi denote the exterior (deflection) angles of the octagon

at the corresponding vertices, which are constrained by geometry to satisfy the relation

ϕ1 +ϕ2 + · · ·+ϕ8 = 2π. We proceed by making the canonical choice of angles ϕ1 = ϕ2 =

· · · = ϕ8 = π/4, in which case we arrive at the differential equation that relates dz and

dF :
(

dz

dF

)4

= (F − b1)
−1(F − b2)

−1 · · · (F − b8)
−1 , (5.3)

which is the equation we have to solve for the case of M2-branes.

It is convenient at this point to introduce complex algebraic variables

x = F (z) , y = F ′(z) , (5.4)

which cast the above differential equation into the form of an algebraic curve

y4 = (x− b1)(x− b2) · · · (x− b8) . (5.5)

This defines a Riemann surface of genus g = 9,5 when any two moduli are not equal,

as follows by direct application of the Riemann–Hurwitz relation, which is standard in

algebraic geometry. The task now is to uniformize the algebraic curve by finding another

complex variable, call it u, so that x = x(u) and y = y(u), which resolves the problem

of multi-valuedness of the algebraic equation above; the corresponding Riemann surface

is pictured geometrically by gluing four sheets together along their branch cuts. Then,

following the definition of x and y in terms of F (z) and its z-derivative, one applies the

chain rule in order to obtain the function z(u) by integration of the resulting first-order

equation
dz

du
=

1

y(u)

dx(u)

du
. (5.6)

Finally, by inverting the result we obtain the function u(z), which yields F (z), and

hence the conformal factor of the corresponding domain wall solutions, as well as the

Schrödinger potential V (z) for the graviton and scalar field fluctuations in these back-

grounds. Of course, there is an integration constant that appears in the function z(u),

5We will use the symbol g to denote the genus of a Riemann surface. The fact that the same notation

has already been used for a mass scale should not create a confusion to the reader.
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but this can be fixed by requiring that the asymptotic behaviour of the domain walls

approach the AdS geometry as z → 0. We also note for completeness that there is a

discrete symmetry x ↔ −x, bi ↔ −bi that leaves invariant the form of the algebraic

curve. It can be employed in order to set F bigger or equal to the maximum value of

the moduli bi instead of being smaller or equal to the minimum value, thus insuring that

z → 0 corresponds to F → +∞ instead of −∞.

The whole procedure is straightforward, but in practice it turns out to be cumbersome

when the moduli parameters bi take general values. After all, the uniformization of a

genus-9 Riemann surface and the explicit derivation of the function u(z) is a formidable

task. Matters simplify considerably when one imposes some isometry that effectively

reduces the genus of the algebraic curve as certain moduli are allowed to coalesce. In

general we will have models for each continuous subgroup of the maximal isometry group

SO(8), in which case the algebraic curve takes the irreducible form

ym = (x− b1)
a1(x− b2)

a2 · · · (x− bn)an , (5.7)

where the integer exponents (with n ≤ 8) satisfy the relation a1 + a2 + · · ·an = 2m.

We present below in table 1 all Riemann surfaces that classify the domain-wall solu-

tions of four-dimensional gauged supergravity with non-trivial scalar fields in the coset

SL(8, IR)/SO(8) by giving their genus according to the Riemann–Hurwitz relation, their

irreducible form (since in certain cases the exponents have common factors and the curve

might be reducible when written in its original form), as well as the corresponding isome-

try groups that determine the geometrical distribution of M2-branes in eleven dimensions.

We have 22 models in total, which are listed.
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Genus Irreducible Curve Isometry Group

9 y4 = (x− b1)(x− b2) · · · (x− b7)(x− b8) None

7 y4 = (x− b1)(x− b2) · · · (x− b6)(x− b7)
2 SO(2)

6 y4 = (x− b1)(x− b2) · · · (x− b5)(x− b6)
3 SO(3)

5 y4 = (x− b1) · · · (x− b4)(x− b5)
2(x− b6)

2 SO(2) × SO(2)

4 y4 = (x− b1)(x− b2)(x− b3)(x− b4)
2(x− b5)

3 SO(2) × SO(3)

3 y4 = (x− b1) · · · (x− b4)(x− b5)
4 SO(4)

y4 = (x− b1)(x− b2)(x− b3)(x− b4)
5 SO(5)

y4 = (x− b1)(x− b2)(x− b3)
3(x− b4)

3 SO(3) × SO(3)

y4 = (x− b1)(x− b2)(x− b3)
2(x− b4)

2(x− b5)
2 SO(2) × SO(2) × SO(2)

2 y4 = (x− b1)(x− b2)
2(x− b3)

2(x− b4)
3 SO(2) × SO(2) × SO(3)

1 y4 = (x− b1)(x− b2)(x− b3)
6 SO(6)

y4 = (x− b1)(x− b2)(x− b3)
2(x− b4)

4 SO(2) × SO(4)

y4 = (x− b1)(x− b2)
2(x− b3)

5 SO(2) × SO(5)

y4 = (x− b1)
2(x− b2)

3(x− b3)
3 SO(2) × SO(3) × SO(3)

y2 = (x− b1)(x− b2)(x− b3)(x− b4) SO(2)4

0 y4 = (x− b1)(x− b2)
7 SO(7)

y = (x− b)2 SO(8) (maximal)

y2 = (x− b1)(x− b2)
3 SO(2) × SO(6)

y4 = (x− b1)(x− b2)
3(x− b3)

4 SO(3) × SO(4)

y4 = (x− b1)
3(x− b2)

5 SO(3) × SO(5)

y = (x− b1)(x− b2) SO(4) × SO(4)

y2 = (x− b1)(x− b2)(x− b3)
2 SO(2) × SO(2) × SO(4)

Table 1: Curves and symmetry groups of domain walls for M2-branes.

We will see later that, for the models with low genus (0 or 1), the uniformization can

be carried out in all detail and it is possible in many cases to arrive at explicit expressions

for the exact form of the Schrödinger potential.

It is interesting to note that the classification of domain walls of five-dimensional

gauged supergravity with non-trivial scalar fields in the coset SL(6, IR)/SO(6) follows

immediately from above by restricting our attention to models with an SO(2) isometry

factor in the symmetry group. It is known that in this case the classification reduces to

the list of all algebraic curves [11]

y4 = (x− b1)(x− b2) · · · (x− b6) , (5.8)

depending on the values of the six moduli bi. But such curves can be viewed as special

cases of the N = 8 curves when b7 = b8 = ∞. Therefore, by comparison with table 1 we

list in table 2 all domain walls of five-dimensional gauged supergravity, which correspond

to various continuous distributions of D3-branes in ten dimensions. We have 11 models

in total, which are listed.
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Genus Irreducible Curve Isometry Group

7 y4 = (x− b1)(x− b2) · · · (x− b5)(x− b6) None

5 y4 = (x− b1)(x− b2)(x− b3)(x− b4)(x− b5)
2 SO(2)

4 y4 = (x− b1)(x− b2)(x− b3)(x− b4)
3 SO(3)

3 y4 = (x− b1)(x− b2)(x− b3)
2(x− b4)

2 SO(2) × SO(2)

2 y4 = (x− b1)(x− b2)
2(x− b3)

3 SO(2) × SO(3)

1 y4 = (x− b1)(x− b2)(x− b3)
4 SO(4)

y4 = (x− b1)(x− b2)
5 SO(5)

y4 = (x− b1)
3(x− b2)

3 SO(3) × SO(3)

y2 = (x− b1)(x− b2)(x− b3) SO(2) × SO(2) × SO(2)

0 y2 = (x− b1)(x− b2)
2 SO(2) × SO(4)

y2 = (x− b)3 SO(6) (maximal)

Table 2: Curves and symmetry groups of domain walls for D3-branes.

Finally, the algebraic classification of all domain-wall solutions of seven-dimensional

gauged supergravity with non-trivial scalar fields in the coset SL(5, IR)/SO(5) (which by

the way provides the full scalar sector in this case) follows by considering all Riemann

surfaces of the form

y4 = (x− b1)(x− b2) · · · (x− b5) , (5.9)

for various values of the five moduli bi. As before, these surfaces can be viewed as special

cases of the N = 8 algebraic curves where three of the moduli are taken to infinity,

i.e. b6 = b7 = b8 = ∞, whereas the remaining are free to vary. Put differently, we may

compose the list of all domain walls that correspond to various continuous distributions of

M5-branes in eleven dimensions by considering all N = 8 models with a SO(3) isometry

factor. Thus, we have 7 models in total, which are listed.

Genus Irreducible Curve Isometry Group

6 y4 = (x− b1)(x− b2)(x− b3)(x− b4)(x− b5) None

4 y4 = (x− b1)(x− b2)(x− b3)(x− b4)
2 SO(2)

3 y4 = (x− b1)(x− b2)(x− b3)
3 SO(3)

2 y4 = (x− b1)(x− b2)
2(x− b3)

2 SO(2) × SO(2)

1 y4 = (x− b1)
2(x− b2)

3 SO(2) × SO(3)

0 y4 = (x− b1)(x− b2)
4 SO(4)

y4 = (x− b)5 SO(5) (maximal)

Table 3: Curves and symmetry groups of domain walls for M5-branes.

In this latter case, the invariance of the curves under the discrete symmetry x↔ −x,
bi ↔ −bi is not present any more because the algebraic equations contain an odd number

of factors.
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6 Distributions of M2-branes

In this section we treat the distributions of M2-branes with isometries that correspond

to genus 0 and 1 and present the uniformization of the associated algebraic curves. We

have 12 such models of low genus, including the SO(8) model of AdS4 space. When it

is possible, we determine the conformal factor of the metrics (written in conformally flat

form), as well as the Schrödinger potentials corresponding to the equation for the scalar

field and graviton fluctuations. There are several cases where we can explicitly solve the

Schrödinger equation and find the spectrum by means of elementary methods, otherwise

we will use the WKB approximation for the computations.

We begin first with the model SO(2) × SO(2) × SO(2) × SO(2), which is governed

by a g = 1 algebraic curve, and study certain limits for which some of the moduli are

let to coincide and the genus is reduced to 0. These cases are SO(4) × SO(2) × SO(2),

SO(4)× SO(4) and SO(6)× SO(2) as well as the trivial SO(8) model. We also present

other g = 0 models, which cannot be obtained as degenerate limits of the above, namely

the models with symmetry group SO(7) and SO(3) × SO(5). For completeness we also

present the uniformization of the remaining g = 1 cases, as well as the remaining g = 0

model with symmetry SO(3)×SO(4), which unfortunately cannot be explicitly brought

to a conformally flat frame by expressing their uniformizing parameter as a function of

z, u(z), in closed form.

6.1 SO(2) × SO(2) × SO(2) × SO(2)

The algebraic curve can be taken from table 1 and corresponds to a g = 1 Riemann

surface

y2 = (x− 1/λ1)(x− 1/λ2)(x− 1/λ3)x , (6.1)

with bi = 1/λi. We set b4 = 0 by a shift of x and assume the ordering λ1 ≤ λ2 ≤ λ3 ≤
λ4 = +∞. Using the birational transformations

y = Y x2/(2
√

λ1λ2λ3) , X = −1/x , (6.2)

we obtain

Y 2 = 4(X + λ1)(X + λ3)(X + λ3) . (6.3)

Finally, we can bring the curve to its Weierstrass form

w2 = 4v3 − g2v − g3 , (6.4)

by letting X = v − (λ1 + λ2 + λ3)/3, Y = w. The coefficients turn out to be

g2 =
2

9

(

(λ1 + λ2 − 2λ3)
2 + (λ2 + λ3 − 2λ1)

2 + (λ3 + λ1 − 2λ2)
2
)

,

g3 =
4

27
(λ1 + λ2 − 2λ3)(λ2 + λ3 − 2λ1)(λ3 + λ1 − 2λ2) .
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This elliptic curve can be uniformized in the standard way using the Weierstrass

functions6

v = ℘(u) , w = ℘′(u) . (6.5)

In general, the two half-periods of the Weierstrass function are given by

ω1 =
K(k)√
e1 − e3

, ω2 =
iK(k′)√
e1 − e3

, (6.6)

where K is the complete elliptic integral of the first kind with modulus k and comple-

mentary modulus k′ given as

k2 =
e2 − e3
e1 − e3

, k′2 = 1 − k2 =
e1 − e2
e1 − e3

. (6.7)

Here e1, e2 and e3 are the values of the Weierstrass function at the half-periods, i.e.

℘(ω1) = e1, ℘(ω2) = e3 and ℘(ω1 + ω2) = e2, which are expressed in terms of the

parameters λi as

ei = −λi +
1

3
(λ1 + λ2 + λ3) , i = 1, 2, 3 . (6.8)

So, we finally have

F (zg2) = x = − 1

℘(u) − (λ1 + λ2 + λ3)/3
, (6.9)

and

F ′(zg2) = y =
1

2
(λ1λ2λ3)

−1/2 ℘′(u)

(℘(u) − (λ1 + λ2 + λ3)/3)2
. (6.10)

Next we compute dx/du = 2(λ1λ2λ3)
1/2y and dx/dz = g2y and find

u =
g2

2
(λ1λ2λ3)

−1/2z + c , (6.11)

where the integration constant c is given implicitly by the relation

℘(c) =
1

3
(λ1 + λ2 + λ3) . (6.12)

The conformal factor is

e2A = − g2

2
√
λ1λ2λ3

℘′(u)

(℘(u) − ℘(c))2
. (6.13)

The constant c in (6.12) was chosen in such a way that e2A ∼ 1/z2 as z → 0 and the

space becomes AdS4. Also, according to the conventions followed in this paper we choose

the branch ℘′(c) < 0, since c is otherwise determined up to a sign; then, the function F

in (6.9) indeed approaches +∞ as z → 0. Using the equation for c and certain identities

involving the Weierstrass function, the conformal factor can be brought to the form

e2A =
g2

4λ1λ2λ3
(℘(u− c) − ℘(u+ c)) . (6.14)

6Throught the rest of the paper we will make use of elliptic functions as well as of other special

functions following the conventions of [50, 51, 52].
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Finally, the Schrödinger potential (4.3) can be written as

V (z) =
g4

4λ1λ2λ3
(2℘(u+ c) + 2℘(u− c) − ℘(2u)) . (6.15)

The structure of the spectrum is understood using the results of section 4. For generic

non-identical values of λi the spectrum is discrete and the range of 0 ≤ z ≤ zmax is finite,

where zmax is found by solving the equation F (zmaxg
2) = 1/λ1. We find, in particular,

that

zmax =
2
√
λ1λ2λ3

g2
(ω1 − c) , (6.16)

where ω1 and c are given by (6.6) and (6.12). Then, using (4.10) with D = 4, ∆ = 4 and

n = 2, we determine the spectrum within the WKB approximation

M2
m =

π2

z2
max

m

(

m+
1

2

)

+ O(m0) , m = 1, 2, . . . . (6.17)

Note that the model we have just considered corresponds to the supersymmetric

(extremal) limit of the most general rotating M2-brane solution [24] of eleven-dimensional

supergravity. Physically, the parameters bi are set equal (up to a factor) to the four

different rotational parameters that appear in that general solution, and therefore are

naturally associated to the Cartan subgroup of SO(8). This identification is analogous

to the model of a D3-brane distribution with SO(2) × SO(2) × SO(2) isometry, which

corresponds to the supersymmetric limit of the most general rotating D3-brane solution

[25] of type-IIB supergravity, as shown in [11].

We will return again to this model in section 8, together with other potentials that

arise in elliptic solutions of gauged supergravities, and apply the rules of supersymmetric

quantum mechanics to simplify the calculation of the exact spectrum. It will turn out that

the partner potential is formulated as a Lamé problem with half-integer characteristic

n = 1/2.

6.2 SO(4) × SO(2) × SO(2)

The corresponding algebraic curve of genus 0 is y2 = (x−b1)(x−b2)(x−b3)2, according to

table 1. It can be brought to the unicursal form v = w by the birational transformation

x =
b1vw − b2
vw − 1

, y = (b2 − b1)
v

(vw − 1)2
(b2 − b3 − (b1 − b3)vw) . (6.18)

Introducing a uniformizing parameter u, so that u = v = w, we find after some compu-

tation

dz =
2du

b2 − b3 − (b1 − b3)u2
, (6.19)

which can be easily integrated by elementary functions; the final result depends on the

sign of (b1 − b3)(b2 − b3).
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Alternatively, the result can be obtained as the limit λ1 = λ2 of the SO(2)×SO(2)×
SO(2) × SO(2) model. Using some limiting properties of the Weierstrass functions, we

find that the conformal factor is

e2A =
2

R2λ1λ3
(λ3/λ1)

1/2(λ3/λ1 − 1)3/2 sinh 2
√
λ3 − λ1u

(cosh2
√
λ3 − λ1u− λ3/λ1)2

, (6.20)

and that the Schrödinger potential takes the trigonometric form

V = 4
λ3 − λ1

R4λ2
1λ3

(

4
λ3/λ1 cosh 2

√
λ3 − λ1u− cosh2

√
λ3 − λ1u

(cosh2
√
λ3 − λ1u− λ3/λ1)2

+ 1 − 1

sinh2 2
√
λ3 − λ1u

)

,

(6.21)

where

u =
g2z

2λ1

√
λ3

+ c , c =
sinh−1(

√

λ3/λ1 − 1)√
λ3 − λ1

. (6.22)

The spectrum is continuous (according to the ordering of our parameters λ1 = λ2 < λ3),

and 0 ≤ z < ∞. This example corresponds to n = 4, which we have already discussed

on general grounds in section 4. Hence, there is a finite mass gap given by the value of

the potential at z = ∞. We find, in particular, that

M2
gap = 4

λ3 − λ1

λ2
1λ3R4

. (6.23)

Alternatively, one may consider the limit λ2 = λ3 of the model with SO(2)×SO(2)×
SO(2) × SO(2) symmetry. It turns out that the result is equivalently described by

considering the analytic continuation of (6.21) and (6.25) by taking λ3 < λ1. Then, the

conformal factor becomes

e2A =
2

R2λ1λ3
(λ3/λ1)

1/2(1 − λ3/λ1)
3/2 sin 2

√
λ1 − λ3u

(cos2
√
λ1 − λ3u− λ3/λ1)2

, (6.24)

and the Schrödinger potential is

V = 4
λ1 − λ3

R4λ2
1λ3

(

4
cos2

√
λ1 − λ3u− λ3/λ1 cos 2

√
λ1 − λ3u

(cos2
√
λ1 − λ3u− λ3/λ1)2

− 1 − 1

sin2 2
√
λ1 − λ3u

)

,

(6.25)

where

u =
g2z

2λ1

√
λ3

+ c , c =
sin−1(

√

1 − λ3/λ1)√
λ1 − λ3

. (6.26)

The spectrum is discrete and the range of z is 0 ≤ z ≤ zmax, where

zmax =
2λ1

√
λ3 sin−1(

√

λ3/λ1)

g2
√
λ1 − λ3

. (6.27)

Using the general results found in (4.10) (with D = 4, ∆ = 4, n = 2), we obtain within

the WKB approximation the spectrum

M2
m =

π2

z2
max

m

(

m+
1

2

)

+ O(m0) , m = 1, 2, . . . . (6.28)
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The exact solution: It might seem hard to find the explicit solution of the Schrödinger

equation with potentials (6.21) and (6.25). However, we will show that the explicit

solution can be readily obtained by applying techniques of supersymmetric quantum

mechanics, thus going beyond the WKB approximation. We consider for simplicity only

the case when the spectrum is discrete and the potential is given by (6.25). It turns out

that the partner potential to (6.25) is given by

V1 =
4(λ1 − λ3)

R4λ2
1λ3

(

3

sin2 2
√
λ1 − λ3u

− 1

)

, (6.29)

using the notation of section 4, where u is given by (6.26). If we change variables for the

wave-functions of the potential V1 to

x = cos2
√

λ1 − λ3u , 0 ≤ x ≤ λ3

λ1

< 1 ,

Ψ(1) = x3/4(1 − x)3/4Y (x) , (6.30)

the new independent variable Y (x) satisfies the hypergeometric equation with parameters

a = 3/2 + µ, b = 3/2 − µ and c = 2 in the standard notation, where the constant µ is

defined as

µ =
1

2

√

1 +
R4λ2

1λ3

4(λ1 − λ3)
M2 . (6.31)

Hence, we may write down the solution for the wave-function Ψ(1) that is regular at

x = 0, as

Ψ(1) ∼ x3/4(1 − x)3/4F

(

3

2
+ µ,

3

2
− µ, 2; x

)

. (6.32)

Demanding that it vanishes at the end point located at x = λ3/λ1 < 1, yields the

quantization condition for the spectrum

F

(

3

2
+ µm,

3

2
− µm, 2;

λ3

λ1

)

= 0 , m = 1, 2, . . . . (6.33)

It is not possible to find a closed formula for the exact spectrum except for the particular

case when λ1 = 2λ3. Then, we have 0 ≤ x ≤ 1
2

and making use of the identity

F

(

3

2
+ µm,

3

2
− µm, 2;

1

2

)

=

√
π

Γ
(

5
4

+ µm

2

)

Γ
(

5
4
− µm

2

) , (6.34)

we see that the condition (6.33) (with λ3/λ1 = 1/2) is satisfied provided that µm = 2m+ 1
2
,

where m = 1, 2, . . .. Finally, by employing (6.31), we find that the mass spectrum is given

by

λ1 = 2λ3 : M2
m =

16

R4λ2
3

m(m+
1

2
) , m = 1, 2, . . . . (6.35)

One may easily check that it coincides with the WKB result (6.28) (after setting

λ1 = 2λ3), which is also exact in this case. The situation is similar to the distribution of
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D3-branes with SO(2) × SO(4) symmetry for which the exact spectrum [8, 9] coincides

with what has been found using the WKB approximation [25]. This is a characteristic

property of shape-invariant potentials [48]. We also note presently that the solution

(6.32) can be expressed in terms of Jacobi polynomials as

λ1 = 2λ3 : Ψ(1)
m ∼ x3/4(1−x)3/4P

(1,1)
2m−1(2x−1) , 0 ≤ x ≤ 1

2
, m = 1, 2, . . . . (6.36)

For the generic case, where the constant parameters λ1 and λ3 satisfy the condition

λ1 > λ3, but otherwise they remain unrelated, one may solve (6.33) in the asymptotic

regime of large µ. Using the fact that for large µ

F

(

3

2
+ µ,

3

2
− µ, 2;

λ3

λ1

)

∼ Γ(µ− 1/2)

Γ(µ+ 1/2)
µ−1/2(sinϕ)−3/2 sinµϕ

(

1 + O(µ−1)
)

, (6.37)

where the angle ϕ is determined by cosϕ = 1−2λ3/λ1, we see that the spectrum is given

to leading order by the solutions of the simple trigonometric equation sin µϕ = 0. It

follows easily that the result agrees with the leading term in the WKB formulae (6.28).

Finally, note that the wave-functions Ψ
(2)
m of the corresponding partner potential

V2 = V have a form that is more complicated than (6.32). They are obtained using

(4.13), where for the lowering operator (4.12) we have W (z) = A′(z) with A(z) given by

(6.24). The result is

Ψ(2)
m ∼ (x− x2)

1/4

λ1x− λ3

[

8
(

λ3 − 2λ3x+ λ1x
2
)

F

(

3

2
+ µµ,

3

2
− µm, 2, x

)

+

+
(

4µ2
m − 9

) (

x− x2
)

(λ1x− λ3) F

(

5

2
+ µm,

5

2
− µm, 3, x

)]

, (6.38)

with x being defined in (6.30); at the two endpoints Ψ
(2)
m vanishes.

6.3 SO(4) × SO(4)

This model is described by an algebraic curve with g = 0 and can easily be obtained by

taking the limit λ3 → ∞ in the above expressions. We find that the conformal factor for

the metric is

e2A =
1

R2λ2
1

1

sinh2
(

2z
R2λ1

) , (6.39)

whereas the potential is

V =
4

R4λ2
1



1 +
2

sinh2
(

2z
R2λ1

)



 . (6.40)

In this case we have 0 ≤ z <∞, and the spectrum is continuous with a mass gap

M2
gap =

4

R4λ2
1

. (6.41)
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Alternatively, the same result is obtained by direct uniformization of the irreducible

genus 0 curve, y = (x− b1)(x− b2) (see table 1). Letting v = y/(x− b1), w = x− b2, we

arrive at the standard form v = w, which is uniformized by a complex parameter u as

x = u+ b2 , y = u(u+ b2 − b1) (6.42)

and so the final result reads

z(u) =
1

b2 − b1
ln

(

u

u+ b2 − b1

)

; u(z) =
b1 − b2

1 − e(b1−b2)z
(6.43)

choosing the integration constant to be zero. Then, we have

y =
(b1 − b2)

2

4sinh2 1
2
(b1 − b2)z

, (6.44)

which is equivalent to the expression for the conformal factor above, after introducing

the appropriate scale.

In this model we can also determine the eigenfunctions exactly. It turns out that the

wave-functions are expressed in terms of hypergeometric functions, using a characteristic

parameter q 6= 0, as

Ψ =
1

√

y2 − 1

[

C1y
1+qF

(

−1

2
− q

2
,−q

2
, 1 − q;

1

y2

)

+

C2y
1−qF

(

−1

2
+
q

2
,
q

2
, 1 + q;

1

y2

)]

, (6.45)

where

y = cosh

(

2z

R2λ1

)

, q =

√

1 − M2R4λ2
1

4
, (6.46)

with constant coefficients C1 and C2. A solution valid for q = 0 can also be written down

following [50, 51], but it will not be needed for the present purposes. Because of the mass

gap (6.41), the parameter q is purely imaginary. This provides an orthonormalizability

in the Dirac sense (with the use of a δ-function), since the solution (6.45) becomes an

incoming and an outgoing plane wave for z → ∞. On the other hand, examining the

behaviour of (6.45) near z = 0, we require the coefficient of the most singular term to

vanish. It yields the following condition,

C1
Γ(1 − q)

Γ
(

3
2
− q

2

)

Γ
(

1 − q
2

) + C2
Γ(1 + q)

Γ
(

3
2

+ q
2

)

Γ
(

1 + q
2

) = 0 . (6.47)

Note that the supersymmetric partner of the potential (6.40) is just a constant (given

by V1 = 4
R4λ2

1
) and therefore, according to the results of supersymmetric quantum me-

chanics, the potential (6.40) is reflectionless [48].
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6.4 SO(2) × SO(6)

In this case the irreducible algebraic curve is given by

y2 = (x− b1)(x− b2)
3 . (6.48)

Then, the birational transformation

x =
wvb2 − b1
wv − 1

, y = −w (b1 − b2)
2

(wv − 1)2
, (6.49)

brings it to the standard unicursal form v = w, which is uniformized as usual by in-

troducing a complex parameter u, u = v = w. We may easily find the coordinate that

brings the four-dimensional metric to a conformally flat form,

z = − 2(u− 1)

g2(b1 − b2)
, (6.50)

with conformal factor given by

e2A =
8 (2 − g2 (b1 − b2) z)

g2 z2 (4 − g2 (b1 − b2) z)
2 . (6.51)

In turn, the Schrödinger potential becomes

V (z) =
2

z2
− g4 (b1 − b2)

2

4 (2 − g2 (b1 − b2) z)
2 +

2 g4 (b1 − b2)
2

(4 − g2 (b1 − b2) z)
2 . (6.52)

For b1 < b2 we have 0 ≤ z <∞ and the spectrum is continuous with no gap, which is in

agreement with our general discussion. Otherwise, for b2 < b1, we find 0 ≤ z ≤ zmax =

2/(g2(b1 − b2)) and the spectrum is discrete. Using (4.10) with D = 4, ∆ = 4 and n = 2,

we find within the WKB approximation that the spectrum is

M2
m =

4π2(b1 − b2)
2

R4
m

(

m+
1

2

)

+ O(m0) , m = 1, 2, . . . . (6.53)

Note for completeness that (6.51) and (6.52) can also be obtained from (6.20) and (6.21)

and from (6.24) and (6.25) by simply taking the limit λ3 → λ1.

Finally, let us mention that the wave-functions and the spectrum can be determined

exactly using, as before, techniques of supersymmetric quantum mechanics. The same

is true for the other two cases that will be discussed in subsections 6.5 and 6.6 below.

Since there are certain similarities in all three cases of interest, we choose to present

their analysis based on supersymmetric quantum mechanics all together, and uniformly,

in subsection 6.7.
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6.5 SO(3) × SO(5)

The algebraic curve of this model with genus 0 is given by

y4 = (x− b1)
3(x− b2)

5 , (6.54)

which by means of the following birational transformation

x =
w3vb1 − b2
w3v − 1

, y = −w4v
(b1 − b2)

2

(w3v − 1)2
, (6.55)

can be brought to the standard form w = v, which is uniformized (as usual) by a

parameter u, u = v = w. The coordinate choice that brings the four-dimensional metric

to conformally flat form is

z =
4(u− 1)

g2 (b1 − b2)u
, (6.56)

and the corresponding conformal factor is

e2A =
1024 (4 − g2 b z)

3

g2 z2 (8 − g2 b z)2 (32 − g2 b z (8 − g2 b z))2 , (6.57)

with b = b1 − b2.

The Schrödinger potential turns out to be

V (z) =
2

z2
+
g4 b2

4

(

3

(4 − g2 b z)2 +
8

(8 − g2 b z)2−

512

(32 − g2 b z (8 − g2 b z))2 +
16

32 − g2 b z (8 − g2 b z)

)

. (6.58)

For b1 < b2 the spectrum is continuous without a gap, in which case we have 0 ≤ z <∞.

For b1 > b2, we find 0 ≤ z ≤ zmax = 4/(g2b) and the spectrum is discrete; within the

WKB approximation, it is given by the simple expression

M2
m =

π2b2

R4
m

(

m+
3

2

)

+ O(m0) , m = 1, 2, . . . , (6.59)

where (4.10) has been used with D = 4, ∆ = 4, n = 3.

6.6 SO(7)

The corresponding g = 0 algebraic curve is given by

y4 = (x− b1)
7(x− b2) (6.60)

and by means of the birational transformation

x =
w3vb1 − b2
w3v − 1

, y = −w (b1 − b2)
2

(w3v − 1)2
, (6.61)
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it can be brought to the unicursal form v = w, which is again uniformized as u = v = w.

The coordinate that brings the four-dimensional metric to conformally flat form is

z = − 4(1 − u3)

3g2(b1 − b2)
(6.62)

and the conformal factor is given by

e2A =
g2 b2

(

1 − 3
4
g2 b z

)
1
3

(

−1 +
(

1 − 3
4
g2 b z

)
4
3

)2 . (6.63)

The potential of the Schrödinger equation of this model is

V (z) =
g4 b2

(

−5 + 42
(

1 − 3
4
g2 b z

) (

1 − 3
4
g2 b z

)
1
3 + 91

(

1 − 3
4
g2 b z

)
8
3

)

64
(

−1 + 3
4
g2 b z +

(

1 − 3
4
g2 b z

)
7
3

)2 , (6.64)

with b = b2− b1. For b1 > b2 we have 0 ≤ z <∞ and the spectrum is continuous without

a mass gap. On the other hand, for b1 < b2, we have 0 ≤ z ≤ zmax = 4/(3g2b) and the

spectrum is discrete given, within the WKB approximation, by

M2
m =

9π2b2

R4
m

(

m+
5

6

)

+ O(m0) , m = 1, 2, . . . , (6.65)

where (4.10) has been used with D = 4, ∆ = 4, n = 1.

6.7 Some exact results

We are in a position to apply techniques of supersymmetric quantum mechanics, as in

subsection 6.2 above, in order to find the explicit solution of the Schrödinger equation

with potentials (6.52), (6.58) and (6.64) and determine the associated spectra in a uniform

way; all three quantum mechanical problems will be treated at once.

First consider the case where the spectrum is discrete. Let us change the variable to

x, z = zmax−x, where zmax is defined as in the appropriate subsections and 0 ≤ x ≤ zmax.

Then, by the rules of supersymmetric quantum mechanics, the partner potential to our

problem is given by

V1(x) =
ν2 − 1/4

x2
, (6.66)

where ν = 1, 2,±2/3 for the three models that correspond to SO(2) × SO(6), SO(3) ×
SO(5) and SO(7), respectively. Both signs ±2/3 were chosen for the SO(7) model for

reasons that will be indicated towards the end of this subsection. The solution of the

Schrödinger equation which is regular at x = 0 (for ν = 1, 2, 2/3) is given in terms of

Bessel functions as

Ψ(1) ∼ x1/2Jν(Mx) . (6.67)
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For ν = −2/3 the wave-function diverges at x = 0, but it is not strong enough to make

it non-integrable.7 Imposing the condition that the wave-function vanishes at x = zmax,

which also ensures the Hermiticity of the Hamiltonian, we find the mass spectrum in

terms of the zeros of the Bessel function,

Jν(Mmzmax) = 0 , m = 1, 2, . . . . (6.68)

Then, the states in (6.67), which correspond to the different solutions of (6.68), constitute

a complete set of states. The undetermined overall constant in (6.67) can be found, as

usual, by demanding the orthonormalizability condition
∫ zmax

0
dxΨ

(1)
n Ψ

(1)
m = δn,m and

using the fact that

∫ zmax

0

dxxJν(Mmx)Jν(Mnx) =
z2
max

2
Jν+1(Mmzmax)δm,n . (6.69)

Note that the conditions (6.68) and ν > −1 are crucial for the validity of this equation.

An asymptotic expression for the eigenvalues Mm can be found, which is valid for

large values of the argument Mmzmax of Jν . Using standard formulae from the theory of

Bessel functions we arrive at the result

M2
m =

π2

z2
max

m

(

m+ ν − 1

2

)

+ O(m0) , m = 1, 2, . . . . (6.70)

For ν = 1 and ν = 2, it agrees with the WKB formulae (6.53) and (6.59). However, the

WKB formula (6.65) is reproduced for the value ν = −2/3 (by first shifting m by one

unit) instead of ν = 2/3. Actually, for ν = 2/3, we obtain (6.65) with the number 5/6

replaced by 1/6. This ambiguity in the spectrum remains unresolved even for the partner

wave-functions Ψ(2) that we are interested in computing afterall; these are obtained using

(4.13), where for the lowering operator in (4.12) we have W (z) = A′(z), with A(z) given

by (6.51), (6.57) and (6.63) for all three different cases respectively.

We find, in particular, for the wave-functions that

ν = 1 : Ψ(2)
m ∼ x1/2

(

2x

z2
max − x2

J1(Mmx) +MmJ0(Mmx)

)

,

ν = 2 : Ψ(2)
m ∼ x1/2

(

4x3

z4
max − x4

J2(Mmx) +MmJ1(Mmx)

)

, (6.71)

ν = ±2

3
: Ψ(2)

m ∼ x1/2

z
4/3
max − x4/3

(

x4/3J±5/3(Mmx) + z4/3
maxJ∓1/3(Mmx)

)

.

It is crucial to note here that for all three type of wave-functions above, Ψ
(1)
m vanish

at the end point x = zmax. This can be shown by first expanding the wave-function

7 In fact, the general criteria developed in [53] render the propagation of quantum test particles in

such a space-time geometry as unphysical, and hence should be related to unphysical vacuum expectation

values of the scalar fields. Indeed, it was shown in [12] that, in this case, the density of the M2-brane

distribution has a negative component which is physically unacceptable.
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around x = zmax, using properties of the Bessel functions, and then observe that the

coefficient of the divergent part in the expansion is proportional to Jν(Mmzmax), and

hence vanishes due to (6.68); the constant part vanishes identically. Note also that the

asymptotic behaviour of the wave-function near x = 0 is Ψ
(1)
m ∼ x1/6 for both ν = 2/3

and ν = −2/3. Hence, there is a priori no reason to dismiss either one of the two values

ν = 2/3 or ν = −2/3. It remains unclear to us, at least for the moment being, what is the

extra condition one should impose in order to exclude one of these two values. As soon

as this becomes possible, the spectrum corresponding to the distribution of M2-branes

with SO(7) symmetry will be determined unambiguously in the discrete case.

Considering the same potentials (6.52), (6.58) and (6.64), but for continuous spec-

trum, we find in all three cases that the parameter zmax becomes negative. By changing

variable to x, where z = x − |zmax|, we note that the appropriate partner potential is

still given by (6.66), but with |zmax| ≤ x <∞. Since the point x = 0 is not contained in

the range of x we should admit both independent solutions of the corresponding Bessel

equation, namely Jν and Nν , following the standard nonmenclature. Demanding that the

wave-functions vanish at the endpoint x = |zmax|, determines their relative coefficient.

Hence, the wave-function is given by

Ψ(1) ∼ Nν(M |zmax|)Jν(Mx) − Jν(M |zmax|)Nν(Mx) , (6.72)

whereas the spectrum is continuous with no mass gap.

6.8 SO(3) × SO(4)

Last, but not least, we consider the remaining curve of genus 0

y4 = (x− b1)(x− b2)
3(x− b3)

4 , (6.73)

which can be brought to the unicursal form using the birational transformation

x =
b1 − b2v

3w

1 − v3w
, y =

(b1 − b2)v

1 − v3w

(

b1 − b2v
3w

1 − v3w
− b3

)

(6.74)

and hence uniformized by setting u = v = w. Assuming for definiteness that b1 6= b2, we

may proceed to solve the differential equation (5.6) in order to obtain the corresponding

function z(u). Taking the limits b1 → b3 or b2 → b3 yields the models SO(3) × SO(5)

and SO(7) respectively, which we have already discussed. For general bi’s we arrive at

α < 0 : z =
1√

2g2(b1 − b3)q3

[

2 tan−1

( √
2qu

1 − q2u2

)

+

+ ln

(

1 −
√

2qu+ q2u2

1 +
√

2qu+ q2u2

)]

+ const. , (6.75)

α > 0 : z =
1

g2(b1 − b3)q3

[

−2 tan−1 qu+ ln

(

1 + qu

1 − qu

)]

+ const. ,
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with

α =
b2 − b3
b1 − b3

, q = |α| 14 . (6.76)

Unfortunately, it is not possible to invert the relations and find u(z) in closed form,

and so they will not be pursued any further.

6.9 More g = 1 surfaces

In the following we present the uniformization of the remaining models with genus 1 in

a unifying way. These cases are

(i) y4 = (x− a)(x− b)(x− c)6 : SO(6) ,

(ii) y4 = (x− a)(x− b)(x− c)2(x− d)4 : SO(2)× SO(4) ,

(iii) y4 = (x− a)(x− c)2(x− b)5 : SO(2)× SO(5) ,

(iv) y4 = (x− c)2(x− a)3(x− b)3 : SO(2)× SO(3) × SO(3) .

Using birational transformations, they can be brought into the same form

(X − c)2Y 4 = (X − a)(X − b) , (6.77)

where in each case we consider the following:

(i) X = x , Y =
y

(x− c)2
,

(ii) X = x , Y =
y

(x− c)(x− d)
,

(iii) X = x , Y =
y

(x− b)(x− c)
,

(iv) X = x , Y =
(x− a)(x− b)

y
.

Then, the birational transformations are employed

X = c
v2 + k

2
2ab−c(a+b)

c(a−b)
v + k2

16

v2 + k
2

a+b−2c
a−b

v + k2

16

,

Y =

√

b− c

a− c

w

2v
, with k2 =

(a− b)2(a− c)

(b− c)3
, (6.78)

to bring the common form (6.77) into the Weierstrass normal form of the curve

w2 = 4v3 − g2v − g3 ; g2 =
k2

4
, g3 = 0 . (6.79)
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Note that in all cases we have set x = X, with X given by (6.78) above, whereas for

y we have to treat each transformation separately. Explicit calculation shows that y is

equal to

(i)
(a− c)3

√

(a− c)(b− c)

vw

2

1
(

v2 + k
2

a+b−2c
a−b

v + k2

16

)2 ,

(ii)
(a− c)2

√

(a− c)(b− c)

w

2

(a− d)v + (c− d)
√

b−c
a−c

(v + k/4)2

(

v2 + k
2

a+b−2c
a−b

v + k2

16

)2 ,

(iii) same as in (ii) setting d = b ,

(iv) −(a− c)2

(b− c)

2v(v + k/4)2

w

(a− b)v + (c− b)
√

b−c
a−c

(v + k/4)2

(

v2 + k
2

a+b−2c
a−b

v + k2

16

)2

As usual, in all four models we have to solve the differential equation (5.6) in order to

determine the function u(z).

Using v = ℘(u) and w = ℘′(u) we find the following results in each case separately:

(i) z =
4

a− c

(

ζ(u) +
1

4

℘′(u)

℘(u)

)

+ const.

(ii) z = − 8(b− c)3

(c− d)(a− b)2

1
√

(a− c)(b− c)

[

1

4
k2u+

+
v−℘

′(a+)

v+ − v−

(

log
σ(u− a+)

σ(u+ a+)
+ 2ζ(a+)u

)

− (6.80)

−v+℘
′(a−)

v+ − v−

(

log
σ(u− a−)

σ(u+ a−)
+ 2ζ(a−)u

)]

+ const. ,

(iii) z = − 4

a− b

(

2ζ(u) +
℘′(u)

℘(u) − k/4

)

+ const.

(iv) z = − 2

b − c
u+ const. ,

where v± are the two roots of the equation

(v + k/4)2 +
a− d

c− d

√

a− c

b− c
v = 0 (6.81)

and a± are defined by v± = ℘(a±). In the case (ii) above we assume that c 6= d,

and generically a± differ from the half-periods of the corresponding Riemann surface.

Although case (i) corresponds to taking c = d, there is no smooth limit of (ii) that yields

the expression (i). In the case (iii) above we have v+ = v−, and so the derivation has to

be performed separately without taking (ii) in the limit b = d.

It is rather unfortunate that we can not invert the relations and find u(z) in closed

form for these models, apart from the case (iv). Hence, they will not be discussed any

more. We only leave case (iv) as an exercise for the interested reader to explore it further.
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7 Distributions of M5-branes

In this section we treat the distributions of M5-branes with isometries that correspond

to genus 1 and 0 and present the uniformization of the associated algebraic curves in

as much the same way as for the M2-branes. There are only two models to consider

apart from the AdS7 space, namely the distribution with isometry group SO(2)×SO(3)

that corresponds to a genus 1 algebraic curve, and that with isometry group SO(4)

corresponding to a genus 0 algebraic curve. Unfortunately there is no case where we

could find the exact spectrum in terms of known functions and therefore we will only

resort to the WKB approximation for the computations.

7.1 SO(2) × SO(3)

Consider the genus 1 curve of table 3

y4 = (x− a)2(x− b)3 . (7.1)

With the aid of the birational transformation

x =
b− a

4

w2

v3
+ a , y = (b− a)

w

v

(

w2

4v3
− 1

)

, (7.2)

it can be brought into the Weierstrass form

w2 = 4v3 − a− b

4
v , (7.3)

which is uniformized using the Weierstrass functions defined for g2 = a−b
4

and g3 = 0.

Since

x = b+
(a− b)2

16℘(u)2
≡ F (zg2) , y =

(a− b)2℘′(u)

16℘(u)3
≡ F ′(zg2) , (7.4)

we obtain

u = c− g2z

2
, (7.5)

where c is an integration constant (to be fixed by the asymptotic conditions). Then,

using (3.3), we find the conformal factor

e2A = g2F ′(zg2)
2
5 . (7.6)

Note that the two half-periods of the torus ω1, ω2 can be computed using (6.6) and

the fact that in our model the modulus and its complement are equal to each other,

k = k′ = 1/
√

2, since g3 = 0. We have

ω1 = −iω2 =
Γ(1/4)2

2
√

2π(a− b)1/4
. (7.7)

Hence, for a > b, ω1 is real and ω2 is purely imaginary, whereas for a < b they are complex

conjugate of each other. The constant of integration c is determined by requiring that
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the space becomes AdS7 for z → 0. We find, in particular, that c = ω1 + ω2, which is

complex (or real) if a > b (or a < b).

We also find the following Schrödinger potential, using the rescaling factor g = 2/R,

V (z) =
1

R4

[

35℘

(

2z

R2

)

+ 3℘

(

2z

R2
+ ω1 + ω2

)

− ℘

(

2z

R2
+ ω1

)

− ℘

(

2z

R2
+ ω2

)]

.

(7.8)

Note that 0 ≤ z < zmax, where zmax = R2

2
(ω1 + ω2) if a < b and zmax = R2

2
ω1 if a > b.

The spectrum is discrete and, within the WKB approximation, it is given by

a < b : M2
m =

16π3
√
b− a

Γ(1/4)4R4
m(m+ 3) + O(m0) , m = 1, 2, . . . , (7.9)

a > b : M2
m =

32π3
√
a− b

Γ(1/4)4R4
m(m+ 2) + O(m0) , m = 1, 2, . . . , (7.10)

where (4.10) has been used with D = 7, ∆ = 4 and n = 3 (or n = 2) for a < b (or

a > b). We will see later, in the context of supersymmetric quantum mechanics, that the

partner potential is related to the potential of the SO(3)×SO(3) model of D3-branes in

five dimensions.

7.2 SO(4)

Consider next the genus 0 curve

y4 = (x− a)(x− b)4 . (7.11)

The birational transformation

x =
1

v3w
+ a , y =

1

v

(

1

v3w
+ a− b

)

, (7.12)

brings it into the unicursal form v = w, which can be uniformized with a complex

parameter u, as v = w = u. Consequently, we arrive at

dz = − 4

g2

du

(a− b)u4 + 1
, (7.13)

which yields upon integration the following cases:

a = b : z = −4u

g2
+ const. , which gives AdS7 ,

a < b : z = − 1

g2 4
√
b− a

[

ln

(

1 + u 4
√
b− a

1 − u 4
√
b− a

)

+ 2 tan−1(u
4
√
b− a)

]

+ const. ,(7.14)

a > b : z = − 1

g2
√

2 4
√
a− b

[

ln

(

1 + u
√

2 4
√
a− b+ u2 4

√
a− b

1 − u
√

2 4
√
a− b+ u2 4

√
a− b

)

+

+ 2 tan−1

(

u
√

2 4
√
a− b

1 − u2
√
a− b

)]

+ const. .
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Apart from the maximally symmetric model that corresponds to a = b, these relations

cannot be inverted to yield u(z) in closed form.

The nature of the spectrum depends crucially on the sign of a− b. Using our general

formulae we find that for a < b we have 0 ≤ z <∞ and that the spectrum is continuous

with a mass gap given by

a < b : M2
gap = 4

√
b− a

R4
. (7.15)

For a > b we have 0 ≤ z ≤ zmax =
√

2π/g2(a − b)1/4 and the spectrum is discrete. It is

approximated by the WKB formulae (4.10) with D = 7, ∆ = 4 and n = 1 as

a > b : M2
m =

8
√
a− b

R4
m(m+

7

3
) + O(m0) , m = 1, 2, . . . . (7.16)

Finally we would like to mention the relation of the models we have presented in

this section to the most general solution of rotating M5-brane [26] of eleven-dimensional

supergravity. The latter, besides the usual Poincaré invariance along the brane, has also

an SO(2) × SO(2) symmetry group corresponding to the Cartan subgroup of SO(5).

Hence, in the extremal limit it will correspond to a supersymmetric solution associated

with an algebraic curve of genus 2, as can be seen from the appropriate entry in table

3. The two independent parameters in the equation of the algebraic curve are related

to the rotational parameters of this rotating M5-brane solution. The genus 1 model

with symmetry SO(2) × SO(3) corresponds to the particular limit when one rotational

parameter is set equal to zero. The case with a < b corresponds to the rotating solution

with Lorentzian signature, whereas for a > b it corresponds to the same solution, but

with the time and angular parameters analytically continued so that the metric remains

real but its signature becomes Euclidean. The associated spectra are given in the WKB

approximation by (7.9) and (7.10).8 The genus 0 model with symmetry group SO(4)

corresponds to letting the two angular parameters become equal. We note that this is not

equivalent to setting one of them zero and keeping the other finite. Then, a < b describes

the Euclidean solution, whereas a > b describes the Lorentzian. The corresponding

spectra are described by (7.15) and (7.16) respectively.

7.3 Wilson surfaces

We would like to calculate the vacuum expectation values of Wilson surface operators

in the six-dimensional (0, 2) theories on the Coulomb branch. It was shown in [55] that

the AdS/CFT correspondence could be used to compute Wilson surface observables [56]

of (0, 2) theories in the limit of a large number Nb of M5-branes. The Wilson area

operator in the supergravity picture is defined by requiring that a membrane ends at

8In fact (7.10) coincides with the supersymmetric limit of the WKB formula given in [54] for the

masses of 0++ glueballs using rotating M5-branes with one rotational parameter, in a supergravity

approach to QCD4 [2].
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the boundary of AdS7 × S4 on the surface that defines the operator. We will consider

Wilson surfaces corresponding to a pair of parallel strings on the boundary using the

prescription of [55] in the special backgrounds constructed in sections 3.1, 7.1 and 7.2.

Wilson loops turned out to be useful tools for learning about the physics of gauge theories

in the study of supergravity duals of four-dimensional theories on the Coulomb branch.

It is interesting that complete screening was found with an associated screening length

suppressed by 1/
√
gsNb compared to what is expected from field theory considerations

at weak coupling [8, 9].

In the conformal limit, this calculation was performed in [55] leading to the result

E = −8
√
πΓ
(

2
3

)3

Γ
(

1
6

)3

Nb

L2
, (7.17)

where E denotes the energy per unit length or tension between the infinitely long strings

as function of their separation L. This can easily be generalized to backgrounds of the

form (3.15), (3.18)-(3.20) with f defined as in equation (3.5). We will impose the minor

restriction b1 = . . . = bn = b and bn+1 = . . . = b5 = 0, thus breaking the SO(5) symmetry

to SO(n)× SO(5− n). Furthermore, we choose the orientation of the Wilson surface on

the deformed S4 to be constant and to lie in the subspace spanned by yn+1, . . . , y5 (see

also (3.18)).

Minimizing the membrane action in these backgrounds with the orientation chosen

as above, yields the following integrals for the length and the energy (for 1 ≤ n ≤ 4)

L =
R2

2

∫ ∞

F0

dF

√

h(F0)g(F )
√

h(F )(h(F ) − h(F0))
, (7.18)

E =
1

π2R

∫ ∞

F0

dF

√

h(F )g(F )
√

h(F ) − h(F0)
− 1

π2R

∫ ∞

b

dF
√

g(F ) , (7.19)

h = (F − b)
n
2F

3−n
2 , g = F−1 , (7.20)

with F0 ≥ b being the minimal value of F that the Wilson surface reaches. In general these

integrals cannot be expressed in terms of known functions and so we will only present here

some numerical results. For F ≫ b, or equivalently for small separations L ≪ R2/
4
√
b,

the behaviour of the potential is as in (7.17) and goes to zero faster for larger separations.

From a certain distance L > Lmax, and further on, there does not exist a minimal surface

connecting the two strings on the boundary. Instead, a configuration of two separated

surfaces hanging straight into the interior of the geometry is energetically preferred. This

means that the potential is screened for large separation; a phenomenon that was also

observed in four-dimensional superconformal theories on the Coulomb branch [8, 9]. The

maximal distance at which the string breaks can be determined numerically

Lmax = cn
R2

4
√
b

(7.21)

with c1 ∼ 0.71 , c2 ∼ 0.69 , c3 ∼ 0.70 and c4 ∼ 0.78. For n = 1, 2, 3 the length reaches

its maximum Lmax at F0 > b and becomes zero as F0 → b. At L = Lmax the energy
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is larger than zero and the split configuration is preferred. For n = 4, Lmax is reached

exactly when F0 → b; at this point the potential tends smoothly to zero and will remain

there even if the separation is increased. This is the phenomenon of complete screening

that was also found in the context of some special continuous distributions of D3-branes

in [8, 9]. This phenomenon occurs in cases where the mass spectrum is continuous with

a mass gap.

8 Comments on Lamé equations

In this section we summarize some results on the Lamé equation, and its various gener-

alizations, which arise in the study of quantum fluctuations for the scalar and graviton

fields in the background of domain walls associated to elliptic functions. We have already

seen that in many cases the Schrödinger potential has the common form

V (u) = λ(λ+1)℘(u)+µ(µ+1)℘(u+ω1)+ν(ν+1)℘(u+ω1+ω2)+κ(κ+1)℘(u+ω2) , (8.1)

for various choices of the coefficients λ, µ, ν and κ; they are all constrained to satisfy the

Hermiticity bound ≥ −1/2. We have found, in particular, the following list of examples:

(i) D3−branes with SO(2) × SO(2) × SO(2) : λ =
3

2
, µ = ν = κ = −1

2
,

(ii) D3−branes with SO(3) × SO(3) : λ = ν =
3

2
, µ = κ =

1

2
,

(iii) M5−branes with SO(2) × SO(3) : λ =
5

2
, ν =

1

2
, µ = κ = −1

2
.

The first two cases were derived in [11], where emphasis was placed on analyzing domain

wall solutions of five-dimensional gauged supergravity.9 There, the expressions for the

conformal factor were found to be

e2A(z) =

(

℘′(u)

2R3

)2/3

and

(

℘′(u)

4R℘(u)

)2

, (8.2)

with u = z/R2 and u = z/(2R2), respectively. The third example was discussed here in

section 7.1, and has u = 2z/R2. The parameter u assumes real values from 0 to ω1 (real

semi-period) for the cases (i), (ii) and (iii) (with a > b), whereas for the case (iii) (with

a < b) u takes real values from 0 to ω1 + ω2. In the context of supersymmetric quantum

mechanics [48] the potential (i) is mapped to a potential with coefficients λ = 1/2,

µ = ν = κ = 0, which is simpler to study. The potentials (ii) and (iii) (with a > b) also

turn out to be related to each other via supersymmetric quantum mechanics, and the

details are worth exposing.

9Actually, for the SO(3) × SO(3) model of D3-branes, the Schrödinger potential was originally pre-

sented in another form in [11], but that is equivalent to the potential (ii) because of special identities of

the underlying Riemann surface with g3 = 0.
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More precisely, we find that the supersymmetric partner potentials corresponding to

the SO(2) × SO(2) × SO(2) model in D = 5 are given respectively by the pair

V1(u) = 3℘(2u) , V2(u) = 4℘(u) − ℘(2u) , (8.3)

making use of the identity

℘(2u) = −2℘(u) +

(

℘′′(u)

2℘′(u)

)2

=
1

4
(℘(u) + ℘(u+ ω1) + ℘(u+ ω2) + ℘(u+ ω1 + ω2)) . (8.4)

So, by rescaling u by a factor of 2, setting ũ = 2u, we obtain a partner Schrödinger

problem in ũ with potential V1(ũ) = λ(λ + 1)℘(ũ) having λ = 1/2 as advertised. For

later use we drop the tilde and still use the variable u, but with a range from 0 to 2ω1.

According to the previous general discussion, the ground state energy of H1 is expected

to be zero, which will also be encountered later using a direct approach.

The Schrödinger potentials appearing in the examples (ii) and (iii) (with a > b) also

have supersymmetric partners within the same class. We find, in particular, that the

supersymmetric partner potential of the model (ii) has λ = ν = 1/2, µ = κ = 3/2,

whereas a similar analysis for the model (iii) yields a potential with λ = ν = 3/2,

µ = κ = 1/2. We do not observe important simplifications occuring in the form of the

potential in any of the two cases. An interesting observation is that the supersymmetric

partner of the potential (iii) is (ii), and we believe that there is a deeper reason for this

finding. Note at this point that, generically, any two supersymmetric partner potentials

are related to each other by simply changing sign in the superpotential W ↔ −W . For

domain wall solutions this would mean that the conformal factor reverses, since A↔ −A,

and so this transformation could only be of mathematical interest in relating different

spectra. In physical terms, the transformation W ↔ −W cannot be used to map one

domain wall solution to another because it fails to preserve the AdS boundary condition

imposed on the conformal factor for z → 0. However, it may happen in certain cases (as

above) that there are two different superpotentials with the correct asymptotic behaviour

as z → 0 which yield the same supersymmetric partners; indeed, the potential (ii) is the

V1 partner of a potential V2 given by the model (iii), due to special identities on Riemann

surfaces with g3 = 0, but conversely this is not so because W ↔ −W does not relate the

model (ii) and (iii).

Another notable relation concerns the supersymmetric partner of the elliptic potential

for the SO(2)×SO(2)×SO(2)×SO(2) model of M2-branes in four-dimensional gauged

supergravity. Actually, in this case we find that the two partner potentials

V1 = 3℘(2u) , V2 = 2℘(u+ c) + 2℘(u− c) − ℘(2u) (8.5)

are connected by supersymmetry, and so by reinstating the overall scaling factor and

constant shift that relates the uniformizing parameter to the Schrödinger variable (now
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called u), we obtain again the Lamé potential with λ = 1/2 but in the range from 2c

to 2ω1. This concludes the presentation of some qualitative results on the Schrödinger

equation of quantum fluctuations on elliptic backgrounds.

An interesting problem that remains unsolved is the exact evaluation of the full spec-

trum of the Schrödinger equation in this class of potentials. So far we have relied on

semi-classical approximation methods to get a feeling about the spectrum and the exis-

tence of a mass gap. Unfortunately, the exact result is very hard to find, even in some

simple cases, and involves transcendental equations in rather implicit form. Nevertheless,

it is quite instructive to highlight some special results in order to appreciate the degree

of difficulty one faces in the general case. We note that the family of potentials under

investigation are indeed a natural generalization of Lamé’s potential n(n + 1)℘(u) by

adding terms located at all four corners of the parallelogram u, u+ω1, u+ω2, u+ω1+ω2

in the complex domain of a genus 1 Riemann surface. The Lamé potential was originally

introduced in order to describe the analogue of spherical harmonics for the solutions of

the Laplace equation in three dimensions with ellipsoidal symmetry. As such, n can only

take (positive) integer values. However, generalizations were also considered, more than

a century ago, for half-integer and other values of the parameter n. The main results

in this direction go back to Hermite, Brioschi and Halphen (see, for instance, [57] and

[58]), but also Darboux apparently studied some aspects of the general potential (8.1) in

its Jacobi form. Half-integer values of the coefficients are particularly interesting for the

examples we have at hand, but we will be able to say something explicit only for the case

λ = 1/2 and µ = ν = κ = 0, which is related to the SO(2) × SO(2) × SO(2) model of

five-dimensional gauged supergravity or to the SO(2) × SO(2) × SO(2) × SO(2) model

in four dimensions.

We proceed by considering the Lamé equation
(

− d2

du2
+ n(n+ 1)℘(u)

)

Ψ(u) = EΨ(u) , (8.6)

where E are the energy levels of the corresponding one-dimensional quantum mechanical

problem and Ψ(u) are normalized wave functions that vanish (typically) at u = 0 modulo

the real period 2ω1. Of course, when n is a positive integer, the solutions are easily

described using appropriate ratios of the Weierstrass sigma-function, namely

Ψ1(u) = eαuσ(u− β1)σ(u− β2) · · ·σ(u− βn)

σn(u)
,

Ψ2(u) = e−αuσ(u+ β1)σ(u+ β2) · · ·σ(u+ βn)

σn(u)
, (8.7)

where the constants α and βi are determined by substituting the ansatz into Lamé’s

equation. Using these two (in general independent) solutions one can construct regular

solutions by taking suitable linear combinations of them and obtain a transcendental

equation for the energy eigenvalues.

On the other hand, if n is not an integer the solutions will be difficult to describe,

even in a formal sense. Some simplifications occur when n is half of an odd positive
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integer. It is known in this case, using the substitution

Ψ = (℘′(z))
−n

Φ(z) , where z = u/2 , (8.8)

that Lamé’s equation transforms into the differential equation

d2Φ

dz2
− 2n

℘′′(z)

℘′(z)

dΦ

dz
+ 4 (n(2n− 1)℘(z) + E) Φ = 0 . (8.9)

Then, according to results obtained by Brioschi and Halphen more than a century ago,

a formal solution can be written as

Φ(z) =

∞
∑

r=0

cr (℘(z) − e2)
a−r , (8.10)

provided that

(a− 2n)(a− n + 1/2) = 0 , (8.11)

and that the following recursive relations are satisfied:

(a−r−2n)(a−r−n+1/2)cr+(3e2(a− r + 1)(a− r − 2n+ 1) + e2n(2n− 1) + E) cr−1

= (e1 − e2)(e2 − e3)(a− r + 2)(a− r − n + 3/2)cr−2 . (8.12)

Here, e1, e2 and e3 denote the three roots of the cubic curve in its Weierstrass form.

Actually, when n is half of an odd positive integer, there is a solution expressible in finite

form

Φ(z) =

n−1/2
∑

r=0

cr (℘(z) − e2)
2n−r , (8.13)

which corresponds to a = 2n, and provides discrete energy levels E by solving the

recursive relations with cn+1/2 = 0; they are all real for curves having real roots ei.

Otherwise, for solutions expressible as an infinite sum, the energy levels remain arbitrary

by these general considerations alone.

The simplest case to consider has n = 1/2. It turns out that a solution expressible in

finite form has only one term:

Φ(z) = c0 (℘(z) − e2) , (8.14)

with energy E = 0 and c0 arbitrary. This yields one of the two independent solutions

of Lamé’s equation with zero energy, call it Ψ1(u), whereas the other is obtained by

employing the general formula that relates any two solutions with the same energy E:

Ψ2(u) = CΨ1(u)

∫

du

Ψ1
2(u)

, (8.15)

where C is another constant. An explicit calculation shows that the most general solution

with E = 0 is given in terms of two integration constants A, B by

Ψ(u) =
1

√

℘′(u/2)
(A℘(u/2) +B) . (8.16)
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Having established this, one may impose the regularity of the physical solution at u = 0,

namely Ψ(0) = 0, and set the coefficient A = 0; otherwise the wave function will diverge

as 1/
√
u for u → 0. For u = 2ω1, however, the wave-function blows up and hence it is

not normalized.

For n = 1/2, but with E 6= 0, the formal solution has an infinite number of terms.

According to the general discussion, we find after some calculation (working with either

a = 0 or a = 1) the result

Φ(z) = C

(

1

E
+

∞
∑

k=1

dk

(℘(z) − e2)
k

)

, (8.17)

where C is an arbitrary constant and

d1 = −1

2
, d2 =

1

2

(

E

6
+ e2

)

,

d3 = − 1

12

(

(e1 − e2)(e2 − e3) + 9

(

E

6
+ e2

)(

E

18
+ e2

))

, (8.18)

d4 =
3

20

(

(e1 − e2)(e2 − e3)

(

7E

36
+ 2e2

)

+ 9

(

E

6
+ e2

)(

E

18
+ e2

)(

E

36
+ e2

))

,

and so on. Unfortunately, even in this simplest case with n = 1/2, it is very difficult to

solve the recursive relations and find all coefficients dk in closed form in order to sum

up the infinite series of terms. In any case, this procedure yields one formal solution of

Lamé’s equation with E 6= 0, Ψ1(u), whereas the other (independent) formal solution

of the same energy, Ψ2(u), can be obtained according to the general formula above.

However, the integration that determines Ψ2(u) in terms of Ψ1(u) cannot be performed

explicitly unless one knows first how to sum up the infinite series of terms for Φ(z).

Note that for n = 1/2 the formal solution Ψ1(u) appears to be regular at u = 0,

whereas at u = 2ω1 (where ℘(u/2) = e1) this is not guaranteed. In fact, since the

coefficients dk are polynomial functions of the energy E, one must demand that the

resulting “energy series” converge. Since ℘′(ω1) = 0, we demand i.e.

1

E
+

∞
∑

k=1

dk(E)

(e1 − e2)k
= 0 . (8.19)

This is certainly a non-trivial constraint on the allowed energy bands when E 6= 0, which

also depend on the relative size of the a- and b-cycles of the Riemann surface, i.e. the

differences e2−e3 and e2−e1 that appear in the “energy sum”. However, we are not able

at present to find the complete solution to the problem in closed (even transcendental)

form.

9 Conclusions

We have investigated in detail the structure of domain wall solutions in theories of gauged

supergravity in diverse dimensions by considering the effect of non-trivial scalar fields tak-
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ing values in the coset space SL(N, IR)/SO(N). The presentation was kept quite general

to cover, where possible, aspects of domain wall solutions in theories of D-dimensional

gravity by turning off the effect of any other fields, such as gauge fields and fermions.

Special emphasis has been placed on two cases, namely (D,N) = (4, 8) and (7, 5), which

arise by compactification of eleven-dimensional supergravity on S7 and S4 respectively.

The effect of the scalar fields in four (or seven) dimensions is related to deformations of

the round spheres in the compactifying space, thus breaking the isometry group SO(8)

(or SO(5)) into appropriate symmetry subgroups. In fact, we were able to give an alge-

braic classification of all such cases using the Christoffel–Schwarz transformation, which

arises in the solution of the first-order Bogomol’nyi-type equations for the conformal fac-

tor and the scalar fields of these models. As a result, for D = 4, we found a hierarchy

of 22 solutions starting from an algebraic curve of genus 9 corresponding to completely

broken isometry group. When some cycles shrink to zero size, by letting some moduli

coalesce, the symmetry group is enhanced, whereas the genus of the Riemann surface is

lowered accordingly. Among the genus 0 models there is the AdS4 space with no scalar

fields, having maximal isometry group SO(8), while in all other cases AdS4 is reached

only asymptotically. Similarly, for D = 7, we found 7 models in total, which can be

classified starting from a genus 6 algebraic curve with no isometry and proceeding all the

way down to genus 0, where the AdS7 space arises with maximal isometry group SO(5).

All other models in the list admit subgroups of SO(5) as isometries and approach AdS7

only asymptotically due to the presence of non-trivial scalar fields.

A geometrical picture of our solutions in four and seven dimensions is provided in

terms of distributions of M2- and M5-branes in eleven dimensions. The analysis has

been carried out in detail choosing suitable harmonic functions that describe continuous

distributions of branes in eleven dimensions, and is in accordance with the geometric

deformation of seven and four dimensional spheres induced by the non-trivial moduli

of the underlying algebraic curves. The resulting picture resembles the construction of

domain walls of five-dimensional gauged supergravity with non-trivial scalar fields in the

coset SL(6, IR)/SO(6), where suitable continuous distributions of D3-branes were con-

sidered in ten-dimensional type-IIB supergravity. An interesting problem that remains

open for further study is the possible effect of dualities on the structure of domain-wall

(and other) solutions in various dimensions. For example, M2- and M5-branes are related

to each other via electric-magnetic duality, and hence various distributions of them in

eleven dimensions should yield strong-weak coupling relations among solutions of gauged

supergravities in lower dimensions. Also, D3-branes appear in a sequence of dualities be-

tween extended objects in higher dimensions, using both S- and T-dualities, and so the

variety of domain walls in D = 4, 5 and 7 dimensions (where consistent truncations of

supergravity are known to exist) ought to be interelated. Of course, it will be interesting

to formulate this in the algebro-geometric context provided by the Christoffel–Schwarz

transformation, where there is a universal moduli space of the genus 9 Riemann surface

for M2-branes y4 = (x−b1)(x−b2) · · · (x−b8). It has been noted earlier that the Riemann

surfaces of D3-branes arise as special cases by taking two of the moduli to infinity, while

42



for M5-branes there are three moduli taken to infinity. Thus, it is quite natural to expect

that the modular transformations of the underlying algebraic curves have a natural inter-

pretation in higher dimensions as S- and T-dualities among branes and their continuous

distributions thereof. We hope to return to this issue in a separate publication.

Another topic that has been investigated in detail concerns the analytic form of fluc-

tuations for the graviton and scalar fields in our domain-wall backgrounds. Since the

quantitative analysis of this problem amounts to solving a one-dimensional quantum me-

chanical problem with potential V (z) that behaves as 1/z2 for z → 0 (the asymptotic

AdS region), the right identification of the variable z and the associated Schrödinger

potential V (z) become crucial for extracting the spectrum. We found that the variable z

appears naturally in the Christoffel–Schwarz transformation, which is a complex trans-

formation that maps the interior of a closed polygon in the z-plane onto the upper-half

F -plane, while the variable F is more appropriate for the brane description of our con-

figurations in higher dimensions. Thus, the uniformization of the associated algebraic

curves is a necessary step in order to derive the exact form of the potential, in each case

of interest, and, consequently, to determine its spectrum. We were able to complete this

mathematical task for the models with Riemann surfaces of genus 0 and 1 and derive

the potentials in closed form for most of these cases. Subsequently, using techniques of

supersymmetric quantum mechanics, which ensure that the spectrum is non-negative, we

were able to compute the spectrum exactly for many models and make estimates using

the WKB approximation for many others. The elliptic models exhibit an interesting

class of potentials within the family of generalized Lamé potentials, which can be studied

analytically only in certain cases.

It might seem surprising that we have encountered domain wall solutions with very

little or even no isometry in the classification in terms of Riemann surfaces. Of course, we

are unable to perform the uniformization and find explicit expressions for the conformal

factor of their metrics and their scalar fields in general, since this has only been done

for models of low genus and hence bigger isometry groups. Nevertheless, this situation

can be perfectly accommodated in supersymmetric theories, where all the domain-wall

solutions leave half of the supersymmetries unbroken. It is rather instructive to compare

this situation with the geometry of four-dimensional hyper-Kähler manifolds and their

possible isometry groups. Recall that all hyper-Kähler manifolds are supersymmetric

(preserving half of the supersymmetries) and as such they admit three independent com-

plex structures I, J , K, hence a whole sphere of them, since aI + bJ + cK will be a

complex structure if a2 + b2 + c2 = 1. The group SO(3) acts naturally on the space of

complex structures as rotations; but this does not necessarily imply that all hyper-Kähler

manifolds are SO(3) symmetric. Although many examples (like Eguchi–Hanson, Taub–

NUT and Atiyah–Hitchin) have an SO(3) isometry group, there are others with less

isometry or none; for example Dancer’s manifold has only an SO(2) isometry, whereas

K3 commonly used in compactifications of string theory has no isometries at all. In

this sense, our domain-wall solutions to gauged supergravities in four, five and seven

dimensions provide useful tools for developing a deeper understanding of the consistent
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truncations of eleven-dimensional supergravity, and they can be rather exotic. Also, the

associated Bogomol’nyi bounds and their possible description using contour integrals on

the underlying Riemann surfaces pose some interesting mathematical questions for the

future.

Finally, there is the conceptual issue of relating R-symmetry to the isometry group

that remains unbroken by the geometric structure of our solutions, which we belief is

worth emphasizing. In our approach, the R-symmetry is spontaneously broken by giving

vacuum expectation values to the scalar fields of the theory that are charged under this

symmetry. Then, the R-symmetry is not a symmetry anymore, but relates different

vacua of the theory. Generically, this procedure also breaks conformal invariance, thus

breaking half of the 32 supersymmetries independently of the amount of symmetry that is

left unbroken. In supergravity this can be understood as follows: for generic values of the

real parameters bi in the master curve y4 = (x−b1)(x−b2) · · · (x−b8), the gauge symmetry

(related to the R-symmetry in field theory), is spontaneously broken. In fact, for any

given choice of the parameters, the curve is not invariant under SO(8). However, its form

is preserved since SO(8) acts naturally on b1, b2, · · · , b8 in its fundamental representation

and rotates any given choice of moduli bi into another. This is different from the situtation

where the background describes a flow from the maximally supersymmetric theory to a

conformal theory with less supersymmetry. In the latter case the theory is perturbed

by adding suitable deformations to the action, which explicitly break some or all of

supersymmetries; at the IR fixed point the geometry is again AdSD and the R-symmetry

is related to the number of supersymmetries. This means, in particular, that the isometry

group contains a factor that is equal to the R-symmetry of the field theory.
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