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Abstract. Given two selfadjoint operators A and V = V+ � V�,

we study the motion of the eigenvalues of the operator A(t) =

A � tV as t increases. Let � > 0 and let � be a regular point

for A. We consider the quantity N (�;A;W+;W�

; �) de�ned as

the di�erence between the number of the eigenvalues of A(t) that

pass the point � from right to left and the number of the eigen-

values passing � from left to right as t increases from 0 to �: We

study the asymptotic behavior of N (�;A;W+;W�

; �) as � ! 1:

Applications to Schr�odinger and Dirac operators are given.

0. Introduction

Let A = A� be a selfadjoint operator whose spectrum �(A) has
gaps. Let � = � 2 �(A) be a �xed "observation point". We take a
perturbation V of the form

V = W �
+W+ �W �

�W� (1)

and put

A(�) = A� �V; � > 0:

Let N(�) = N(�;A;W+;W�; �) denote the di�erence between the
number of the eigenvalues of A(t) that cross � moving leftwards as
t grows from 0 to � and the similar number related to the eigenvalues
moving rightwards. Our concern is with the leading term (in the power
expansion) of the asymptotics of N(�) as �!1: We �nd conditions
on W+;W� reducing the calculation of this asymptotics to the cases of
positive V = W �

+W+ and negative V = �W �
�W�. In x1 we formulate

the problem and describe the main result in detail.
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Recall that if V = W �
+W+, then the eigenvalues of A(�) move left-

wards. Thus, the function N(�) is monotonically increasing for any
� = � 2 �(A) and coincides with the distribution function of the posi-
tive spectrum of a compact selfadjoint operator. A suitable version of
the Birman { Schwinger principle can be found in [2]. This forms a
basic tool for the investigation of the case V > 0 (as well as of the case
V < 0), which has been treated in [1], [2], [10] and [13]. Remark that a
Dirac operator has been considered in the paper [13] , and the papers
[1], [2] and [10] deal with Schr�odinger operators.
If V is a perturbation of variable sign, the problem becomes much

more di�cult. Since the motion of eigenvalues of the operator A(�)
is no longer monotone, the study of the perturbations (1) requires a
"proper" generalization of the function N(�). It has turned out that
such a generalization is the di�erence between the number of eigen-
values having crossed � in each of the two directions. We remind the
reader that closely related problems for perturbations V of variable sign
were considered also in the papers [11], [16]. However, another function

was examined there, namely, the number fN(�; �) of eigenvalues having

reached an interior point � of a gap. For fN (�; �), some lower asymp-
totic estimates were found in [11], [16]. Somewhat di�erent questions
concerning the �ne structure of the motion of the eigenvalues ("trap-
ping and cascading") have been considered in [8]. Other literature can
also be found in the references (see for example [7] and [9]).
As in the paper [17], in the present article we need certain additional

technical means, namely, a special version of asymptotic perturbation
theory for operator families of a speci�c form. The corresponding ma-
terial is given in the x3.
In x6 we apply Theorem 1.1 to the spectral theory of di�erential

operators. The most natural candidates for such applications are
Schr�odinger operators, but the second example in this subsection deals
with the Dirac operator. The starting point of the investigation of
Dirac operators are the papers [13] and [3], where the case of positive
V was considered.
We mention two notational conventions that are used throughout

the work. If in any statement we use the double index \�", then
this statement should be read separately for each of the indices \+"
and \�". Sometimes references to formulae are also given analogous
subscripts; for example, (11)+ means that the formula (11) should be
read under the index "+".
It is a pleasure for the author to express his deep gratitude to Pro-

fessor M. Sh. Birman (who suggesting the problem), A. A. Laptev
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and M. Klein for their attention to the work. The author is grateful
for �nancial support given by SFB 288 and for the hospitality of the
Department of Mathematics of the University of Potsdam.

1. Preliminaries and formulation of the main result

1. Below Hj (j = 1; 2) are separable Hilbert spaces. We denote
by R = R(H1;H2) the space of continuous linear operators and by
S1 = S1(H1;H2) the space of compact operators acting from H1

to H2. If H1 = H2 = H, we write R(H) and S1(H). The symbols
D(M);RanM; KerM;M�; �(M); �(M) denote the domain, the range,
the kernel, the adjoint operator, the resolvent set and the spectrum
(respectively) of a densely de�ned linear operator M: Let T 2 S1. We
denote by sk(T ); k 2 N, the singular numbers of an operator T:, i.e.,
the consecutive eigenvalues of the operator (T �T )1=2, and introduce the
distribution function

n(s; T ) = cardf k : sk(T ) > s g

of the s�numbers (s > 0). If T = T � 2 S1(H), we put n�(�; T ) =
n(�; T�), where 2T� = jT j � T: Clearly, n = n+ + n�:

Some statements equivalent to the inequalities of H. Weyl, Ki Fan,
and Horn (see e.g.,[4]) should be mentioned. If Tj = T �j 2 S1(H); j =
1; 2; then

n�(s1 + s2; T1 + T2) � n�(s1; T1) + n�(s2; T2); s1; s2 > 0:
(2)

Similary, for Tj 2 S1(H1;H2); j = 1; 2; we have

n(s1 + s2; T1 + T2) � n(s1; T1) + n(s2; T2); s1; s2 > 0: (3)

Then, if T1 2 S1(H3;H2) and T2 2 S1(H1;H3), then

n(s1s2; T1T2) � n(s1; T1) + n(s2; T2); s1; s2 > 0: (4)

Let 0 < p <1; we consider the class (ideal) �p � S1 determined by
the condition

jT jpp := sup
s>0

spn(s; T ) <1:

The functional j � jp is a quasinorm on �p. Let �0
p be the separable

closed subspace of �p de�ned as follows:

�0
p := f T 2 �p : n(s; T ) = o(s�p); s! 0g:
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The set K of �nite rank operators is dense in �0
p. We introduce the

following functionals on �p:8<
: �p(T ) = lim sups!0 s

pn(s; T );
�p(T ) = lim infs!0 s

pn(s; T ):
(5)

If T = T �, we put8<
: �(�)

p (T ) = lim sups!0 s
pn�(s; T );

�(�)p (T ) = lim infs!0 s
pn�(s; T ):

(6)

Each of the six functionals (5), (6) is continuous on the space �p (see
[4]). Moreover, they are invariant under addition of a summand of class
�0
p to T .
We shall need the following result.

Proposition 1.1. (a) Let Tj 2 �qj , 0 < qj <1, j = 1; 2. Suppose

that T = T1T2 and q�11 + q�12 = q�1. Then T 2 �q and

jT jq � C(qq; q2)jT1jq1jT2jq2: (7)

(b) Under the additional condition T1 2 �0
q1

(or T2 2 �0
q2
) we have

T 2 �0
q:

2. Let a[�; �] be a sesquilinear form in a Hilbert space H: We assume
that its domain d[a] is dense in H and a is semibounded from below
and closed on d[a]. The form a induces the self-adjoint operator A on
H. Fix the value of  2 R, such that a := a+  � 1; i.e.

a[x; x] = a[x; x] + kxk2 � kxk2; x 2 d[a];

and denote by H [a] the (complete) Hilbert space d[a] with the metric
form

a[x; x] = k(A+ I)1=2xk2; x 2 d[a]:

Together with H, we shall consider some "auxiliary" Hilbert spaces
G�: In what follows, the inner products and the norms in various spaces
are denoted by the symbols (�; �) and k � k without any subscripts.
Let W� : H ! G� be two closable linear operators, satisfying

D(W�) � d[a] and

W�(A+ I)�1=2 2 �2p(H;G�) (8)

for some p 2 (0;1): Put

v�[x; y] = (W�x;W�y): (9)

Then v� are compact on d[a]: This means that the v� are continuous on
H[a] and the corresponding operators Q� (determined by the relations



THE DISCRETE SPECTRUM OF PERTURBED SELFADJOINT OPERATORS 5

a[Q�x; y] = v�[x; y] for x; y 2 d[a]) are compact on H [a]. Therefore
the forms

a�(�) = a� �v�

are lower semibounded and closed on d[a]. Under the above assump-
tions, the di�erence between the resolvents of the operators A and
A�(�) is compact. Hence, the spectrum of A�(�) is discrete in the
gaps of the spectrum �(A) of A.
3. Let an interval � = (��; �+) be a gap in �(A). It is easy to check

(see [2], x1), that the eigenvalues of A+(�) (of A�(�)) move inside �
monotonically from the right to the left (from the left to the right) as
� grows.
We denote by N�(�;A;W�; �) the number of eigenvalues of A�(t)

that cross a point � 2 � as t grows from 0 to �; and introduce the
quantities

�(�)
p (�;A;W�) := lim sup

�!1
��pN�(�;A;W�; �); (10)

�(�)p (�;A;W�) := lim inf
�!1

��pN�(�;A;W�; �) (11)

(these quantities are �nite by (8)). Below we shall always suppose that

�(�)
p (�;A;W�) = �(�)p (�;A;W�) =: J

(�)
p : (12)

Further explanations concerning the material of this subsection can
be found in x2.
4. Let a form a and an operator A be as above, and let v� be the

forms de�ned in (9); we assume that condition (8) is ful�lled. The form

v = v+ � v� (13)

is compact on d[a]. We introduce a family of lower semibounded closed
forms a(�) on d[a]:

a(�) = a� �v; � > 0: (14)

Below A(�) denotes the self-adjoint operator on H; which corresponds
to the form (14). Since the di�erence of the resolvents of A and A(�)
is compact, the spectrum of A(�) in the gaps of �(A) is discrete. Let
the interval � = (��; �+) be a gap in the spectrum �(A): We �x an
\observation point" �;

�� < � < �+:

Assume that � is an eigenvalue of multiplicity k of the operator A(�0)
for some �0 > 0: Then one can choose a numbering of eigenvalues
�j(�); j = 1; : : : ; k; of A(�) such that are real-analytic functions of �
near �0 and

�j(�0) = �; j = 1; : : : ; k:
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We suppose, that the multiplicity of recurrence of some value in the
set f�j(�)g

k
j=1 coincides with the multiplicity of the respective eigen-

value.
Let us choose a suitable neighborhood of the point �0: Since none

of the functions �j is constant, the zeros of the derivatives d�j=d� are
isolated. Hence, we can choose such a neighborhood of �0; that

d�j(�)=d� 6= 0 for � 6= �0; j 2 1; k:

Assume that among the �j k+ functions decrease and k� functions
increase in the chosen neighborhood (non-monotone functions are not
counted). Then we say, that k+ eigenvalues pass the point � from the
right to the left, and k� eigenvalues pass the point � from the left to
the right, as the coupling constant � increases near �0:

ByN(�;A;W+;W�; �) we denote the di�erence between the number
of eigenvalues of A(t); which pass the point � 2 � from the right to the
left, and the number of eigenvalues of A(t); which pass the point � 2 �
from the left to the right, as t increases from 0 to �; excluding �: In
other words, we sum up the di�erences k+ � k� over all t 2 (0; �) for
which � 2 �(A(t)): It is easily seen that such t's are isolated; so, there
are �nitely many of them in the interval (0; �). The sum obtained is
N(�;A;W+;W�; �), and this quantity is continuous from the left with
respect to � for every �xed � 2 �:
If v > 0 (v < 0), then the eigenvalues of A(�) are monotoni-

cally decreasing (monotonically increasing) as � grows. In this case,
jN(�;A;W+;W�; �)j coincides with the number of the eigenvalues of
A(t) that cross � as t grows from 0 to �.
The condition (8) guarantees that the quantities

�p(�;A;W+;W�) = lim sup
�!1

��pN(�;A;W+;W�; �); (15)

�p(�;A;W+;W�) = lim inf
�!1

��pN(�;A;W+;W�; �) (16)

take �nite values.
5. Let W� be the same as in Subsection 2 of x1, and let condition

(8) be ful�lled. For � 2 �(A) we consider the operators

X�(A) := G+(A+ I)(A� �I)�1G�(A)
�;

X�
� (A) := G�(A+ I)(A� �I)�1G�(A)

�:

By (8), these operators are of class �p: If � = �; the operators X�
� (A)

are selfadjoint in G�. If � is a gap in �(A), then X�(A); X
�
� (A) admit

the following equivalent de�nition:

X�(A)g = W+(A� �I)�1W �
�g; g 2 D(W �

�); (17)
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X�
� (A)g =W�(A� �I)�1W �

�g; g 2 D(W �
�): (18)

Now we are ready to formulate our main result on the quantities (15),
(16).

Theorem 1.1. Let � = � 2 �(A) and let the form v in (14) be
de�ned in (13), where v� are the forms given by (9). Assume that
relations (8) and (12) are ful�lled. Finally, let

X�(A) 2 �0
p: (19)

Then the identity

�p(�;A;W+;W�) = �p(�;A;W+;W�) = J (+)
p � J (�)

p (20)

holds true.

The relevant auxiliary material is presented in xx2-4; the proof is
completed in x5.

2. The Birman-Schwinger principle

1. Let A�(�) be the same as in x1. It is well known that the
description of the discrete spectrum of A�(�) can be reduced to the
study of the spectrum of the compact operator X�

� (A): We borrow
from [2] a suitable version of this reduction.

Proposition 2.1. Let � = � 2 �(A): The following two statements

are equivalent:
1)� is an eigenvalue of multiplicity k for the operator A�(�);
2)the point ���1 is an eigenvalue of multiplicity k for the operator

X�
� (A):

The next assertion is a direct consequence of Proposition 2.1.

Proposition 2.2. If � = � 2 �(A); then

N�(�;A;W�; �) = n�(�
�1;X�

� (A)); � > 0: (21)

Assume that condition (8) is ful�lled. Then X�
� (A) 2 �p if � =

� 2 �(A). Now (21) ensures that the quantities (10), (11) are �nite,
because

�(�)
p (�;A;W�) = �(�)

p (X�
� (A));

�(�)p (�;A;W�) = �(�)p (X�
� (A)): (22)

2. Let A;A�(�); A(�) be the same as in x1. We �x � = � 2 �(A)
and introduce the set

Y� = f � > 0 : � 2 �(A�(�))g:
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Along with the operators X�
� (A) , we can consider the operators

X�
� (A�(�)); � 2 Y� (with similar de�nition). These operators are

bounded and selfadjoint on G�; from (8) it follows that X�
� (A�(�)) 2

�p.
We describe a way of reducing the study of the discrete spectrum

of A(�) to that of the spectrum of the compact operators discussed in
this paragraph. This reduction is based on the following assertion (see
[17]).

Proposition 2.3. a) Let � 2 �(A(�))\�(A�(�))\�; � > 0: Then

N(�;A;W+;W�; �) =
n+(s;X

+
� (A�(�))) � n�(s;X

�
� (A)); s� = 1:

(23)

b) Let � 2 �(A(�)) \ �(A+(�)) \ �(A); � > 0: Then

N(�;A;W+;W�; �) = n+(s;X
+
� (A))� n�(s;X

�
� (A+(�))); s� = 1:

3. Operator-valued functions (mappings) of classes Sp
and S0

p

In this section we construct some generalizations of the classes �p

and �0
p needed in what follows. Our generalizations are related to the

replacement of "individual" operators by certain mappings of the form

T : R+ ! S1(H1;H2): (24)

1. For 0 < p < 1, we introduce the class Sp(H1;H2) of mappings
(24) for which the quantity

sup
s>0

spn(s; "T (s�1)) (25)

is �nite for every " > 0: It is clear that Sp is a linear set (linear space).
We are not going to dwell on a possibility of supplying the space Sp
with a quasinorm. Keeping the previous notation, we introduce some
natural analogs of the functionals (5),(6) on the space Sp. For T 2
Sp(H1;H2) we put8<

: �p(T ) = lim sups!0 s
pn(s;T (s�1));

�p(T ) = lim infs!0 s
pn(s;T (s�1)):

(26)

If H1 = H2 = H and

T (�) = T (�)�; � > 0; (27)

then we put 8<
: �(�)

p (T ) = �p(T�);

�(�)p (T ) = �p(T�):
(28)
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where 2T�(�) = jT (�)j � T (�): The subspace of Sp determined by the
condition

�p("T ) = 0 for any " > 0

will be denoted by S0
p :

2. Now we discuss the simplest propeties of the functionals (26),
(28). In the following statement we consider products of two mappings
of the form (24).

Proposition 3.1. Let T1 2 Sp(H3;H2); T2 2 Sp(H1;H3); T (�) =
�T1(�)T2(�). Then T 2 Sp(H1;H2) and for every " > 0

�p(T ) � �p("
�1T1) + �p("T2): (29)

We �nish this subsection with considering the behavior of the quan-
tities (26), (28) under additive perturbations of class S0

p : Full analogy

with the case of the functionals (5), (6) cannot be achieved here, be-
cause the functionals (26), (28) are not homogeneous relative to multi-
plication of T by constants; we are forced to compensate this shortage
by imposing an additional requirement on T :

Proposition 3.2. Assume that the mappings T 2 Sp(H) and T0 2
S0
p(H) satisfy condition (27). Then

a) if limt!1�
(�)
p (tT ) = �(�)

p (T ); then �(�)
p (T + T0) = �(�)

p (T );

b) if limt!1 �
(�)
p (tT ) = �(�)p (T ); then �(�)p (T + T0) = �(�)p (T ).

Proposition 3.3. Let T 2 Sp(H1;H2); T0 2 S
0
p (H1;H2).

a) If limt!1�p(tT ) = �p(T ), then �p(T + T0) = �p(T ):
b) If limt!1 �p(tT ) = �p(T ), then �p(T + T0) = �p(T ):

The proof of Propositions 3.1-3.3 can be found in [17].
3. We present some su�cient conditions for a mapping of the form

(24) to be of class S0
p .

Let T1 2 S1, and let T2 be a mapping of the form (24). We formulate
some conditions ensuring that the mapping

T (�) = �T1T2(�); � > 0; (30)

belongs to the class S0
p :

Proposition 3.4. Let T be the mapping (30) where T1 2
�0
p(H3;H2) and T2 2 Sp(H1;H3). Assume that

lim
"!0

�p("T2) = 0: (31)

Then T 2 S0
p(H1;H2):
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Proof. Proposition 3.1 readily implies that T 2 Sp. Next, we make

the substitution T1 7! �1=2T1; T2 7! �1=2T2 in (29) to obtain

�p(�T ) � �p("
�1�1=2T1) + �p("�

1=2T2); "; � > 0:

This leads to the estimate �p(�T ) � �p("�
1=2T2); letting "! 0, from

(31) we see that �p(�T ) = 0 for every � > 0: 2
The next result is deduced from Proposition 3.4.

Proposition 3.5. Let T 2 �0
p(H3;H2); T 2 Sp(H1;H3) and

lim
"!0

�p("T ) = 0: (32)

Then the mapping

R+ 3 � 7! �2TT (�)T � 2 S1

belongs to the class S0
p :

Proof. The singular numbers of T and T � coincide. Therefore,
the conditions of type T 2 �0

p; T 2 S0
p ; etc., are invariant under

conjugation. Moreover, passing to the adjoint operators in (30), we see
that the factors T1 and T2 in Propositions 3.4 may be interchanged.
In Proposition 3.4, we make the substitution T1 7! T; T2 7! T . As

a result we obtain that the mapping F1(�) = �TT (�) belongs to S0
p .

For the mapping F2(�) = �F1(�)T
� the relation F2 2 S

0
p follows from

Proposition 3.4 if we interchange the factors. 2
4. So far, we have dealt with the mappings (24) on R+. In what

follows we shall need some mappings of the form

T : Y �! S1(H1;H2); (33)

where Y is a �xed set dense in R+. All the said above remains valid for
such mappings. When referring, we shall assume that R+ is changed
for Y in Proposition 3.1-3.7. Below, the role of Y will be played by the
half-axis R+ from which some sequence �k !1 is deleted. The depen-
dence of the classes Sp(H1;H2); S

0
p (H1;H2) on Y will not be indicated

explicitly.

4. Some special operator-valued functions

Let A;A�(�) be the same as in xx1,2. We �x � = � 2 �(A). In this
section we consider the mappings (33); Y will be a �xed set satisfying
the conditions Y = R+ and

Y � f � > 0 : � 2 �(A�(�)) g:

The set Y will be further speci�ed in x5.
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1. Our nearest goal is to investigate the mapping

T0 : Y 3 � 7! X+
� (A�(�))�X+

� (A) 2 �p: (34)

Theorem 4.1. Assume that the conditions (8), (19) are ful�lled.
If T0 is de�ned as in (34), then

T0 2 S
0
p (G+): (35)

The proof of this theorem will be presented in the next subsection;
here we establish two preliminary statements.

Proposition 4.1. Let � 2 Y and s > ��1. Then

n(s;X�
� (A�(�))) =

N�(�;A;W�; �+ s�1)�N�(�;A;W�; �� s�1 + 0):
(36)

Proof. We �x a point � 2 Y and view A�(�) as an unperturbed
operator; a perturbation is introduced via the forms ��v�; � > 0: The
parameter � plays the part of a coupling constant. Then, the perturbed
operator is A�(� � �). Proposition 2.2 implies that

dim Ker(X�
� (A�(�)) � ��1I) = dim Ker(A�(�� �)� �I):

Therefore,
n(s;X�

� (A�(�))) =

n+(s;X
�
� (A�(�))) + n�(s;X

�
� (A�(�))) =X

0<�<s�1

dim Ker(A�(���)��I)+
X

0<�<s�1

dim Ker(A�(�+�)��I) =

X
��s�1<t<�+s�1

dim Ker(A�(t)� �I) =

N�(�;A;W�; �+ s�1)�N�(�;A;W�; �� s�1 + 0):

2

The next proposition deals with the mapping

�(�) = X�
� (A�(�)); � 2 Y; (37)

and is a consequence of (12)� and (36).

Proposition 4.2. Let � be de�ned by (37) and 0 < " < 1. Then

�p("�) = ((1 + ")p � (1� ")p)J (+)
p :

In particular

lim
"!0

�p("�) = 0: (38)

2. Proof of Theorem 4.1. We shall rely on the following assertion
which is proved in [17].
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Proposition 4.3. Let � 2 Y. Then

X+
� (A�(�)) = X+

� (A)� �X�(A)X�(A)
�+

�2X�(A)X
�
� (A�(�))X�(A)

�;
(39)

From (19) we see that R := X�(A)X�(A)
� 2 �0

p=2;. Therefore,

n(��1; �"R) = o(�p) as �!1 (" > 0).
It remains to show that the mapping

Y 3 � 7! �2X�(A)X
�
� (A�(�))X�(A)

�

is of class S0
p(G+). Using (19) and (38) we see that this is a consequence

of Proposition 3.5. 2

4. Under the assumptions of Theorem 4.1 consider the mapping

L� : Y 3 � 7! X+
� (A�(�)) 2 �p: (40)

The following result is of importance for our consideration.

Theorem 4.2. Assume that conditions (8), (12) and (19) are ful-
�lled. If L� is de�ned as in (40), then

�(+)
p (L�) = �(+)p (L�) = J (+)

p : (41)

Proof. We employ Proposition 3.2 with T (�) = X�(A) and T0 from
(34). The condition T0 2 S

0
p follows from Theorem 4.1. Also, we need

to verify that

lim
t!1

�(+)
p (tX�(A)) = �(+)

p (X�(A)); (42)

lim
t!1

�(+)p (tX�(A)) = �(+)p (X�(A)): (43)

But these relations follow from the continuity of the functionals
�(+)

p ; �(+)p on �p. 2

5. The proof of the main theorem (Theorem 1.1)

1. Proposition 5.1 implies that the two-side estimate

�n�(s;X
�
� (A)) � N(�;A;W+;W�; �) � n+(s;X

+
� (A));

� > 0; s� = 1; � 2 �(A(�)) \ �(A�(�)) \ �(A+(�)) \ �;

is valid for all � > 0 except for some sequence �k ! 1: Since N is
continuous from the left with respect to �, the following estimate is
valid for all � > 0:

�n�(s+ 0;X�
� (A)) � N(�;A;W+;W�; �) � n+(s+ 0;X+

� (A));
s� = 1:

(44)

We haveX�
� (A) 2 �p by (8); therefore, (44) ensures that the quantities

(15), (16) are �nite.
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2. Proof of Theorem 1.1. We put

Y = f� > 0 : � 2 �(A(�)) \ �(A�(�))g:

The set Y is obtained from R+ by deleting two sequences tending to
in�nity. SinceN(�) = N(�;A;W+;W�; �) is a left continuous function
of �, for any �0 > 0 we have

sup
�>�0

��pN(�) = sup
�>�0;�2Y

��pN(�);

inf
�>�0

��pN(�) = inf
�>�0;�2Y

��pN(�):

Consequently, for the calculation of the functionals (15), (16) it su�cies
to consider � 2 Y; � ! 1. On the other hand, from (23) we deduce
that

�p(�;A;W+;W�) � �(+)
p (L�)� �(�)p (X�

� (A));

�p(�;A;W+;W�) � �(+)p (L�)��(�)
p (X�

� (A)):

Now the required relation (20) follows immediately from formulae (12)�
and (41). 2

6. Applications to differential operators

In this section we present some applications of Theorem 1.1 to the
study of di�erential operators.
1. Below we write

R
=
R
Rd : We denote Dj = �i @

@xj
; D = �ir =

(D1; : : : ;Dd); B1 = fx 2 Rd : jxj < 1g and !d = volB1: By H
s(Rd) we

denote the Sobolev classes of order s 2 N.
For a measurable function u : Rd! C and t > 0, we set

�u(t) = measfx 2 Rd : ju(x)j > tg:

We say that u is in the class Lp;1(R
d); 0 < p < 1; if the following

quasinorm is �nite

kukp;1 := sup
t>0

tp�u(t) <1:

The subspace fu 2 Lp;1(R
d) : �u(t) = o(t�p); t! 0; t!1g is de-

noted by L0
p;1(R

d). Finally, �r; r 2 R; is the operator of multiplication
by the function

�r(x) := (1 + jxj2)�r=2; x 2 Rd: (45)

2. Let d � 2 and f : Rd ! R be a real function. Assume that this
function is (Lebesgue) measurable and that

f 2 L1(R
d); (46)

f(x+ n) = f(x); x 2 Rd; n 2Zd: (47)
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In our �rst example we set H = G� = L2(R
d); d[a] = H1(Rd); and

a[u; u] =
Z
(jruj2 + f(x)juj2)dx; u 2 d[a]: (48)

Let A be the selfadjoint operator in H generated by the form a.
Then A is a Schr�odinger operator, i.e., A = �4 + f(x). Without

loss of generality we shall assume that f � 0 and therefore A > 0. Let
V be a measurable real-valued function, and

v[u; u] =
Z
V (x)juj2dx: (49)

Also, let W� be the operators of multiplication by the functions V
1=2
� ;

where 2V� = jV j � V . Then the forms v+ and v� de�ned as in (9)
satisfy (13). The following condition is imposed on V so as to ensure
(8):

V (x) = 	(�)�s(x); � = x=jxj;

where 0 < s < 2 and

	 2 Lp(S
d�1); p = d=s: (50)

Denote by k � kp the norm in Lp(S
d�1): Then

jW�(A+ I)�1=2j2p � Ck	�k
1=2
p : (51)

Notice that for f = 0 this inequality simply follows from the Cwikel [6]
estimate:

Proposition 6.1. (a) Let W 2 Lq;1(R
d) and b 2 Lq(R

d); q >

2: Then the operator T = W��b belongs to the class �q(H) and the
following estimate holds

jT jq � C(q; d)kWkq;1kbkLq : (52)

(b) Under the additional condition

W 2 L0
q;1(R

d)

we have

T 2 �0
q(H):

Putting W = W�; b(�) = (j�j2 + 1)�1=2; q = 2d=s; we obtain (51)
for f = 0. In the general situation (51) follows from the relation

(�4+ I)1=2(A+ I)�1=2 2 R(H):

Proposition 6.2. Let a; v be de�ned as in (48), (49), and let (50)
be ful�lled. Then

X�(A) 2 �0
p: (53)
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Proof. Let us introduce the following functions

F� = 	
1=2
� ; 	� = (j	j �	)=2:

Substituting q1 = q2 = 2p, T1 = W+jA � �Ij�1=2sgn(A � �I), T2 =

W�jA��Ij�1=2 in (7) and employing (51) with W =W+ or W = W�,
we obtain

jX�(A)jp � CkF+k2pkF�k2p; (54)

where k � k2p denotes the norm in L2p(S
d�1).

Let eF� 2 C1(Sd�1), eF� � 0, and let fX�(A) denotes the operator

X�(A) with the replacement of F+, F� by eF+, eF�. Put also
fW�(x) = eF�(�)�s(x)

1=2:

Then

jX�(A)� fX�(A)jp
� jW+(A� �I)�1(W� � fW�)

�jp
+ j(W+ � fW+)(A� �I)�1fW �

�jp:

On the right we have the quasinorms of some operators of type X�(A),
but with W+ and W� changed. Since estimates of the form (54) are
applicable to such operators, we obtain

jX�(A)� fX�(A)jp
� c

�
kF+k2pkF� � eF�k2p + kF+ � eF+k2pk eF�k2p�: (55)

The functions F� can be approximated in L2p(S
d�1) (as closely as we

wish) by functions eF�, and we may additionally require that eF+
eF� =

0. By (55), this shows that the operator X�(A) admits approximation

in the class �p by operators of type fX�(A). Thus, it su�ces to establish
(53) in the case where F+, F� 2 C1(Sd�1) and

F+F� = 0: (56)

In what follows it is important that D(A) = H2(Rd). Let F0 be the
operator of multiplication by the function F0(x) = F�(�)�(x); where �
is a �xed real function such that 1� � 2 C10 (Rd), 0 =2 supp�. In order
to �nd the commutator of the operators (A � �I)�1 and F0, we note
that [B�1;F0] = �B�1[B;F0]B

�1, where B = A��I. It is easily seen
that [B;F0] is a �rst order di�erential operator with smooth coe�cients
decaying as jxj�1 when jxj ! 1. Therefore,

Z := ��1[B;F0](A+ I)�1=2 2 R;
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where ��1; is the operator of multiplication by the function (45) with
s = �1. Later we shall prove the inclusion

� := W+(A� �I)�1(W� �F0�s) 2 �0
p: (57)

Therefore we need only to show that W+(A � �I)�1F0�s 2 �0
p: The

relation (56) yields

W+(A� �I)�1F0�s = �W+B
�1�1(��1[B;F0])B

�1�s

= �W+B
�1�1Z(A+ I)1=2B�1�s: (58)

By (51) with W = �s we have (A+ I)1=2B�1�s = (A+ I)B�1(�s(A+

I)�1=2)� 2 �2p. Moreover, since W+B
�1�1 = W+(A+ I)�1=2

�
B�1(A+

I)�1
�
(A+ I)�1=2�1, the relation (51) with W = W+ and the inclusion

(A + I)�1=2�1 2 S1 shows that W+B
�1�1 2 �0

2p. Thus, by (58),

W+(A� �I)�1F0�s 2 �0
p:

It remains to prove (57). In order to do that we represent this oper-
ator in the following form

� = W+(A+ I)�1=2
((W� �F0�s)(A+ I)�1=2)�

where 
 = (A+I)(A��I)�1 is bounded. Since (W��F0�s) 2 L0
p;1(R

d)
the relation (57) follows from the second part of Proposition 6.1. 2
In order to apply Theorem 1.1, we introduce the notion of the in-

tegrated density of states. Let An be the operator �4 + f(x) in
L2(Qn); Qn = (�n; n)d; n 2 N, with Dirichlet boundary conditions
on @Qn. Denote by N(�;An) the number of eigenvalues of An lying to
the left of � 2 R. Then the following limit

� (�) := lim
n!1

(2n)�dN(�;An)

exists and it is called integrated density of states for the operator A.

Theorem 6.1. Let a; v be de�ned as in (48), (49), and let (50) be

ful�lled. Then for � = � 2 �(A) and p = d=s we have

�p(�;A;W+;W�) = �p(�;A;W+;W�) =

�+(�)
R
Sd�1

	p
+(�)d� ���(�)

R
Sd�1

	p
�(�)d�;

(59)

where

���(�) =
Z
(� (�� jxj�s)� � (�))dx:

Proof. If V (x) = �	�(�)�s(x); � = x=jxj; and 	� are continuous,
the asymptotic relation (59) is proved in [1]. It is extended to V (x) =
�	�(�)�s(x) with 	� 2 Lp(S

d�1) due to the estimate (51). The full
scale assertion of the theorem is a consequence of Theorem 1.1. 2
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3. In Theorem 6.1 A is semibounded. This restriction may be omit-
ted. In the next example we deal with the Dirac operator perturbed
by a decreasing electric potential. Let g = (g1; g2; g3) and g0 be (4�4)-
Dirac matrices; 1 denotes the unit matrix. The Dirac matrices satisfy
the relations

gjgk + gkgj = �jk1; j; k = 0; 1; 2; 3: (60)

Let us consider the unperturbed Dirac operator in H = L2(R
3; C 4)

A = g �D + g0;

g �D = �i
3X

j=1

gj
@

@xj
;

and perturb the operator by a real potential

A(�) = A� �V; � > 0; (61)

V 2 L3(R
3); V = V: (62)

The operator (61) needs to be correctly de�ned. Under the condi-
tion (62) it is impossible to introduce the operator as the di�erence
of two operators, but it can be understood in a sence of the sum of
the sesquilinear forms. This de�nition could be used not only for semi-
bounded operators but for general ones, too. The corresponding scheme
for non-semibounded operators is given in [21].
The spectrum of the operator A is absolutely continuous and covers

the complement of the interval � = (�1; 1). The essential spectrum
of the operator A(�) coincides with the spectrum of A. Besides, the
operator A(�) has a discrete spectrum in the gap �.
Throughout this subsection we use the notation

W� = (V�)
1=2:

Theorem 6.2. Let A be the Dirac operator and � 2 �. Under the
condition (62) the following asymptotics holds

N(�;A;W�;W+; �) � (3�)�2�3(
Z
V 3
+dx �

Z
V 3
�dx); (63)

�!1:

The proof of (63) is similar to the proof of Theorem 6.1. Instead of
the condition (8) here we need the inclusion

W�jAj
�1=2 2 �6(H);

which follows from Proposition 6.1. Indeed, since (�4+ I)1=4jAj�1=2

is a bounded operator, it is su�cient to establish that

G :=W�(�4+ I)�1=4 2 �6(H):
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Since the functions W and b in Proposition 6.1 can be interchanged,
by (52) with W (�) = (j�j2 + 1)�1=4; b(x) =W� and q = 6 we have

jGj6 � C0kW�kL6
;

where k � kL6
denotes the norm in L6(R

3). Hence,

jW�jAj
�1=2j6 � CkW�kL6

: (64)

Besides establishing (64), as in the previous example, we have to in-
vestigate the operator

X�(A) = W+(A� �I)�1W�:

Proposition 6.3. Let (62) be ful�lled. Then

X�(A) 2 �0
3: (65)

Proof. Substituting q1 = q2 = 6, T1 = W+jA� �Ij�1=2 sgn(A� �I),

T2 = (W�jA� �Ij�1=2)� in (7) and employing (64), we obtain

jX�(A)j3 � CkW+kL6
kW�kL6

: (66)

Let fW� 2 C10 (R3), fW� � 0 and fW+
fW� = 0. Let fX�(A) denotes

the operator X�(A) with the replacement of W+,W� by fW+, fW�. The
relation (66) shows that the operator X�(A) admits approximation in

the class �3 by operators of type fX�(A). Thus, it su�ces to establish
(65) in the case where W+, W� 2 C10 (R3) and

W+W� = 0: (67)

In order to �nd the commutator of the operators (A� �I)�1 and W�,
we note that [B�1;W�] = �B�1[B;W�]B

�1, where B = A � �I. It
is easily seen that Z := [B;W�] is an operator of multiplication by a
bounded compactly supported matrix-function. Moreover,

Z = ��Z;

where �� is the operator of multiplication by the characteristic function
of suppW�. The relation (67) yields

W+(A� �I)�1W� = �W+B
�1[B;W�]B

�1��
= �(W+B

�1��)(ZB
�1��):

(68)

By (51) with W� substituted by Z or ��, we have

ZB�1�� 2 �3:

Moreover, sinceW+B
�1�� 2 �3, by (68), we have X�(A) 2 �3=2 � �0

3.
2

For the case V � 0 the asymptotics (63) (under the condition (62))
was established in [3]. Moreover the case V � 0 can be treated in the
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similar way (see Proposition 2.3 in [3]). The full scale assertion of The-
orem 6.2 follows from the suitable for the Dirac operator modi�cation
of Theorem 1.1 .
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