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1. Introduction

Matrix string theory [1]1 is a concrete proposal for a non-perturbative definition of

type-IIA superstring theory [2]. The basic building blocks of this model are bosonic

and fermionic matrices in the adjoint representation of U(N). The link with string

theory in the light cone gauge is provided by the analysis of the moduli space of

vacua showing that one retrieves the light cone Green-Schwarz action in the small

string coupling limit. Due to the matrix nature of the model, one gets N copies of

the Green-Schwarz action.

It has soon been realized that string interactions [1, 3] can also be incorporated in

the matrix context. In particular one finds that the string interactions are represented

by Mandelstam diagrams [4] where the propagation of strings along straight lines ends

up at an interaction point where two strings join up. This picture emerges in the

study of the spectral cover of the cylinder, i.e. the N sheets formed by the eigenvalues

of the scalar field X = X1+ iX2. The description of the role of the spectral cover in

the string interactions has been first given in [3] and refined in [5, 6]. In the latter it

has been shown that the light-cone fields describing the Green-Schwarz action in the

small string coupling limit live on the world sheet formed by the spectral cover. The

upshot being that in the small string coupling limit the matrix string theory reduces

to the light-cone Green-Schwarz theory on the spectral cover supplemented with a

residual U(1) theory.
1DVV in the following.
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These properties have been deduced from the analysis of the matrix string instan-

tons [7]. The Yang-Mills action describing matrix string theory admits instantonic

solutions which correspond to the euclidean version of BPS configurations. These

instantons are solutions of a Hitchin system of differential equations [8, 9, 10]. The

Mandelstam diagram representing the string interaction corresponds to the spectral

cover of the Hitchin system. This provides a direct link between the Yang-Mills and

string points of view.

One would like to obtain an explicit description of the matrix string instanton

moduli spaceM. An argument based on an index theorem [11] shows that the moduli
space has complex dimension (2gS−3+p) where gS is the genus of the spectral cover
S and p is the number of external states involved in a scattering amplitude. Moreover

the authors of [11] argue that there are 2gS further discrete coordinates specifying

the scattering amplitudes in matrix string theory. This identifies the moduli space

of instantons with a discrete slice of the moduli space of marked Riemann surfaces .

A complete identification of the scattering amplitudes in type-IIA superstring

theory and matrix string theory requires the equality between the measures on the

moduli spaces. Due to the discretization in matrix theory this can only be valid in

the large-N limit.

Recently it has been argued that matrix string on the torus has a discrete moduli

space whose large-N limit is exactly the toroidal moduli space of string theory [12].

This strongly suggests that the large-N limit has to be taken in order to retrieve the

string measure on the moduli space of Riemann surfaces.

In superstring theory in the light cone frame one includes an operator at the

interaction points whose role is to guarantee the ten-dimensional Lorentz invariance.

An argument given in DVV suggests that the interaction points of strings in matrix

theory should be decorated with the insertion of an operator playing the same role as

the picture changing operators in the RNS version of string theory [13]. It is known

in string theory that these operators appear as the result of the integration over the

super-moduli [14]. One of the aims of this paper is to deal with this issue.

In this work we study the explicit solutions to the instanton equation on an

arbitrary marked Riemann surface. This is equivalent to finding a family of flat

bundles over a marked Riemann surface together with a reality restriction on the

solutions. In section 2 we define a (2gS−3+ p) family of solutions, the moduli space
of instantons. Geometrically these instantons are in one to one correspondence with

the family of spectral covers characterized by the zero set of a meromorphic one

form with poles at the marked points. This provides an embedding of the instanton

moduli space into the moduli space of marked Riemann surfaces. In section 3 we

give a stringy description of this moduli space of instantons in terms of the string

scattering diagram associated to the spectral cover. The zeros of the meromorphic

one-form on the spectral cover are identified with the interaction points [15, 16] of

the string diagram. This construction provides the backbone to the dynamics of
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the string interactions. The kinematics, i.e. the momenta, are given by the discrete

Wilson lines that one can allow along non-trivial cycles of the spectral cover when

constructing flat bundles. This completes the identification of the moduli space of

instantons as a discrete slice of the moduli space of marked Riemann surfaces. In

the formal large-N limit the two moduli spaces coincide. In section 4 we review the

calculation of the scattering amplitude and the lifting of fields to the spectral cover.

In section 5 we study the issue of the fermionic super-moduli and show that they

are intimately linked with fermionic ghost zero modes associated to the interaction

points of the string diagram. We perform the integration over the supermoduli and

retrieve the DVV prescription where a picture changing operator is included at each

interaction point. We also mention the ambiguities resulting in the integration over

the super-moduli. Finally we consider the large-N limit of the scattering amplitude

showing that the measure on the moduli space of instantons converges weakly to the

Weil-Petersson measure on the moduli space of marked Riemann surfaces. This shows

that the scattering amplitudes in matrix string theory and string theory coincide in

the small coupling limit.

2. Instantons on marked Riemann surfaces

In this section we study the small string coupling regime of matrix string theory.

Matrix string theory is obtained by dimensional reduction of the ten-dimensional

U(N) super Yang-Mills theory on a cylinder. The ten-dimensional super Yang-Mills

theory is endowed with a gauge field A and a space-time fermion Θ. Upon reduction

to two dimensions the gauge field splits into a two-dimensional gauge field and eight

bosonic coordinates. The two-dimensional action of matrix string theory is given by

the dimensional reduction

S = − 1
2π

∫
dτdσTr

[
(DαX

I)2 − iΘTγαDαΘ+
1

2g2
F 2αβ +

+
g2

2
[XI , XJ ]2 − iΘTγI [XI ,Θ]

]
. (2.1)

The fields are N × N hermitean matrices. The index I runs from 1 to 8 and the

sixteen fermions split into the 8s and 8c spinorial representations of SO(8). The

string coupling constant of the type-IIA string theory is gs such that α
′g2s = g−2

where g is the Yang-Mills coupling constant. The coordinate σ lives between 0 and

2π. All the fields are world sheet scalars subject to a periodicity condition in the σ

direction. The fermions are periodic due to the original space-time supersymmetry.

In the following we will mostly be interested in the euclidean version of this action

obtained after a Wick rotation on the cylinder.

The path integral defining correlation functions in the matrix model is dom-

inated by instanton configurations in the small string coupling limit gs → 0. A
semi-classical evaluation of the path integral is then available leading to a link with
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the string scattering amplitudes [1, 3, 6]. The classical instantons are euclidean

versions of BPS solitons preserving half of the supersymmetries which are derived

from the dimensional reduction of the SYM ten-dimensional supersymmetry trans-

formations. Imposing that the vanishing of the spinors Θ is consistent with half of

the supersymmetry requires that the gauge field and the scalars satisfy the Hitchin

system [8, 9, 10]

Fww̄ + ig
2[X, X̄] = 0 , Dw̄X = 0 , (2.2)

where w = 1
2
(τ − iσ), X = X1 + iX2 and Aw = A0 + iA1. The covariant derivative

acts in the adjoint representation of the gauge group U(N). The solutions to these

equations have been extensively studied [5, 7]. In particular it is known that the

gauge configuration is almost flat Fww̄ ≈ 0 away from the core of the instantons —
a neighbourhood of a finite set of points — where the intrinsically non-commutative

nature of the instantons is apparent. Moreover it is in the core that supersymmetry is

broken by the instantons. In the large YM coupling limit g →∞ the size of the core
of the instantons vanishes leaving an almost everywhere flat gauge configuration.

In the following we shall be interested in recovering the type-IIA string per-

turbation results from matrix string theory. To do so we will concentrate on the

flat part of the instantons away from their core. In the very small string coupling

limit these field configurations are defined on the whole cylinder where a few points

have been singled out. These points will happen to be branched points where the

gauge configuration is ill defined. It is only by going to an appropriate cover — the

spectral cover — that the gauge configuration becomes well defined. Of course by

only considering the flat configurations we have neglected most of the non-abelian

nature of matrix string instantons which is essential to go beyond type-IIA string

perturbation theory.

We shall consider the simplified flatness equations

Fww̄ = 0 , Dw̄X = 0 (2.3)

supplemented with the constraint

[X, X̄] = 0 . (2.4)

The solutions to these equations correspond to the very small string coupling limit

of the solutions of (2.2). They will be shown to be sufficient to describe the nature of

string interactions. Another remarkable property of the instantons (2.3) is that they

are no longer BPS configurations. They preserve all the supersymmetries of matrix

string theory. In particular the semi-classical expansion around these instantons will

not lead to fermionic zero modes due to the breaking of some of the supersymmetries.

It is convenient to define the form X characterized locally by the differential

X = X(w)dw. The second differential equation in (2.3) for X is then cast into
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the form

D̄AX = 0 , (2.5)

where D̄A is the covariant derivative acting on forms. The eqs. (2.3) can be anal-

ysed thanks to their conformal invariance. This allows to map the cylinder to the

sphere with two marked points. The conformal invariance of the equations (2.3)

allows to extend their validity to an arbitrary Riemann surface Σ of genus h with v

marked points.

The connection A = Azdz + Az̄dz̄ with values in the Lie algebra of the gauge

group U(N) is flat on the Riemann surface Σ with coordinates z. The field X(z)

defines a section of the complex vector bundle AdjP where P is the principal vector

bundle on Σ with fibres Gl(N). Finally the real condition [X, X̄] = 0 imposes strong

restrictions on X and A.

Let us summarize the results obtained in the rest of this section. The construc-

tion of a flat U(N) vector bundle with a section X of AdjP will be carried out in

two stages. Notice the decomposition U(N) = (SU(N)×U(1))/ZN where ZN is the
centre of the gauge group acting diagonally on the two factors SU(N) and U(1). First

we shall construct the SU(N) × U(1) instantons. The explicit solutions (A,X) will
be parameterized by a moduli space M of finite dimension. Once this continuous

problem has been solved the effect of modding out by the centre ZN will be taken

into account. As usual in orbifold constructions this will necessitate to introduce dif-

ferent twisted sectors. They spring from the fact that the gauge group is not simply

connected π1(U(N)) = ZN .

The eqs. (2.3) have a complex gauge symmetry where the gauge group G = U(N)

is complexified, i.e. the form A = Azdz + Az̄dz̄ takes values in the Lie algebra of

Gc = Gl(N,C). It is easy to verify that the differential equations (2.3) are invariant

under the complex gauge transformations with g ∈ Gc

Az̄ −→ gAz̄g
−1 − i(∂̄g)g−1 , (2.6)

where X → adj(g)X. This allows to define a decomposition of the set of solutions
of (2.3) into complex gauge orbits. We shall show that the bundle AdjP always

admits a holomorphic structure, a holomorphic connection and a holomorphic section

X0 whose complex gauge orbit possesses an instantonic configuration, i.e. a flat

unitary connection A with a section satisfying D̄AX = 0, [X, X̄] = 0. The resulting

flat unitary connection A is single-valued on the Riemann surface Σ.

Let us first consider the case with no marked points and give an explicit descrip-

tion of the instantons. The complex vector bundle AdjP on the Riemann surface

Σ can be endowed with a covariant derivative D = D′ + D′′ where D′ sends (p, q)-
forms to (p+ 1, q)-forms (respectively D′′ sends (p, q) forms to (p, q + 1) forms). As
(D′′)2 = 0 — there are no (2, 0) forms on a Riemann surface — one can always
find a complex structure [17] such that D′′ = ∂̄. Let us now consider a holomorphic
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one form X0 which is also a section of AdjP for this choice of complex structure,

i.e. D′′X0 ≡ ∂̄X0 = 0. The holomorphic sections X0 ∈ H0(Σ, KΣ ⊗ AdjP ), where
KΣ is the canonical bundle, are conveniently obtained by using the Schottky rep-

resentation [18] of the Riemann surface Σ. Consider a 2h-dimensional basis for the

homology cycles ai, bi, i = 1, . . . , h of Σ. Choose a small cylinder Ci bording the

cycles ai on each of the h handles. Opening up the handles by removing the cylinder

Ci creates 2h open discs on the surface Σ. The open surface Σ̃ is the Riemann sphere

with 2h open discs and v marked points. The discs are such that the circles on their

boundaries are associated by pairs (a−i , a
+
i ) corresponding to the two boundaries of

the removed cylinders Ci. Denote by γi the homography sending the circle a
+
i onto

a−i . The form X0 on the circles a
+
i and a

−
i is related by this homography and by the

connecting matrices Hi

X0(γi(x))|a−i = adj(Hi)X0(x)|a+i . (2.7)

Due to these boundary conditions on the open discs the holomorphic differential X0
is given in terms of Poincaré series.

Let us define the following Poincaré series [18, 21]

ωk(x0)dz =
∑
γ∈Γ
adj(H−1γ )d ln

γ(z)− γk(x0)
γ(z)− x0 , (2.8)

where Γ is the Schottky group, i.e. the formal product of the h homology cycles bi.

To each element γ one associates Hγ as the product of the corresponding matrices

Hi. The point x0 is an arbitrary point on the Riemann sphere. The holomorphic

differentials are of the form

X0 =

h∑
k=1

ωk(x0)Mkdz , (2.9)

where Mk is a matrix with values in the Lie algebra of the complexified gauge group.

Holomorphy is guaranteed once the residue of X0 at x0 vanishes, this requires

h∑
k=1

(
adj(H−1k )− 1

)
Mk = 0 . (2.10)

The construction of the holomorphic section X0 allows to define the instantons.

The matrix valued one form X0 can be diagonalized

X0 = hXdh
−1 , (2.11)

where Xd is diagonal and the matrices h satisfy

h(γi(x))|a−i = Hih(x)|a+i , (2.12)
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where the Hi are complex invertible matrices associated to the b cycles joining two

identified circles. Notice that the matrix h is holomorphic and allows to define a

holomorphic connection one form α = α′ + α′′

α′ = −i(∂h)h−1 , α′′ = 0 (2.13)

on the bundle AdjP . The complex matrix h can be factorized

h = ĥU , (2.14)

where ĥ ∈ Gc/G and U ∈ G. Let us now perform the complex gauge transformation
parameterized by ĥ−1. This leads to the following section

X = UXdU
−1 (2.15)

and the gauge connection

Az = −i(∂U)U−1 , Az̄ = −i(∂̄U)U−1 . (2.16)

It is easy to see that the pair (X,A) forms a matrix string instanton. Indeed the

connection A is both unitary and flat while the section X satisfies D̄AX = 0 and the

reality condition [X, X̄] = 0. We have thus found that matrix string instantons are

characterized by holomorphic sections of AdjP .

One can also perform a multivalued gauge transformation by U−1 which sends
X into the diagonal matrix Xd. Notice that the corresponding gauge field vanishes

altogether. As the eigenvalues of X forming the diagonal matrix Xd are solutions

of an algebraic equation of degree N we can identify the instantons with a fibred

space over the set of N -sheeted coverings of the Riemann surface Σ [19]. Moreover

the instanton is simply related to the diagonal matrix Xd with the λ
i’s along the

diagonal. The characteristic polynomial of Xd can be expanded

N∏
i=1

(λ− λi) = λN + a1λN−1 + · · ·aN , (2.17)

where the coefficients ai are single-valued on Σ. One can reconstruct a matrix X0
with this characteristic polynomial [3]

X0 =



−a1 −a2 . . . −aN
1 0 . . . 0

0 1 . . . 0

0 . . . 1 0


 . (2.18)

Having obtained such a matrix one can use the relations (2.15) and (2.16) to define

the matrix string instanton.
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The analytic structure of U is worth emphasizing. The eigenvalues of X0 are

z dependent, they collide at branch points Bi. Some eigenvalues collide at such a

point, the monodromy of the matrix U corresponds to the permutation gi of the

coincident eigenvalues

U −→ Ugi . (2.19)

The matrix U is multivalued on Σ. Nevertheless the gauge connection (2.16) is

single-valued implying that the U(N) instantons are well defined on Σ.

One way of uniformizing the behaviour of U is to define the spectral cover S of

the Riemann surface Σ. Consider the set of solutions of the characteristic polynomial

of X

det(λ−X) = 0 . (2.20)

This defines the spectral cover of the multivalued instantons on Σ. The spectral

cover is a N -covering of the Riemann surface Σ ramified at the points Bi where some

of the eigenvalues coincide. More precisely the N eigenvalues λi define the inverse

image of the projection π : S → Σ sending λ → z(λ). The N sheets are defined by

solving the equation z(λ) = z. On each of the N sheets there are holes corresponding

to the inverse images of the circles ai±. Each sheet is in correspondence with a sphere
with h holes and branch points connecting the different sheets. The branch points

on the spectral cover are points where dz/dλ vanishes.

The matrix U is extended to the spectral cover S by considering that Uij connects

the i-th and j-th sheets. The permutation matrix gi is the monodromy matrix

around the branch point Bi corresponding to the shuffling of the different sheets of

the covering. The genus of the spectral cover is given by

gS = 1 +N
2(h− 1) . (2.21)

This can be derived using the Riemann-Hurwitz formula for generic branched points

of order two.

The same analysis can be performed when marked points at xi are added. The

one form X is now required to satisfy a boundary condition in a neighbourhood of

each marked point. One looks for solutions with a simple pole at each marked point.

One needs to introduce another Poincaré series

θ[x, x0]dz =
∑
γ∈Γ
adj(H−1γ )d ln

γ(z)− x
γ(z)− x0 . (2.22)

The holomorphic solution becomes

X0 =

h∑
i=1

wi(x0)Midz +

v∑
i=1

θ[xi, x0]pidz (2.23)
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and the residue condition

h∑
i=1

(
adj(H−1i

)− 1)Mi +

v∑
i=1

pi = 0 . (2.24)

The matrix string instantons are obtained by diagonalization of X0. The gauge

connection is also single-valued on Σ. One can similarly define the spectral cover S

which uniformizes the behaviour of the matrix U . Its genus is

gS = 1 +N
2(h− 1) + vN(N − 1)

2
. (2.25)

The marked points are lifted to p = vN points on the spectral cover.

The genus formula is a consequence of the Riemann-Hurwitz relation for an N -

sheeted cover with N(N − 1)(2h − 2 + v) branched points of order two. To obtain
this formula notice that the branch points are obtained as the common zeros of

P (λ, z) = det(X − λ) and ∂λP . Factorizing P =
∏

i(λ− λi) and ∂λP =
∏

j(λ− λ′j)
where the λ′j ’s are the zeros of the derivative of P , common zeros are detected by
the vanishing of the discriminant ∆ =

∏
ij(λi−λ′j). This corresponds to the zeros of

N(N−1) meromorphic one forms with v poles. Geometrically these are the N(N−1)
intersection points between the curves P = 0 and ∂P = 0. Each one form possesses

2h− 2 + v zeros leading to N(N − 1)(2h− 2 + v) branch points.
One can define a stratification of the moduli space according to the genus of

the spectral cover [21]. As just seen the genus of the spectral cover depends on the

number of branch points via the Riemann-Hurwitz formula. The branch points are

the zeros of the discriminant ∆ viewed as a N(N − 1) differential on Σ. Denote by
pdi the eigenvalue matrix obtained by diagonalization of the residue of X0 around the

pole xi. This matrix possesses k
m
i eigenvalues of order m. The order of the pole of

∆ at xi is

oi = N
2 −

N∑
m=1

m2kmi . (2.26)

The number of branch points is then

2N(N − 1)(h− 1) +
v∑
i=1

oi (2.27)

leading to the genus of the spectral cover

gS = 1 +N
2(h− 1) +

∑v
i=1 oi

2
. (2.28)

In the generic case where all the eigenvalues are different one gets k1i = N and

the previous formula (2.25). This defines the generic stratum of the moduli space.

Other lower-dimensional strata are obtained when there are multiple eigenvalues.

The generic stratum is an open dense subset of the moduli space whose boundary

comprises the other strata.
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We are now in position to compute the dimension of the moduli space of in-

stantons. This dimension is given by the number of independent matrices Hi, Mi

and pi modulo a residual global symmetry. Once the holomorphic field X0 is defined

in terms of the parameters (Hi,Mi, pi) the gauge field is determined by the matrix

U . The adjoint action of the residual symmetry Sl(N) on (Hi,Mi, pi) is deduced

from X0 → adj(V )X0, h → V h. This reduces the real dimension of the moduli

space by 2(N2 − 1). The numbers of parameters (Hi,Mi, pi) modulo the residue

condition is 4N2h + 2vN2 − 2N2. Combining with the residual symmetry we get
dimM = 2N2(2h+ v − 2) + 2. Using the genus formula we obtain

dimCM = 2gS − 1 + p . (2.29)

This dimension coincides with the dimension of the space of Higgs bundles [19]

which precisely correspond to the complex vector bundles AdjP with a section of

KΣ ⊗ AdjP . This is not unexpected as we started with such a section X0 to define
the instantons.

Let us now consider the lower strata of the moduli space. It is also possible to

count the number of moduli. The main difference with the generic stratum comes

from the number of moduli preserving coinciding eigenvalues. It is easy to see that

changes of basis in Gl(N)/
∏N

m=1Gl(m)
kmi preserve the eigenvalues of pi. This pro-

vides
∑v

i=1

∑N
m=1 k

m
i complex eigenvalues and

∑v
i=1 oi parameters for the changes of

basis. Now the number of marked points on the spectral cover is

p =

v∑
i=1

N∑
m=1

kmi . (2.30)

It follows that the number of moduli is still given by (2.10). We can get rid of one

dimension of the moduli space by factorizing the complex rescalings of X0. This

leads to a dimension dimCM = 2gS− 2+ p for the moduli space of instantons. This
formula has a simple geometric interpretation.

The link with the spectral cover is provided by the existence of a natural one

form π∗Xd, the pull-back of the one form Xd under the projection π : S → Σ defined
by λ→ z(λ). Locally the pull-back is defined by λdz where λ defines the coordinates

on the spectral cover. This one-form on the spectral cover possesses a pole at all the

inverse images of the poles of Xd. The number of zeros Ii of π
∗Xd is then 2gs−2+p.

On the generic stratum they are of two sorts, there are the N(N − 1)(2h − 2 + v)
branch points Bi and the N(2h− 2+ v) inverse images of the zeros Zi of each of the
λi’s. As we vary the parameters of the instantons the zeros Ii move.

Consider a spectral cover S0 with zeros I
0
i and a projection π0 : S0 → Σ corre-

sponding to an instanton X0. This spectral cover is defined by the values (H0,M0, p0)

of the instanton parameters. For different values of these parameters one obtains a

family of spectral covers parameterized by 2gS−2+p coordinates ti on the instanton
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moduli space. Each spectral cover is endowed with a projection πt depending on the

moduli t. Locally one can define a map δ = π−1t π0 : S0 → St as λ
i
0 → λi(z0(λ

i
0))

encoding the deformations of S0 due to the variations of the moduli t. This defines

a 2gS − 2 + p family of spectral covers St. The family of forms π∗tXd on St vanish

on the zeros Ii(t). One can use the coordinates of the zeros Ii(t) to parameterize the

moduli space.

More precisely one can reconstruct the U(N) instantons from the knowledge of

the spectral cover and a line bundle ΩP over S. Indeed let us consider the gauge

where the gauge connection vanishes and the instanton is reduced to a diagonal

matrix of one forms subject to monodromies around the branch points. Similarly

this matrix can be viewed as arising from the single form π∗Xd defined on S under

the push-down map π∗ sending π∗Xd = λdz on S to λ
idz on Σ. The one form π∗Xd

is a section of the line bundle ΩP of one forms s whose divisors satisfy (s) + P ≥ 0.
Conversely let consider the line bundle ΩP and its push-down π∗ΩP =

⊕N
i=1 Vi the

direct sum of one-dimensional vector spaces. Choose a section s of ΩP and its

push-down π∗s. This defines a diagonal matrix of one forms on Σ from which one
can obtain the characteristic polynomial and then an instanton. One can write the

divisor (s) = I − P for an effective divisor I of degree 2gS − 2 + p where s vanishes.
This divisor of zeros parameterizes the moduli space of instantons.

It is more convenient to factor out a trivial factor from the moduli space corre-

sponding to the position of one zero. The reduced moduli space has dimension

dimCMR = 2gS − 3 + p . (2.31)

The dimension of the reduced moduli space coincides with the result of a calculation

using an index theorem [11]. We have thus confirmed this indirect argument by an

explicit construction.

3. Mandelstam diagrams and the moduli space of instantons

We shall be concerned with the matrix string setting, i.e. the Riemann surface Σ is

obtained by a conformal map of the cylinders with (v−2) marked points to a sphere
with v marked points. In this case the Poincaré series parameterizing the instantons

are simply

X0 =
v∑
i=1

pi
1

z − xi , (3.1)

where
∑v

i=1 pi = 0. Diagonalizing this matrix leads to the spectral cover S. In this

case the genus of the spectral cover is simply

gS = 1−N2 + N(N − 1)v
2

(3.2)
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on the generic stratum. Notice that on the generic stratum gS ≥ 0 with equality
only when p = 2N + 2. The dimension of the moduli space is simply given by the

number of matrices pi modulo the residual global symmetries and the momentum

conservation condition
∑v

i=1 pi = 0. For instance one can describe the genus zero

scattering of six external states with a (N = 2) covering of the cylinder with one

marked point.

There is an alternative description of the spectral cover which will be partic-

ularly fruitful. Let us recall a few useful facts about Mandelstam diagrams [2, 4].

Mandelstam diagrams represent the propagation of circular strings joining at inter-

action points. For strings of length 2π the radii of the cylinders are identified with

the momenta p+ in the light cone frame. A defining property of the Mandelstam

diagram of a Riemann surface is the existence of a time axis τ and of periodic angular

coordinates σ on each of the cylinders. The complex variable defined by w = τ + iσ

parameterizes each of the cylinders.

A Mandelstam diagram is uniquely specified by its interaction points where dw

vanishes, gS internal momenta and gS internal shifts. On the whole this provides

3gs − 3 + p complex coordinates forming a cover of the moduli space of marked

Riemann surfaces [16]. Finding these parameters will allow us to construct the

Mandelstam diagram associated to the interaction of strings on the spectral cover.

The construction of a Mandelstam diagram has to be adapted to the case of the

spectral cover. Let us use the function

w̃(λ) =

∫ λ

π∗Xd (3.3)

defined up to the periods of π∗Xd. Consider now the real part

τ̃ = Re(w̃) (3.4)

up to the real parts of the periods. This real function has critical points at the

zeros Ii with an index −1.2 At the poles one sees that τ̃ → ±∞. The function
τ̃ is a Morse function allowing to stratify the spectral cover according to its level

sets. The image of the spectral cover under w̃ is interpreted as a string diagram

with interaction points at the zeros Ii corresponding to the splitting or joining of

two strings. Topologically this string diagram is defined by 2gS + p − 3 complex
coordinates corresponding to the interaction points The position of the interaction

points is specified by the interaction times and the twist angles along 2gs − 3 + p
branches of the string diagram (figure 1).

The spectral cover can be given a metric using the string diagram. Let us define

the flat metric dw̃dw̃ on the spectral cover. This is the induced metric from the flat

metric on the string diagram. On the spectral cover we obtain

2This gives a contribution 2− 2gS − p to the Euler characteristic.
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I1 I2 I3 I4 I5
I6

τ

θ1
θ2

θ3
θ4 θ5

τ1 τ2 τ3 τ4 τ5 τ6

P1

P2

P3

P4

Figure 1: The string diagram of the spectral cover with interaction points Ii, i = 1, . . . , 6.

The interaction times τi and the angles θi define the location of the interaction points. The

external states correspond to the marked points Pi, i = 1, . . . , 4

gλλ̄ =

∣∣∣∣λdzdλ
∣∣∣∣
2

. (3.5)

Due to the holomorphy of the zweilbein wλ = λdz/dλ the metric is almost flat apart

from the zeros and the poles creating a delta function singularity in the curvature

R(Q) = 2π

2gS−2+p∑
i=1

δ(Q− Ii)− 2π
p∑
i=1

δ(Q− Pi) . (3.6)

Of course the integral of the curvature gives the Euler characteristic. This is consis-

tent with the string interpretation of the string diagram where the strings are flat

cylinders joining at the interaction points. The string diagram defines the dynamics

of the string interactions, i.e. a contact interaction at the interaction points. The

kinematics of the strings is not yet specified as we have not explicitly described the

momenta of the incoming and outgoing strings. This is provided by the addition of

Wilson lines on the spectral cover.

Up to now we have not taken into account the discrete ZN twists along homology

cycles which can be turned on in the construction of flat bundles. This corresponds

to adding different twisted sectors in the quotient U(1)/ZN . The flat vector bundle

with the gauge connection A can be viewed as the quotient (Σ̂ × su(N) × S1)/ ∼
where Σ̂ is the universal cover of Σ, su(N) the Lie algebra of SU(N) and S1 the

unit circle. The equivalence relation is (x, u, θ) ∼ (γ(x), adj(γ)u, θ) where γ is a loop
on Σ acting on Σ̂ as covering transformation and adj(γ) is the monodromy in the
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adjoint representation. Notice that the S1 factor is not involved in the quotient. One

can define a twisted version of the equivalence relation (x, u, θ) ∼ (γ(x), adj(γ)u, θ+∫
π−1(γ) aS) obtained by integrating a U(1)/ZN connection aS on S along the inverse

image of γ. This twisting modifies the U(1) part of the gauge connection. It does

not change the field X.

Let us consider a U(1) bundle over the spectral cover S that we endow with

a flat connection aS. The building of such a flat vector bundle is characterized by

maps in Hom(π1(S),U(1)). This corresponds to having different winding numbers

along the non-trivial loops of S. The flat vector bundle is modeled on the bundle

(S̃ ×U(1))/ ∼ where ∼ is the equivalence relation (x, θ) ∼ (γ(x), θ+2πdγ), S̃ is the
universal cover of S and θ is an angle. The winding number dγ depends on the loop γ

which acts on x as a covering transformation. We can now easily incorporate the ZN
orbifold characterized by maps in Hom(π1(S), ZN). For a given loop γ in π1(S) one

can define a twisted action with twist 2πk/N by θ→ θ+2πk/N, k ∈ [0, N − 1]. The
range of k is extended to the whole integers by taking into account the non-trivial

winding numbers. As the fundamental group of the spectral cover is of dimension

2gS this gives N
2gS sectors. Physically these discrete transformations are discrete

Wilson lines in the U(1) part of the gauge theory.

One can always construct such a flat U(1) gauge field aS. Put aS = b+ b̄ where

b is a holomorphic one form b =
∑gS

i=1 uiωi and the one forms ωi form a basis of

holomorphic abelian differentials. Now we prescribe the Wilson lines∫
ai

aS =
2πki
N

,

∫
bi

aS =
2πk′i
N

. (3.7)

The complex coefficients ui are always uniquely defined as the period matrix Ωij =∫
bj
ωi has an invertible imaginary part. One obtains the push-down of aS to Σ as

π∗aS = (ad), i.e. a diagonal matrix of one forms b(λi)dλi + b̄(λ̄i)dλ̄i where aS =

b(λ)dλ + b̄(λ̄)dλ̄. This matrix possesses monodromies around the branch points

corresponding to the exchange of the different sheets. The U(1) gauge field

aΣ = tr(π∗aS)IN×N (3.8)

defines a U(1) flat gauge connection on Σ. This connection is diagonally embedded

in U(N). The total gauge connection is the sum of aΣ and the connection (2.16).

As will be recalled in the next section the semi-classical evaluation of the matrix

string path integral involves a residual U(1) gauge field a [6] living on the spectral

cover. The other fields correspond to strings degrees of freedom in the Green-Schwarz

formulation. Considering the hamiltonian picture of this theory on the spectral

cover the physical states are identified with light cone string states carrying some

information coming from the quantization of the extra U(1) factor.

The discrete Wilson lines modify the behaviour of the string states propagating

along the string diagram of the spectral cover. Given a state |α〉 located at a non-
trivial ai loop on the string diagram (figure 1) and going along the cycle ai transforms
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a1

a2
b1

b2

Figure 2: The equivalent Mandelstam diagram to the spectral cover where the momenta

along the cycles ai, i = 1, 2 and the twist angles along the cycles bi, i = 1, 2 are quantized

the string state |α〉 into e2πiki/N |α〉. Normalizing the string length to 2π we find that
the state |α〉 acquires a momentum ki/N . Similarly the same state transported along

the cycle bi picks up a phase e
2πik′i/N corresponding to a shift of the origin of the string

by k′i/N .

The marked points correspond to the location of the external vertex operators.

One can open up a small disc around each marked point to obtain a puncture. The

punctures lead to (p − 1) extra cycles. The (p − 1) cycles around the punctures
give quantized external momenta k′′i . This is achieved by modifying the U(1) flat
connection demanding that ∫

γi

aS =
2πk′′i
N

, (3.9)

where γi are the p cycles around the punctures. One can always find the gauge con-

nection as aS = b+ b̄ where b =
∑gS

i=1 uiωi+
∑p

i=1 viωP0Pi and ωP0Pi is a meromorphic

one form with poles at Pi and P0 with residues one and minus one, respectively. The

periods of these one forms ωP0Pi are imaginary along the a and b cycles. Requiring

that b is holomorphic at P0 implies the momentum conservation
∑p

i=1 k
′′
i = 0.

The picture emerging from the description of the spectral cover fits with what

is expected from light cone string theory [20]. First of all the continuous part of the

construction leads to the spectral cover and its interpretation as a string diagram for

closed strings. The parameterization of the spectral cover in terms of the coordinates

of the interaction points specifies the interaction times and 2gs − 3 + p shifts. The
discrete part of the construction, i.e. the assignment of ZN elements to the 2gS+p−1
non-trivial cycles is equivalent to prescribing the internal and the external momenta

in a quantized fashion. The strings are also twisted along the b cycles with discrete

shifts sa, a = 1, . . . , gS.
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With this information we can construct the Mandelstam diagram of the spectral

cover S. One can assign to all the p external cylinders and the (3gS− 3+ p) internal
cylinders a radius equal to the quantized momentum α as determined by momentum

conservation. This requires to define new coordinates on each of the cylinders by

rescaling w̃ by α/L where L is the radius measured using the coordinates w̃. The

radius of each of the cylinders is now α. Globally one patches up the new coordinates

w on each of the cylinders by imposing that going around the b cycles the imaginary

part of w is shifted by sa. The coordinates

w = τ + iσ (3.10)

built this way are defined globally and describe the Mandelstam diagram. The

coordinates of the interaction points are now wi = τi + iσi, i = 1, . . . , 2gS − 3 + p.
The Mandelstam diagram of S has been built by joining the p external cylinders

and the 3gS−3+p internal cylinders. The relative orientation of the flat cylinders is
prescribed by the different shifts σi i = 1, . . . , (2gS−3+p) and sa a = 1, . . . , gS. The
length of the cylinders is given by the interaction times τi. In another parameteri-

zation which will be useful when identifying the measure over the instanton moduli

space one can utilize the twisting angles

θi = 2π
σi

αi
, ηa = 2π

sa

αa
, (3.11)

where the αi’s and the αa’s are the quantized momenta along the corresponding inter-

nal cylinders. We have thus constructed a Mandelstam diagram from the coordinates

of the interactions points Ii and the quantized external and internal momenta.

Deformations of the Mandelstam diagram by varying the positions of the interac-

tion points, the shifts and the momenta correspond to changing the parameters of the

instantons. On the whole we have identified the moduli space of instantons as a dis-

cretization of the moduli space of marked Riemann surfaces. This result had already

be obtained in [11] using independent arguments. Here we have shown how this de-

composition is intimately linked to the moduli space of matrix string instantons. In

the next section we will study the dynamics of the string interactions more carefully

and come back to the essential U(1) factor in the semi-classical approximation.

4. The scattering amplitudes

The path integrals of matrix models can be evaluated in a semi-classical fashion in the

small string coupling limit [6]. The objects of interest are the scattering amplitudes

defined by the path integral

A(1, . . . , n) =

∫
DADXDΘφ(0)φ(∞)V1 · · ·Vv−2e−S(X,A,Θ) . (4.1)
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The vertex operators are the analogue of the light cone string vertex operators.

We also have inserted a wave function at both ends of the cylinder. These wave

functions depend on the boundary values of the fields on the external circles. The link

between the vertex operators and the wave functions is the usual one, i.e. obtained

by integration over all the field configurations on a small disc with a vertex operator

inserted at its centre. The vertex operators only involve the diagonal part of the fields

in a suitable gauge. The string interpretation of the scattering amplitudes involves

the semi-classical evaluation and the lifting of the action to the spectral cover.

Let us first deal with the action in the semi-classical regime [6]. We expand the

action around the instantons. The instantonic configuration (A,X) is taken in the

gauge where the bosonic field Xd is diagonal. This amounts to applying a multivalued

gauge transformation U−1 to all the fields. In particular the diagonal fluctuations xid
are multivalued due to the non-trivial monodromies at the branch points.

The path integral measure needs to be defined by fixing a gauge and introducing

Faddeev-Popov ghosts. The gauge is fixed by

Gww̄ = ∂aw̄ + ∂̄aw + ig
2
(
[Xd, x̄] + [X̄d, x]

)
. (4.2)

Capital letters are only used for the background instantons. The Fadeev-Popov

action is

SFP = − 1

2πg2
tr

(∫
d2wc̄

δG

δε
c

)
, (4.3)

where ε is the gauge variation parameter. The gauge fixing is simply

SGF =
1

4πg2
tr

(∫
d2wG2

)
. (4.4)

The fields are defined by an appropriate rescaling. The diagonal fields ad, cd are

rescaled by a factor of g.

Aw = gadw + a
nd
w , X = Xd + xd +

xnd

g
,

XI = xId +
xInd
g
, Θ = θd +

θnd√
g
, (4.5)

where I = 3, . . . , 8 are the directions transverse to the instanton. The ghosts are

likewise

c = gcd +
√
gcnd (4.6)

and similarly for c̄. The euclidean action becomes

S = Sd + Snd +O

(
1√
g

)
. (4.7)

The non-diagonal action Snd is quadratic and can be integrated out giving unity by

supersymmetry. The higher order terms are all suppressed by the gauge coupling
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constant. In the small string coupling limit we are left with a purely diagonal path

integral. The normalization of the diagonal fields has been chosen in such a way that

the quadratic action is independent of the string coupling constant.

The evaluation of the path integral is not trivial due to the multivalued nature

of the diagonal fields. To obtain single-valued fields one needs to lift the fields to

the spectral cover. The spectral cover is defined by considering the instanton on the

Riemann sphere Σ and pulling it back to the cylinder C via the conformal mapping

f : C → Σ. One gets XC = f
∗XΣ. The spectral cover of the cylinder is then obtain

from the eigenvalue equation det(λ−XC) = 0. This allows use to use the previous

results and lift the fields from the Riemann sphere to the spectral cover.

The diagonal vectors xdj , j = 1, . . . , N define a section x of a line bundle on the

spectral cover S by the rule x(λi(z)) = xi(z) where λi(z) is the ith eigenvalue of Xd

at z. Similarly the gauge field is lifted to the spectral cover leading to a one form

ai(z) = a(λi)dλi/dω. This leaves us with an action defined on the spectral cover S

for the bosonic fields

1

π

(∫
d2λgλλ̄∂λaλ̄∂λ̄aλ +

∫
d2λ∂λx

I
d∂λ̄x

I
d

)
. (4.8)

The integration is over S. Notice that the metric vanishes at the interaction points.

At these points the inverse metric is ill defined and the semi-classical approximation

breaks down. The action for the ghost fermions c, c̄ is easily derived

1

π

∫
d2λ∂c̄∂̄c . (4.9)

The ghost fields are anticommuting scalars on the spectral cover.

We can now turn to the space time fermions. As defined in the path integral

over the cylinder these fields are anticommuting scalars on the world sheet. They

can be promoted to world sheet fermions on the spectral cover. This requires the use

of the one form ωλ and its square root. The square root of the one form ωλ requires

the choice of a spin structure on the spectral cover. This amounts to choosing the

square root along non-trivial cycles. The spin structure is specified by 2gS signs

corresponding to such a choice. Once a spin structure has been chosen it is called

even if the product of the 2gS signs is even and odd in the opposite case. This endows

the spectral cover with the structure of a super-Riemann surface. To maintain the

physical interpretation of the space-time fermions we impose that the square root of

ωλ picks up a minus sign on all the possible cycles of the string diagram. The spin

structure is then even.

This allows to transform the space time fermions into world sheet fermions with

values in the spin representations of SO(8)

ψα =
√
ωλθ

α , ψ̄α̇ =
√
ω̄λθ

α̇ . (4.10)
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The action for the fermions ψ, ψ̄ is lifted to the spectral cover to give the usual

Dirac action
i

π

∫
d2λ

(
ψ̄α̇∂ψ̄α̇ + ψ

α∂̄ψα
)
. (4.11)

Notice that the choice of the spin structure implies that there are cuts ending at the

interaction points and the marked points.

On the whole we find that the end-result of the semi-classical approximation is to

produce a theory defined on the spectral cover of the matrix string instantons. Once

the spectral cover is specified the theory is given by the light-cone Green-Schwarz

action for space-time bosons and fermions. The space time fermions are also world

sheet fermions on the spectral cover. This theory is coupled to a U(1) theory.

Before completing the analysis of the path integral it is noteworthy to consider

the hamiltonian formulation of the theory. This is most conveniently achieved by

considering the flat coordinates w̃ and the time axis τ̃ on the string diagrams. Using

these coordinates the actions for the scalars, fermions and gauge fields reduce to

free field theories defined on the flat cylinders forming the string diagrams. In the

hamiltonian picture there are Green-Schwarz string states |GS〉 propagating along
each of these cylinders and interacting at the interaction points. Because of the

presence of non-trivial U(1) backgrounds aS the intermediate states |α〉 are also
characterized by fractional momenta α on all the internal and external cylinders.

There are also fractional shifts sa for gS internal cylinders. The Hilbert space of the

theory is

H = HGS ⊗R , (4.12)

where HGS is the Hilbert space of the GS states |GS〉 and R is the Hilbert space
deduced from the quantization of the U(1) theory.

Consider one of the cylinders on the spectral cover, we normalize its radius to

L. The corresponding U(1) action is then

1

2πg2

∫ 2πL
0

dτ̃dσ̃(∂0a1)
2 (4.13)

in the gauge a0 = 0. In this gauge it is convenient to introduce the Wilson line

g = e2πiLa1 (4.14)

at a given time τ̃ for σ̃ independent gauge fields. In terms of this Wilson line the

action reads
1

4π2Lg2

∫
dτ̃ |ġ|2 (4.15)

and the hamiltonian

H = 4π2Lg2|p|2 . (4.16)

This is the hamiltonian of a free particle on a circle. The motion of this free particle

depends on the different types of boundary conditions, i.e. on the discrete Wilson
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lines. In the untwisted sector the circle is identical to R/2πZ. In the twisted sectors

with a Wilson line k/N the eigenvectors pick up a phase e2πik/N . In all cases denoting

by θ the angular variable the momentum reads i∂/∂θ with eigenvectors e2πi(n+k/N)θ.

The states |n, k〉 associated to these eigenvectors form a basis of the U(1) Hilbert
space on the cylinder. There is one more subtlety due to the possible shifts si along

the bi cycles bording the cylinder. The Hilbert space R is spanned by all the |n, k, si〉
which are eigenstates of H on the different cylinders and having a monodromy e2πisi

along the bi cycles.

Let us come back to the energy associated to these eigenstates. It simply reads

H|n, k, si〉 = 4π2Lg2(n+ k/N)2|n, k, si〉 . (4.17)

Combined with the eigenstates of the GS hamiltonian H0 acting on light cone GS

states we obtain eigenstates spanning the Hilbert space H. The total hamiltonian
reads HT = H+H0. The propagation of the eigenstates from one end of the cylinder

to the other end gives the evolution operator in euclidean time

e−τ(4π
2Lg2(n+k/N)2+(pI)2+m2) , (4.18)

where m is the mass of the GS state and pI its transverse momentum. Notice that

the corrections to the GS eigenvalues are non-perturbative and of order 1/g2s . In

the limit gs → 0 the only non-vanishing terms satisfy n = 0, i.e. the contributions
from the winding modes decouple. Moreover the non-perturbative corrections to the

string scattering amplitude vanish altogether provided g2sN
2/L → ∞. For the long

strings where L ∝ N the most stringent condition is then

g2sN −→ ∞ . (4.19)

In the finite gs and N cases the string amplitude is corrected by non-perturbative

contributions coming from the creation of D0-branes.

To study the string scattering amplitude we change coordinates and use the w co-

ordinates. In these coordinates the radius of each cylinder is equal to the momentum

α = k/N . The light cone hamiltonian whose bosonic part is

1

2π

∫ 2πα
0

dσ

((
∂xId
∂τ

)2
+

(
∂xId
∂σ

)2)
(4.20)

has eigenvalues 2p− where

p− =

(
pI
)2
+m2

2α
. (4.21)

The evolution operator is now

e−2ip−τ , (4.22)
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where we have performed a Wick rotation on the world sheet. This evolution operator

coincides with the light cone string field evolution operator. More precisely the

evolution operator is associated to the hamiltonian [16]

K = iα
∂

∂τ
−H0 . (4.23)

This hamiltonian is easily identified with the light cone string field hamiltonian with

the canonical quantization rule [x±, p∓] = i yielding p− = −i∂/∂x−. We obtain
the following:

x+ = 2τ . (4.24)

Similarly with p+ ≡ α = −i∂/∂x− we find that the x− coordinate is periodic, the
radius of the circle parameterized by x− is

R− = N . (4.25)

This completes the identification of the small string coupling regime of matrix string

theory with light cone string theory where the radius R− goes to infinity with N .
In conclusion we have seen that the large-N limit is necessary in order to decouple

non-perturbative effects and decompactify the x− direction.
We can now make the above picture global. To do so we use the global coordi-

nates w patched up to construct the Mandelstam diagram. By inserting a complete

set of observables at the internal ends of the cylinders we build the scattering ampli-

tude by propagating the states with the e−2iτip− evolution operator on each internal
cylinder. We still have to specify the interaction vertices. This necessitates to study

the ghost action and its zero modes.

5. Picture changing operators and supermoduli

The usual rules of string perturbation theory prescribe the inclusion of picture chang-

ing operators at the string interaction points [4]. In the RNS string context the pic-

ture changing operators appear after integrating over the supermoduli [13, 14]. To

do so one deforms the super-Riemann surface structure by an anticommuting −1/2
tensor v and fix the two-dimensional gravitino field ∂̄v to be equal to a linear combi-

nation of the super-moduli. The deformation of the super-Riemann surface induces

a supersymmetry transformation of the bosons and fermions. This leads to a direct

coupling of the gravitino to the supersymmetric current. The integration over the

components of the gravitino yields an insertion of the supersymmetric current at all

the interaction points and hence the picture changing operators.

In this section we will repeat parts of this construction. The deformation of the

super-Riemann surface will lead to the inclusion of the picture changing operators

at the interaction points as already discussed in the DVV paper.
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In the following we shall need to integrate functionally over various types of

tensors on S. We define it by considering the Hilbert space of square integrable n

tensors defined by the scalar product

(φn, ψn) =

∫
d2λ(gλλ̄)

1−nφ̄nψn . (5.1)

Imposing that the integral is well defined in the vicinity of the interaction points

implies that for meromorphic tensors such that φn ∼ 1/λp one should verify that
p < 2− n. Functions can have at most a pole at the interaction points. The spinors
n = 1/2 can also develop a pole. The one-forms have to be holomorphic while the

quadratic differentials have to vanish. The same analysis in the vicinity of a marked

point where the metric admits a pole implies that p < n. Thus functions have to

vanish at the marked points while tensors of higher degrees can either be constant

for n = 1 or have a pole n ≥ 2.
Let us now study the normalizable ghost zero modes. The gauge fields (aλ, aλ̄)

have been lifted to the spectral cover where they become single-valued. This entails

that the only normalizable zero modes of the gauge fields are the gS holomorphic

differentials. This is different for the ghosts. Indeed there are zero modes of the

fermionic ghosts which are normalizable though not single-valued on the spectral

cover. These zero modes are solutions of

∂̄c = 0 (5.2)

corresponding to meromorphic 1/2 tensors ψ1/2 on the spectral cover under the world

sheet boson-fermion correspondence sending ψ1/2 → ω
−1/2
λ ψ1/2. These meromorphic

zero modes ψ1/2 are well defined on the whole spectral cover apart from possible

singularities at the interaction points where the metric vanishes. Their images under

the boson-fermion correspondence yield (2gS−2+p) multi-valued ghost zero modes.3
It is easy to construct the zero modes ψ1/2 in the case of an even spin structure.

One can find for each of the 2gS − 2 + p interaction points a single zero mode with
a simple pole with residue one located at one of the interaction points Ii, the Szego

kernel SIi(λ). This leads to a 2gS − 2 + p family of ghost zero modes. These zero
modes ψ1/2 are in one to one correspondence with the super-moduli of the spectral

cover, i.e. the holomorphic 3/2 differentials

ψ3/2 = ωλψ1/2 . (5.3)

The integration over the ghosts (c, c̄) is obtained by decomposing the zero modes

c =
∑

amaω
−1/2
λ ψa1/2 where the ψ

a
1/2 form a basis of the zero modes. The coordinates

3One can also find gS meromorphic zero modes obtained from the gS holomorphic differentials.

The integration over the ghost fields is defined by discarding, in a similar way to the integration

over the gauge fields, these gS meromorphic zero modes.
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ma are the anticommuting super-moduli coordinates. The measure of integration

over the zero modes is (∏
a

dmadm̄a

) ∣∣det (ψa1/2, ψb1/2)∣∣−1 , (5.4)

where the integration is over the anticommuting variables (ma, m̄a).

The light cone Green-Schwarz action possesses a supersymmetry

δξx
I = ξαγIαα̇ψ

α̇ , δξψα̇ = ξ
αγIαα̇∂̄x

I , (5.5)

where ξα is a spinor. In particular the variation of the action under this supersym-

metry reads

δξS = −1
π

∫
d2λ∂ξαJα , (5.6)

where we have defined

Jα = γ
I
αα̇∂̄x

Iψα̇ . (5.7)

The derivative

χα = ∂ξα (5.8)

plays the role of a gravitino. Similar expressions can be written with Jα̇.

The gravitino field is a classical field which encapsulates the super-Riemann

surface status. In particular the light-cone Green-Schwarz action is written for χ = 0.

The deformation of the super-Riemann structure induces a non-zero value for the

gravitino field. Consider a (0,−1/2) anticommuting tensor v which parameterizes
the deformation of the super-Riemann surface. Using a local basis for the spinors uα,

e.g. a local section of the bundle K
1/2
S ⊗ S+ where S+ is the vector bundle modeled

on the spin representation of SO(8) is of the form ψα = ψ ⊗ uα, we can define the
supersymmetry parameter

ξα = vuα . (5.9)

The action is not invariant under the supersymmetry transformations parameterized

by ξα. The scattering amplitude is only invariant if the expansion of the gravitino

field is chosen to involve the supermoduli which are explicitly integrated over

χα =

(
2gs−2+p∑
i=1

miχi

)
⊗ uα , (5.10)

where the χi’s define a slice of the supermoduli space. They form a basis of the

(1,−1/2) tensors. The coupling of the gravitino field to the supercurrent leads to a
sum of terms in correspondence with each of the interaction points

−mi

π

∫
d2λχiuαJα . (5.11)
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Integrating over the supermoduli is now easy, it amounts to expanding the exponen-

tial of the action and picking the linear terms in the supermoduli. This leads to the

following insertion at each of the interaction points∫
d2λχi∂̄xIΣ̄I , (5.12)

where we have define the world-sheet fermion with values in the vector representation

of SO(8)

Σ̄I = γIαα̇u
αψα̇ . (5.13)

A convenient choice for the χi’s is to be δ-function supported [14] leading to the

insertion of

∂xIΣI ⊗ ∂̄xIΣ̄I (5.14)

at the interaction point Ii. We have included the left and right sectors. This is the

operator insertion introduced in DVV.

Having identified the interaction generated by the integration over the super-

moduli let us come back to the origin of the field ΣI . As defined it involves a local

section of the SO(8) spin bundle uα. Introducing the twist field

σ =
1√
ωλ

(5.15)

and using the section uα one can define the world-sheet spinor

Σα̇ = σuα̇ (5.16)

from which one can derive the operator product expansion

ψα(λ)ΣI(0) ∼ γIαα̇√
λ
Σα̇(0) (5.17)

in the neighbourhood of one of the interaction points. Of course this identifies the

pair (ΣI ,Σα̇) with the spin fields associated to ψα.

Finally let us comment on the ambiguities of the integration over the super-

moduli. The insertion of the picture changing operator is intimately linked to the

choice of the basis χi. Another choice for the χi’s result in a different result after

integration over the supermoduli. As in the case of superstring perturbation theory

this ambiguity might only be resolved by a global definition of the integration over

the supermoduli space.

6. The large-N limit of the scattering amplitudes

We have now identified the scattering amplitudes in matrix string theory with a

discrete version of the light cone string scattering amplitudes. The discretization

appears in the x− sector of the theory. Moreover we have reproduced the DVV
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operator insertion at the string interaction points. In this section we consider the

issue of the integration measure over the instanton moduli and the link with the

Weil-Petersson measure.

In the path integral we consider a background abelian gauge field aS as defined

in section 3 and expand around this background configuration. One has to sum over

all the possible Wilson lines to take into account the different possible backgrounds.

In the small coupling regime the contribution from the background gauge field de-

couples leaving a gaussian integral defined by excluding from the path integration

over the one-form aλ the zero modes due to the gS holomorphic abelian differentials

on the spectral cover. The result of the gaussian integral is given by the determinant

of ∆1 acting on one-forms. There is a correspondence φ1 → φ1/ωλ between the nor-

malizable eigenvectors φ1 of ∆1 and the normalizable eigenvectors φ0 of the laplacian

on scalars ∆0 for non-vanishing eigenvalues. This gives for the integral over aλ

1

det′∆0
. (6.1)

The constant zero mode is not in the Hilbert space as it is not a normalizable mode.

Similarly the integral over the eight scalar coordinates leads to a factor

1

det′4∆0
. (6.2)

Combining the two determinants we find a factor of

1

det′5∆0
. (6.3)

The quadratic action of the ghost field leads to a gaussian integration over non-zero

modes. The resulting integration yields the determinant of the laplacian operator

acting on scalars

det ′(∆0) . (6.4)

Combined with the integration over the space time fermions we get a factor of

det ′5(∆0) . (6.5)

cancelling the bosonic determinants.

Let us now come to grips with the integration over the matter fields xd and (ψ, ψ̄).

Recall that the fermions (ψ, ψ̄) are world-sheet fermions on the spectral cover with

values in the spin representations of SO(8). We use the Mandelstam coordinates w.

Consider now a polynomial P (∂xId, ∂̄x
I
d, ψ

α, ψ̄α̇) and the following vertex operator:

V = P
(
∂xId, ∂̄x

I
d, ψ

α, ψ̄α̇
)
eip

IxId (6.6)

corresponding to the insertion of states |phys〉 = V |0〉 with momentum pI at one

of the marked points of the spectral cover. These vertex operators allow to define
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the string wave functions which are inserted at the end of the open cylinders of

the Mandelstam diagram. The open cylinders are obtained using a cut-off limiting

the length of the external cylinders. The ends of the open cylinders are located at

times τa. Consider the wave function specified by the boundary string configuration

(xId = x0, ψ = ψ0, ψ̄ = ψ̄0) at the end of an external cylinder

φa(x0, ψ0, ψ̄0, τa) =

∫
x0,ψ0,ψ̄0

DxIdDψαDψ̄α̇Vae−S(x
I
d,ψα,ψ̄α̇) (6.7)

obtained by integrating over the fields defined on the infinite cylinder τ ∈ [−∞, τa]
and the disc closing the cylinder at infinity where the vertex operator Va is inserted.

The explicit dependence on the stopping times τa of the wave function φi(τa) is

removed by inserting the propagator [16]

φa(x0, ψ0, ψ̄0) = e
−2ip−a τaφa(x0, ψ0, ψ̄0, τa) , (6.8)

where (p+a , p
−
a , p

I
a) is the momentum of the state inserted at the marked point Pa. The

momentum p+a appears explicitly in the construction of the Mandelstam diagram, the

momentum p−a is explicit in the wave function φa while p
I
a completes the mass shell

condition. The scattering amplitude is obtained by integrating the wave functions φa
over the space-time fields (xId, ψα, ψ̄α̇) subject to the boundary conditions (x0, ψ0, ψ̄0)

at the end of the external cylinders

∫
DxIdDψαDψ̄α̇

(
2gS−2+p∏
i=1

Vi

)(
p∏
a=1

φa

)
e−S(x

I
d,ψα,ψ̄α̇) =

〈
p∏
a=1

φa(pa)

〉
, (6.9)

where the DVV operators Vi have been inserted at the interaction points.
4

We still have to take into account the sum over the classical instantons. This

amounts to summing over the moduli space of the instantons. Moreover we must

divide by the number of twisted sectors due to the twisting by Wilson lines. On the

whole this leads to

A =
1

N2gS

∑
k1···k2gS

∫
MR

dµ
∣∣det (ψa1/2, ψb1/2)∣∣−1

〈
p∏
a=1

φa(pa)

〉
, (6.10)

where dµ is the measure of the instanton moduli space.

This measure specifies that one has to integrate over the coordinates of the

interaction points of the Mandelstam diagram. A change of the parameters of the

instantons amounts to moving the coordinates of the interaction points. Let us

describe the zero modes associated to the variation of the interaction points, i.e.

4There is a vanishing factor coming from the Liouville action due to the non-chiral splitting of

the laplacian acting on fermions. It is given by ((
∏
i ρ(Pi))/(

∏
i ρ(Ii)))

−1/3 where ρ is the Weyl
factor. This term has to be absorbed in the definition of the path integral
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the tangent space to the moduli space [22]. Locally around an interaction point the

spectral cover S0 is defined by

w̃0 =
1

2
λ20 (6.11)

corresponding to a one form π∗0Xd = λ0dλ0. Let us perturb this spectral cover and

move the interaction point. The equation of the perturbed Sε reads

w̃0 =
1

2
λ(λ− 4ε) . (6.12)

The interaction point is at λ∗ = 2ε. The one form associated to Sε is π∗εXd =

(λ− 2ε)dλ. It is easy to see that (λ− ε)dλ = λ0dλ0 implying that
π∗εXd = π

∗
0Xd − εφ , (6.13)

where φ = dλ, i.e. the one form defining S0 has been perturbed by φ. Notice that

the perturbation is holomorphic on Sε. This is not the case when pulled back to S0
where it reads in the vicinity of the two singularities

φ ∼ ±
( ±iε/2
λ0 − (±iε)

)1/2
dλ0 . (6.14)

These infinitesimal perturbations of SO are determined by the one form dλ0/λ
1/2
0

shifted away from the interaction points by ±iε. So the zero modes characterizing
the tangent space to the moduli space are spanned by the analytic one forms with

a square root divergence at the interaction points of the spectral cover. Globally

these one forms are found to be
√
ωλψ1/2 where ψ1/2 is one of the 2gS − 2+ p spinors

with a pole at the interaction points. This identifies the tangent space to the moduli

space and emphasizes the crucial role played by the interaction points. In particular

we retrieve the dimension of the moduli space 2gS − 3 + p measuring the relative
positions of the interaction points.

The measure in terms of the coordinates wi of the interaction points is now

dµ =
∣∣det (ψa1/2, ψb1/2)∣∣

(
2gS−3+p∏
i=1

dwidw̄i

)
. (6.15)

This is the measure on the flat cylinders forming the Mandelstam diagram. Notice

that the determinant arising from the tangent space to the moduli space cancels

the determinant coming from the supermoduli measure. Inserting this measure in

A we find that the scattering amplitude is obtained by integrating over all the pos-

sible topologies of the string diagram as specified by the coordinates of the interac-

tion points.

The scattering amplitude A on a spectral cover of genus gS carries a factor of

(1/g)2gS−2+p coming from the 2gS − 2 + p fermionic zero modes. This springs from
the rescaling c→ gc used in the semi-classical expansion. Now as the string coupling
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is inversely proportional to g we find that the scattering amplitude is weighted with

a factor g
−χ(S)
s as it should in the string scattering expansion.5 Notice that this

amounts to adding a factor of gs to each of the interaction points.

So the scattering amplitude carries the appropriate factor of gs to be identi-

fied with the string amplitude. Together with the hamiltonian picture of GS states

propagating on the Mandelstam diagram this shows that the scattering amplitude of

matrix string theory is similar to a discrete version of the usual type-IIA superstring

amplitude in the light cone gauge.

Let us now investigate the N dependence of the scattering amplitude A. First of

all the geometry of the spectral cover is independent of N . Indeed we have seen that

the number of moduli is uniquely specified by the genus gS and the number of marked

points p. Fixing gS and p in the large-N limit one can study the amplitude on a

prescribed string diagram. Now the Mandelstam diagram depends on the momenta

and shifts due to the Wilson lines. In the large-N limit these momenta and shifts

cover the entire real line, the discretization step 1/N goes to zero. So we retrieve the

light cone Mandelstam diagrams of string theory. In particular all the external and

internal momenta become continuous. It is then easy to see that in the large-N limit

the discrete sums in A converge to the integral over the measure
∏gS

a=1 αadηadαa.

On the whole, combining with the measure dµ, we reconstruct the Weil-Petersson

measure over the moduli space of marked Riemann surfaces

d WP =

(
2gS−3+p∏
i=1

αidθidτi

)(
gS∏
a=1

αadηadαa

)
(6.16)

in terms of the twisting angles θi and ηa (3.11). The convergence towards the Weil-

Petersson measure is only a weak convergence.

Having obtained the measure of the moduli space of curves in the large-N limit

we find that the scattering amplitude A coincides with the scattering amplitude of

superstring theory in the light cone gauge.

7. Conclusion

We have given an explicit description of the moduli space of matrix string instantons.

They are defined in terms of (2gS − 3 + p) continuous parameters in correspondence
with the deformations of the spectral cover. The scattering amplitudes in matrix

string theory are equivalent to string scattering amplitudes on a Mandelstam diagram

where the interaction points are free to move while the momenta of the interacting

strings are quantized due to the presence of discrete Wilson lines in the description of

flat bundles. The interaction points are associated to the supermoduli describing the

5Here the Euler characteristic χ(S) is defined for the open Riemann surface with punctures

obtained after removing a disc around the marked points.
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structure of super-Riemann surface on the spectral cover. We have explicitly inte-

grated over the supermoduli and retrieved the DVV insertion of the picture changing

operators at the interaction points. Finally we have studied the large-N limit and

shown that the measure on the matrix string instanton moduli space converges to

the Weil-Petersson measure on the moduli space of marked Riemann surfaces.
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