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We present a treatment of the influence of rf noise on a proton bunch valid for an arbitrary rf potential. Our
approach is based upon the Hamilton-Jacobi transformation, followed by an application of canonical perturbation

theory. A general proof is presented for the relation

10A;

T2

recently considered by Boussard, Dome and Graziani. We consider some properties of the solutions of the Fokker-
Planck equation describing the diffusion of small bunches.

I. INTRODUCTION

The influence of rf noise on the lifetime of
bunched proton beams was recently studied by
Boussard, Dome, and Graziani.! They noted that
on a long time scale, the average motion is de-
scribed by a Fokker-Planck equation,?
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= — — +-—A

aJ(AlP) 26J2( 2p),
where J is the action variable and p(J, t) dJ is
the probability of finding a particle between J and
J + dJ at time t. The coefficients A; and A, can
be expressed as

A = «AJ/AI»Q )

Az = ((AI)*/At))o.

AJ = J-J, is the change in the action variable
during the time interval Az. The double bracket
represents an average over the rf noise and, in
addition, an average over the initial value of the
angle variable Q.

Boussard, Dome, and Graziani' have found
that for a harmonic rf potential, and for a sinu-
soidal rf potential, the first moment A, is related
to the second moment A, by

_ 134,

A = JR—
"2 3

* Work performed under the auspices of the U.S. Depart-
ment of Energy.
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which results in the reduction of the Fokker-
Planck equation to a diffusion equation

P _ 9 ﬁi")
ot aJ\2aJ)"

In our paper, we generalize the discussion of Ref.
1. We show that Eq. (3) is valid for an arbitrary
rf potential, when terms up to second-order in
the rf noise are retained. When the correlation
time 7 of the rf noise is short compared to A¢, we
find an explicit expression for A,, from which it
is easy to obtain the specific results of Ref. 1 (see
Appendix).

Our paper is organized in the following man-
ner: In Section II, we introduce the mathematical
formalism used to describe the motion of a par-
ticle under the combined influence of the rf po-
tential and the rf noise. The approach we take is
based upon the Hamilton-Jacobi transformation,
followed by an application of canonical pertur-
bation theory.

The relation A; = 33A,/dJ is proved in Section
III for white noise, and in Section IV for general
stationary noise. Actually the proof does not re-
quire stationary noise, but only symmetry of the
correlation

(4)

(&(1)&(12)) = (E()E(11)-

In Section V, we derive a useful expression for
A,, valid when the correlation time 1 of the rf
noise is short compared to Az. Here, we do use
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the stationary property

EtDEL)) = Mty — ).

In Section VI, we show that Eq. (4) can be
derived from the Fokker-Planck equation in the
two variables J, Q, where Q is the angle variable.
The derivation requires that a random phase type
of approximation [see Eq. (67)] be made. Next
in Section VII, we summarize some properties
of the solutions of Eq. (4), which describe the
diffusion of small bunches. We emphasize the
importance of the fundamental solution, and con-
sider the behavior of the moments of the distri-
bution. Finally in Section VIII we make some
concluding remarks.

II. MATHEMATICAL FORMALISM

Let g(¢) represent the deviation at time ¢ of a
proton’s rf phase from the synchronous value,
and let p(t) = ¢(¢) be the conjugate momentum.
The system we consider is specified by the Ham-
iltonian

% = ip? + f(q) + h(Q)E(r), ()

where f(q) is an arbitrary rf potential, and the
rf noise is described by the stochastic function?
£(t) with

&)y =0 (7a)
and
(E@EE)) = Nt — 1). (7b)

The equation of motion corresponding to the
Hamiltonian of Eq. (6) is

g + f'(q@) + K(qk®) = 0. @®)
Phase noise® corresponds to
hq) = —q, )
and amplitude noise to
h(q) = f(q). (10)

We now introduce the Hamilton-Jacobi trans-
formation whose generating function W(q, P) is
determined by

1 /oW\?
5(—53) + f(q) = P. (1)

The new canonical variables Q, P are related to
the original g, p via

] q’
"o J;VHP—ﬂ¢H’( ¥
p= _aaq = V2[P - f(q)] . (12b)

The solution of Eq. (12a) is denoted g(P, Q), and
the transformed Hamiltonian is

% = P + H(P, Q)¢(1), (13)

where H(P, Q) = hlq(P, Q)].
The new equations of motion are

aH(P 0)

0=1+ £(), (14a)

_0H(P, Q)
aQ

which can be integrated to yield

P = &), (14b)

o) =Qo+1t+ fo dr'g(t')
« OH[P(t'), O(1)]

P (15a)
Pm=&—waw
o SHLP(t), ()] (15b)

9Q

A solution of these equations can be found in the
form of a perturbation expansion

Q) =Qo +t+ Q:i(t) + Q(t) + ..., (16a3)
and
P(t) = Py + Pi(t) + Pa(t) + ..., (16b)

where P.(t) and Q,(t) are O(£¥). The first-order
terms are given by

0.(t) = fo dt'g(t')i’H—(I%,QfJ“—”, (17a)
Pit) = — fotdz'g(t')%%ﬂ. (17b)
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It is convenient to define
Ho(l) = H(Po, Qo + t), (183.)
Ho(1) = dHo(1)/dQ0 = dHo(1)/3t.  (18b)

Then inserting Eqs. (16) and (17) into Eq. (15b)
we find the second-order term

Py(t) = — fo dr’ fo' dr"g(t")E(")

X {Ho(t'), Ho(t")}, (19)
where the Poisson-Bracket {,} is defined by

0A OB dB 0A
A By =802 82
¢ } Q0 0Py Q0 0Py (20)

The action variable J is related to P by
7=$pdg=$ViP - fgids @
and
WO d g
opP V2[P - f(q)]
where T(P) is the period of the synchrotron os-

cillation. Using the perturbation expansion of Eq.
(16b), we can write

(22

J(P) = J(Po) + (Py + P3)T(Py)

dT(Po)

+ 3(P1 + P2)?
2(P 2) 3P

+ ... (23)

Let Jo = J(Py) and T, = T(P,), then keeping
terms to second-order in the noise, we obtain
oT
(J = Joy = (P))To + KP\D) >, (24)
dPo

((J = Jo)>) = (P))T0o?, (25)

since (P;) = 0.
The averages (P,2)and (P,) are found by using
Eq. (7) in Egs. (17b) and (19)

(P2(2)) = J; dt’f0 et -t
x Ho(t)H(1"), (26)
(Px(t)) = — fot dr’ for di'\(t' — 1)

x {Ho(t"), Ho(1")}. (27)

The coefficients A; and A, appearing in the Fok-
ker-Planck equation (1) are obtained by averaging
Eqgs. (24) and (25) over Q.

L [m
o fo dOWATIAL) = (ATIAD) e (28)

Ay

To

dQo((AT)AL) = (A)¥At))o,

(29)

where AJ = J — J, is the change in the action
variable during the time interval Az. Here At is
taken to be long as compared to the correlation
time of the noise &(¢), but short as compared to
the time interval within which J changes appre-
ciably. We have introduced the notation of a dou-
ble bracket indicating an average over both the
RF noise and Q.

In the next two sections we shall present der-
ivations of the relation (3), A; = 3%3A,/dJ. From
Egs. (24) and (25) it is seen that this relation is
equivalent to

(PAtMNTo =

1
A—-__
2 ToO

139
2 3Py

which is the form of the relation that will be ex-
plicitly proven.

[Tol(Pr ()], (30)

III. WHITE NOISE

White noise is characterized by a delta function
correlation

Nt —t) = No(t - t'). (31)

Inserting Eq. (31) into Eq. (26) and averaging
over Oy, we obtain

A 0o
(PNo = 7 $ dg, fo dt

y [BH(PO, Qo + z')]2
900

_A 3€
_Toodt dQo

y [aH(Po, Q(,)]2
300

A
- 7:56 dQs [h'(q(Po, Qo))

v 9q(Po, Qo):l2
300 ’
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and finally
(P Ao

A
- 3§ dath' P VIBS ~ F@1. ()
Next we use Eq. (31) in Eq. (27), and find

Py = = 3 [ dr B, B} (3)

Defining
qo(t) = q(Po, Qo + 1),
qo(t) = 9qo(t)/0Qo = dqo(t)/at,

it is straightforward to show that the Poisson
Bracket

{Ho(t"), Ho(1")} = h'[qo(t)]R'[go(£")]
X {qo(t'), qo(¢")}
+ h'[qo(t)]h'[qo(#")]1go(t")
X {qo(t"), qo(t")}.

For ¢/ = ¢, the Poisson Brackets on the right
hand side become {go, g0} = {p, q} = —1 and
{q0, g0} = 0, so

Pty =5 [ dr TP G

Averaging over (Q,, one obtains

(POVo = 37 P dQulh (aaltDF- (39)

We are now ready to establish Eq. (30) and
hence Eq. (3).

(P OMe] = h o dg LD
oo 2[Po — f(q)]
_ _ @P
- M % 9 aQ(PO, Qo)/aQo
= At dQulh (qol P
= 2To({(P2()o

This proves the validity of Eq. (3).

The conclusion of this section is that for white
noise

A=\ pdah'@P  G6)
and
_ Lo,
A= G
104,

IV. PROOF OF 4, = 23

Now without imposing the constraint of white
noise, let us proceed with the proof of the relation
[of Eq. (3)] between the first and second mo-
ments. Recall from Egs. (26) and (27) that

(P4(1)) = Jo dt’ fo dr'n(t’ — t") Ho(t")Ho(1")

and

(P(1)) = fo dr' JO di'\(t' — 1)

Ho(t") — Ho(t')

’

N [3Ho(t ) ;
JoP

oH 0( ") ]

where Ho(t) = H(Po, Qo + t) and Hy(t) = dH/
3Qo.

Using the expression for the derivative of a
product,

aHo(t ) ;

3P, —— Ho(1") = — [Ho(t )Ho(2")]

aH(t")
Py

~ Ho(t")

and the fact that for a symmetric function f(¢',

) = f(t', t),
f dtlf dt"f(t’, t") - f dt,j dt”f(t", tl)
0 0 0 ¢
1 t t
- _f dt' f dt"f(t', t"),
2 Jo 0
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it follows that

(Px(2)) = §5F<P12(t» - (38)

where

R = 5 Qo f dt' f dt'\(t' — ")

» 0H(Po, Qo + t') 0H(Po, Qo + 1)
Qo aPo '

(39

The next step is to average Eq. (38) over one
period. Define the average ( )o by

1 (™
dm=ij;d®ﬂ@x (40)

Note that since the period T, is a function of P,,
the derivative 3/0P, does not commute with the
average ( )o. In fact, one easily shows that

1) 0 - O
T<w> L 1Tl - G ST @D

(P,(1)), Eq. (41) implies

To <6iPo <P12(1)>>Q

=£ﬂM@ﬂMM—m 2)

Choosing f =

with
dTO d ' ! " oo
u dPof dt J;dt)\(t ")
at at
Averaging Eq. (38) we obtain

Tol(P2(1)))o

1 9

= 355, TPl = 5 = (Rlo. (44)

In order to evaluate (R)p, we must note that
0H(Py, Qo + 1)/dP, is not periodic in Qy. From

Eq. (39) we see that

t '
(R)o = if dt’f N’ — 1)
To 0 (4]

H(Po, t
x L0 1) \(py, 1), @5)
at’
where
oH(Py, t + To) 0H(Py, t)
A(Py, t) = - , 4
(Po, 1) 2 . 4o)

is the change in dH/oP, over one period.

From the periodicity of H(Py, Qo + 1), itis clear
that we can write H(Py, Qo + t) = m(Po, (Qo
+ 1)/Ty), where n(Py, x + 1) = m(Po, x). Then

dH(Po, Q() + 1) _ P Qo + t
aP, RN R

(&)

To2 | dPo ™ To

where m; and 7, are partial derivatives of n with
respect to its first and second arguments, re-
spectively. The functions m; and m, are periodic
in their second arguments, so

—1 dTo t

_ ﬂaH(Po, t)
T dPy ot “9)

A(Po, t) =

Inserting Eq. (49) into Eq. (45), we see that

(R)o = — (50)

u
>
Hence, Eq. (44) reduces to

1 9

2P, [To{P12(D)))o],

To({PAt)))o =
which is the relation of Eq. (30) that we set out
to prove. The discussion at the end of Section 1I
showed that Eq. (30) is equivalent to

1A,
A =~ 22
"T2ar

so our proof is complete.
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V EVALUATION OF A, FOR NOISE WITH
SHORT CORRELATION TIME

In order to evaluate (P,%(t)), we introduce the
Fourier expansion,

Ho(t) = H(PO) QO + t) = 2 'Ynemﬂ()t) (51)

n=—ow®

where Qp = 2nw/Ty and y_,, = v,*. Also,
A1) =f doA(w)e ™, (52)

where A(w) = A(— @) follows from the symmetry
A(t) = A(—1). Inserting these expansions into
Eq. (26) and averaging over Q,, we obtain

(PPN =4 X n*Qe? |y, [

sin? |:——~———m — nilo t]
2

(0 — nQo)2

« j _°° doA(w) (53)

To derive Eq. (53) we noted that v, is propor-
tional to ™2, g0 that

1 [T
= [ a0t = [va PO 54
0J0

Let us now suppose that the correlation time
7 of the rf noise is much shorter than ¢,
T<t. (59

In this case, A(w) is approximately constant over
the interval Aw ~ 1/¢, so it follows that

(PP(Mo=4 X n2Q? [ v 2

n= —oo
.2 | @ — hwo
sSin t
=

(0 — nwo)?

X A(n€o) f do

(56)

The integral in this expression is equal to /2,
)

(PA(DMo=2mt X n2Qo®|vy.[> A(nQyo).

n=—o

(57

Eq. (57) can be rewritten in a form which makes
manifest the agreement with the previously ob-
tained result, Eq. (36), in the white noise limit.
We define the functional,

h= | A HNn) = f}gp dglh'(@)).  (58)

Use of the Fourier expansion (51) leads to

o©

Jn = ToQo> 2 7|yl (59)

n=—o

Recalling from Egs. (25) and (29) that
1
A = T02?<<P12(t)>>Q: (60)

we see that Eqgs. (57) and (59) yield

]

> n? |y, 2 AnQy)
As = 2nToJn . (61)
> vl

n=1

The result for white noise, Eq. (36), is obtained
when the white noise spectral density, A(w) =
N2, is used in Eq. (61).

V1. THE FOKKER-PLANCK EQUATION

The Fokker-Planck equation for the distribution
function Y(P, Q, 1) is

w_ W o0
ot = " ap  agta¥l T gpladl
1 9% 0%
+ ’2-@5 [b110] + PO [bi2]  (62)
1 8%
+ 56—1-’_2- [b220].

The coefficients are defined by
1 + a1 = ((AQ)/AY),
az = ((AP)/At),
b = ((AQ)’/A),
b2 = ((APAQ)/AY),
by = ((AP)*/At).
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Following the discussion of Sections II and 1V,
it is straightforward to show that

1 abn 6021
4+ ==
a 2 (‘)Q (63a)
1 abzz aciz
a = 2P + 0’ (63b)
bi2 = c12 + c21. (63¢)

Explicit expressions for by, b,, ¢3; and ¢, are

At At
biAt = f dr’ '\t — 1)
0 0

« 0H(P, O + t')dH(P, Q + 1)
) P '

Ar At
b At = f dt' d'\(t' = 1)
0 0

o OH(P, Q + 1) 0H(P, Q + 1)
90 90 ’

At t'
1At = — J dt’f di'\(t'" — ")
0 0
» OH(P, Q + t')oH(P, Q + ")
"oP 00 ’
At t'
c2At = — f dt'j di'\(t' — ")
0 0

. OHP, Q + 1) 6H(P, Q + 1)
a0 oP ’

Inserting Eqgs. (63a, b, c¢) into the Fokker-Planck
equation (62), one finds

W 19 U L L
e E_Q[b” Q]+2aP[bzzaP] 00

Lo W], af
a0 | ap| Tap| el Y

Let us write Eq. (64) as

N _
3 - LY (65)

Consider the average ( )o which we defined in
Eq. (40). Taking the average of Eq. (65), we ob-

tain
%owg = (Li)o. (66)

In order to obtain an equation involving only
(¥)o, we make the approximation

= (o = (L. 67)

Let us introduce the notation F(P, t) = (¥)o,
and note that applying the approximation de-
scribed in Eq. (67) to Eq. (64), it follows that

oF <1 ) [b aF]> +<a [ BF]>
ot \20P| “oP 90 o
(68)

In order to take the derivative 4/0P in the first
term on the right hand side of Eq. (68) outside
ghe average, we use Eq. (41) of Section IV, yield-

ing
oF 1 9 oF
6— = EG_P I:T(bzz)Q ]
1dT oF
YT bzz(T) + (Ac21) P (69)

Here, T = T(P) is the oscillation period, and Ac,,
is the change in c,, over one period.

We evaluate Ac,, by following the steps lead-
ing from Eq. (45) to Eq. (50) in Section IV. The
last two terms in Eq. (69) cancel, leaving

oF 11 9 oF
= 3gap T p]

Introducing p(J, t) =
TolaJ, we derive

o _19 [72<b22>g ] (71)

F(P, t), and using 9/6P =

at  2a]

Since T%(b22)o = (((AJ)*/At))o = As, as defined
in Eq. (2), we see that Eq. (71) can be written as

9 _ 9 |A20p
ot —31[2 aJ]’ 72)

which is the equation used by Boussard, Dome
and Graziani,' and presented by us in Eq. (4) of
the Introduction.
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VII. FUNDAMENTAL SOLUTIONS OF
THE FOKKER-PLANCK EQUATION

The fundamental solution? K(J, Jo; t) of Eq. (72)
is defined to be that solution satisfying the initial
condition

lim K(J, Jo; t) = 3(J — Jo), (73)

—0+

where 8(J — Jy) is the Dirac delta function. Any
other solution can be written in terms of the fun-
damental solution, as

MLﬂ=Lc%ﬂLthmw,U®

where p(J, o) is the initial distribution existing at
t = 0. The moments M,(t) defined by

M,(t) = f: djJ"p(J, 1), (75)

are useful in characterizing the distribution
p(J, 1).

For simplicity, we consider the case of white
noise as described in Section III, for which

Ax(J) = NJTW), (76)

as shown in Eq. (36). For a small bunch, the
amplitude dependence of the period can be ap-
proximated by

T(J) = To + TiJ, (77
SO
3A2(J) = aJ + bJ?, (78)

with a and b being the appropriate constants.
In the harmonic limit, b = 0, so Eq. (72) re-
duces to

9 _ 9| ;%

ot ol [aJ aJ] ' (79
The fundamental solution can be determined by
Fourier transforming the J-dependence, and

solving the resulting first-order partial differential
equation of Lagrange type. One finds

2VJJo
at

1
K(J, Jo;t) = ;e_(‘,Jr‘,")/atIo [ ] ,  (80)

where I, is the zeroth-order modified Bessel func-
tion. It is straightforward to determine the mo-
ments corresponding to the fundamental solu-
tion, using

* 1
Jo e “I[2VBx] dx = ae‘*"‘, (81)
and the integrals obtained by differentiating both
sides with respect to a. One finds
M(t) = Jo + at, (82a)
and

My(t) = Jo? + 4alot + 2a%t>. (82b)

Using Eq. (74), we can also determine the so-
lution whose initial distribution is Gaussian, p(J,
0) = l/oe™7". The result is

p(J, t) = g~ JNotan, (83)

o + at

Hence an initial Gaussian distribution remains
Gaussian, and the moments are found to be

M,(t) = nl(c + at)". (84)

As a second example suppose a = 0, which
can be realized by using a Landau cavity de-
signed to make T(J) = T,J, for small J. In this
case Eq. (72) becomes

P _ 91,29
ot aJ [bj aJ] : ®5)

This equation can be solved by making the
change of variables J = e“. Then the equation
can be written as

Lap _dp &%

- + , 86
bot ou ou? (86)

which has constant coefficients, and can be
solved by Fourier transform. The fundamental
solution is

1
K(J, Jo;t) = —F——
( 0 ) JoVanbt

J 2
X exp [”*mﬁ], (87)
- 4bt
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and the corresponding moments
M, (t) = Jo"e" "+ Db, (88)

Note that in this case the moments grow expo-
nentially* with time.

Finally, consider A,(J) to be as given in Eq.
(78). Then Eq. (72) becomes

*°_ 39 2 %P
= 3 [(a.l+ bJ)aJ]. (89)

Using the definition (75) of the moments, we
write

4a Y 2 9P
= M,(0) = fo an s [(a]+bJ)6J] (90a)

an*M, _(t) + bn(n + 1)M,(t). (90b)

Note that My(t) = M, is independent of time,
take My = 1. Then

Mi(1) = a + 2bM\(1) 91)
and

M(t) = 4aM,(t) + 6bMy(1). 92)
For the fundamental solution M,(0) = J,". In the
case b = 0, integration of Egs. (91) and (92) yields

the previously obtained results (82a, b). When b
> 0, we can solve Egs. (91) and (92) to obtain

_ a | 2 4
M (t) = [Jo + Zb] e b (93a)

and

2

Mo(t) = [102 + 25+ “—] €5 (93b)

b 6b?
a a2 .
— [bJo + 2b2] e
L@
3%

At the expense of some algebra, it is straightfor-
ward to determine higher-order moments by suc-
cessively solving Eq. (90b) for larger n.

VIII. SOME CONCLUDING REMARKS

We have tried to present a simple yet compre-
hensive treatment of the basic theory needed to
describe the diffusion of proton bunches under
the influence of rf noise. Our discussion gener--
alizes the work of Boussard, Dome, and Gra-
ziani,'! enabling one to consider an arbitrary rf
potential. In fact, our proof of the relation A,
= 30A,/dJ, is valid for the more general Hamil-
tonian,

* = 1p? + f(q) + h(p, Q&)

One simply defines

H(P, Q) = hlq(P, Q), p(P, Q)],

and
Hy(t) = H(Poy, Qo + 1).

The expression of Eq. (51) for A, remains valid
in this case upon defining

To .
In = ] diLHo(1)]?
fpan[2-2L0]
Pl o " p |-
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APPENDIX: SUMMARY AND
DETERMINATION OF Ax(J) IN SOME
SPECIAL CASES

Motion Without Noise

g+ f(@=0
14> + f(g) = P, constant of motion
R .. -
o V2[Po — f(q)]

qo(t) = q(Py, Qo + 1)

dgq
To = _— =
0 § 2[P0 — f(q)] y Qo 21T/T0

Jo = $ dgVaiPs = Fi@)]
Motion With Noise
G+ f'(q) + h'(q@)E1) = 0
&) =0
ANt —-1)
= fde(w)e"""("")
Ay = ((AJ/AD)o

(E(DE())

(averaged over Qo)
Az = ((AT))/At)o

The moments A; and A, characterizing the be-
havior of the system in the presence of rf noise
are determined in terms of quantities defined by
the dynamic behavior in the absence of noise.

Hy(t) = hiq(Po, Qo + t)]
— E ,yneinﬂot

I = 3€dq\/2[Po ~ @I ()P
> 2y, P A(nQy)
As = 2uTodn " —

> vl

n=1

_ 1o,
2 oJ

A

In the following K(k), E(k), B(k), C(k), and
D(k) are elliptic integrals,’ and sn(u), cn(u) and
dn(u) are elliptic functions of modulus .

Example 1. Sinusoidal rf Potential’
£(q) = 2w0? sinzg
A. Phase Noise: h(q) = —¢q
k2 = P()/Z(J)()z

sin@g2 = k sn[wo(t + Qo); k]

qo(t) = 2kwo cnlwo(t + Qo); k]
T() = iI((k), Qo = 21T/T0
Wo

Jo

Il

1600l E(k) — k'2K(k)]
16wok>B(k)

K
B(k) = jo du cn?(u)

A(Qo)

1=1,3,5,... cosh?(lv)
1
1=1,3,5,... cosh’(lv)

A2 - ZTFT()J()

B. Amplitude Noise:

hq) = £(q) = 200 sin® 1

Jr = wo>(2k)* 35 A cos? 0 sin® 6 do
A =V1 - k?sin?0
§ A cos® 0 sin® 0 df

4K+ k)
15k*

8(k* — kK + 1)
15k*

K(k)

E(k)
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4
=—(D-C+2E—-B
15( ¢ )

= a(k)B(k) (defines” a(k))
Jr = wo’(2k)*B(k)a(k)

Hol1) = hlao(n)] = 200? sin? 252

= 2(,002/(2 snz[wo(t + Qo)]

K-E w2 &
2 - —
W = "Eg T ek El sinh(2n0)
m* A(mQo)
e inh?
Ay = 2nToJ, 2,4,6,... Sl mgmv)

m=246... sinh*(mv)

C. Small Amplitude Oscillations (k < 1)

For small amplitude the motion is harmonic.

=T -T2
K—2,K E 4k,
1147
h = gi = - |-
cosh lv = sinh lv Z[k]
T()=2_Tr
wo

Jo = 411'(1)0](2 = gEPo
wo

Jf = 41T(1)()5k4 = 'IT(:.)()P()2

Phase Noise: A, = 2wToJoA(wo)
Amplitude Noise: A5 = Twe2Jo2ACwg)

Example 2. Quartic Potential
f(q) = aq® + bq*
Define g, by Py = aq..> + bgn*.

2o ban’
a + 2bg,®

a + bgn®
t) = m _—
q()() q \/a + qumz

x sd[V2[a + 2bq.*1(Qo + 1); k).
sd(u) = sn(u)/dn(u)
qo(t) = gmV2a + bgm)

y en[V2a + 26 (Qo + 1)]
dn?[V2(@a + 2b¢m>)(Qo + 1)]

2V2

Tp = ————— K(k
° Va + 2bg,? ®)
L2 T
0= T3 VAT Lbdm

X [(a + bg,")K(k) — aE(k)]

Phase Noise A(q) = —¢q

_ . m = (=) sin[(2n — Dmul2K]
sdw) = = 10K zl cosh2n — 1)v
BA(IQo)
A, = 20T, 1=1,3,5... cosh?(lv)

12
= 25,_, cosh?(lv)





