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Abstmct- The ROXIE program developed at CERN for 
the design and Optimization of the superconducting LHC 
magnets has been recently extended in a collaboration with 
the University of Stiittgart, Germany, with a Add compu- 
tation method based on the coupling between t h e  boundary 
element (BEM) and tho flnite element (PEM) technique. 
This avoids the meshing of the coils and the air regions, 
and avoids the artlficial far field boundary conditions. The 
method is therefore specially suited for the accurate calcu- 
lation of fields in tho superconducting magnets in whlch the 
field la dominated by the coil. We will present the fringe 
field calculations in both ad and 3d geometries to evaluate 
the effect of connections and the cryostat on tho Rald quality 
nnd the flux density to which auxliiary bus-bars are exposed. 

I. INTRODUCTION 
The design and optimization of the LHC magnets is gov- 

erned by the requirement of an extremely uniform field 
which is mainly defined by the layout of the superconduct- 
ing coils. Even very small geometrical effects such as thc 
keystoning of the cable, the insulation, grading of the cur- 
rent density in the cable due to  different cable compaction 
and coil deformations due to  collaring, cool down and elec- 
tromagnetic forces have to  be considered for the field calcu- 
lation. For the field optimization of the LHC magnets [I], 
the usefulness of commercial software has shown to be lim- 
ited in particular in the three dimensional case, Therefore 
the ROXIE [Z] program package was dcveloped at CERN 
for the design and optimization of the LHC superconduct- 
ing magnets. Furthermore, the application of the BEM- 
FEM coupling method [3] yiolds the reduced field due to  
the magnetization of the iron yoke only. This avoids the 
meshing of thc coils and the air regions, and avoids the ar- 
tificial far field boundary conditions. T h e  method is there- 
fore specially suited for the calculation of fringe fields in 
the superconducting magnets, both in 2 and 3 dimensions. 

11. T H E  BEM-FEM COUPLING METHOD 
The total magnetic induction in a certain point f i n  the 

npert2re of the magnet can be decomposed into a contribu- 
tion Bs due to the superconducting coil and a contribution 
BR duc to the magnetic yoke. If the field: are extressed 
in terms of the magnetic vector potential B = curl A ,  then 
the decomposition into sourcc and reduced contributions 
gives 

A= i s  + A R ,  
This approach has the following intrinsic advantages: 
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The coil field can be t2ken into account in terms of its 
sourcc vector potentid As ,  which can be obtained easily 
from thc filamentary currents Is by means of Biot-Savart 
type integrals without meshing of the coil. 
4 The BEM-FEM coupling method allow: a direct compu- 
tation of the reduced vector potential AR instead of the 
total vector potential A’. Consequently, numerital errors 
do not influence the dominating contribution As due to 
the superconducting coil. 

Since the field in the apcrture is calculated through the 
integration over all the BEM elements, local field errors 
in the iron yoke cancel out and the calculated multipole 
content is sufficiently accurate even for a very sparso mesh. 

The surrounding air reiion need not be meshed at  
all. This simplifies the preprocessing and avoids artifi- 
cial boundary conditions at some ”far” distance. Since 
the air region is not meshed, only the iron region mesh- 
ing is affeckd by geometrical modifications. This strongly 
supports the feature based, parametric geomctry modelling 
which is required for mathematical optimization. 

The elementary model problem for a single aperture 
model dipole (featuring both Dirichlet and Neumann 
bounds on the iron yolw) is shown in Fig. 1. When the 

Fig. 1. Elementary model problem far the numerical ficld calcula, 
tlon of a superconducting (single aperture) modcl magnet. In 
the iron domain the total vector potential is displayed. The non- 
conductive air region n, contains a certain number of conductor 
sources which do not intersect the iron region f l i t  The finite- 
element method inslde the magnetic body RI  = RFBM is coupled 
with the boundary-element mcthod in the domain outside the 
magnetic material Ra = ~ B E M ,  by means of thc normal deriva- 
tive of tho vector-potential on the i n t o r h e  rai = rBEMFEM 
between iron and air. 
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BEM-FEM coupling method is applied, only the magnetic 
sub-domain Q which coincides with the magnetic yoke has 
to be meshed by finite elements. Iron saturation effects 
can then be treated within the FEM domain. The non- 
magnetic sub-domain s1, which represents the surrounding 
air region and the excitation coiI is treated by the bound- 
ary element method. Only the common boundary rai needs 
to  be discretized by boundary elements. If the domain 
is discretixed into finite elements (Co-continuous, isopara- 
metric 20-nodod hexahedron elements are used), and the 
Galerkin method is applied to the weak formulation, then 
a non linear system of equations is obtained 

with all nodal values of Anl Ay,, and Qrnl grouped in 
arrays. As we will see later, Qral i s  the normal derivative 
of A on rRi 

(3) 

which w e  assume as given. The subscripts rai and R, refer 
to nodes on tho boundary and in the interior of the domain, 
respectively. The domain and boundary integrals in the 
weak formulation yield the stiffness matrices [IC] and the 
boundary matrix [TI. The stiffness matrices depend on the 
local permeability distribution in tho nonlinear material. 
All the matrices in (2) are sparse. For the meshing of the 
boundary FRi with boundary elements Fa,,j, C'-continuous, 
isoparametric 8-noded quadrilateral boundary elements are 
used. The discrete analogue of the Fkedholm integral equa- 
tion can be obtained by successively putting the evaluBtion 
point r'j at thc location of each nodal point T;. This pro- 
cedure is cslled poinbwise collocation and yields a linear 
system of equations, 

[GI {Oral} + [T-II{A;.,~I = (4) 

In (4), {As} contains the values of the source vector poten- 
tial at  the nodal points F3, j = 1,2, I . . . The matrices [GI 
and [HI are unsymmatric and fully populated. An overall 
numerical description of the field problem can be obtained 
by complementing the FEM description (2) by the BEM 
description (4) resulting in 

0 
(5) 

Equation (4) gives exactly the missing relationship between 
the Dirichlet data {&A,} and the Neumann data {Qrhl} 
on the boundary ra;. It can be shown [4] that this pra- 
cedure yields the correct physical interface conditions, the 
continuity of 6 . B and ii x H across rai. 

A detailed description of the method and the applicatiori 
to superconducting magnets can be found in [4], [ 5 ] .  

111. FIELD QUALITY IN ACCELERATOR MAGNETS 
The magnetic field errors in the aperture of the magnets 

are expressed as the coefficients of the Fourier-series ox- 
pnnsion of' the radial field component a t  D. ,given reference 
radius (in the 2-dimensional case). In the 3-dimensional 
case, the transverse field components are given at Q longi- 
tudinal position LO or integrated over the entire length of 
the magnet. For a given radial component of the magnetic 
flux density B, at a reference radius T = ro inside the 
aperture of a magnet the Fourier-series expansion of the 
field reads 

M 

B T I T O I P )  = C(B,(.ru)sinntp+A,Iro)cosn~), ( 6 )  

~,(m,cp) = B ~ ( T O )  C ( b n ( . r o ) s i n w  + ~ , ( r O ) c o s w ) ,  (7) 

n=l  
E4 

n=l  

with the main field component B n  ( N  = 1 dipole, N = 
2 .quadrupole, etc.). The B, are called the normal and 
the A ,  the skew components o f  the field given in Tesla, b, 
the normal relative, and a, the skew relativc field corn- 
ponents. They are dimensionless and are usually given 
in units of at a 17 mm reference radius. In prac- 
tice the D, components arc calculated, in discrete points 
pk = % - T ,  IC = 0 , 1 , 2 , . . ~ ~ - 1  in the interval [ - x , K )  and a 
discrete Fourier transform is carried out: 

(81 

(9) 

1 2p-1 

1 2 p - 1  

& ( T O )  M ~ ( w , P ~ ) c o ~ ~ ( P ~ E ,  

Bnho) = Br(nh'Pk) s i n w k .  

k=O 

k=O 

The interpolation-error depends on the number of cvalua- 
tion points and the amount nf higher order multipolr? crrors 
in the field. For the calculation of miltipoles up to  the or- 
der n = 13, 79 evaluation points (P = 40) are sufficient. 

, IV. RiwuL'i's 
A .  Field Quality in Collared Coils 

Space limitations in the existing' LEP tunnel and eco- 
nomical considerations have dictated a so-called two-in- 
one magnet design with two scts of coils and beam chan- 
nels within a common mechanical structure, iron yokc, and 
cryostat. As a first example of the application of the BEM- 
FEM method we calculate the magnetic field in a configu- 
ration as shown in Fig. 2. Using double aperture stainless- 
steel collars with a relative permeability of fir = 1.0025 
creates asymmetries in the magnetic field in the case of 
warm measurements of the collared coil assembly where 
only one aperture is powered. The relative field errors at 
17 mm reference radius in the aperture are given in Table 
1. As w&s mentioned earlier tht? BEM-FEM method does 
not require the meshing of the coil (which can therefore be 
modelled with the required accuracy) and does not require 
a "far field" boundary condition which would influence con- 
siderably the results of this unbounded field problem. 



At the position of the support posts of the cold mass n 
circular opening is made in the cryostat vacuum vessel, 
closed by a non-magnetic plate. As a first approach, this 
opening has been modelled as a two-dimensional problem. 
The fringe field is higher at the opening but stays below 
0 . 5 .  IOW3 Tesla, see Fig. 4,  Again, the advantage of the 
BEM-FEM method lay8 in the fact that the surrounding 
air regions do not have to be considered and that the dis- 
connected iron parts can bc meshed independently with 
the required refinement. The eccentricity of the cryostat 
can therefore easily be modelled. Tablo 2 gives the nomi- 
nal, and the additional field errors due to the cryost,at at 
nominal field of 8.36 T in units of at 17 mm. 

Fig. 2. Geometric model of one dipole coil power4 for worm mea, 
surement in the combined collar structure asuming a constant 

magnetic Rux density in the collnrs. 
- -. - - .. . -. 

x i a 4  
relative perme&ility of fir = L0025. The figure displays the 4.0 7 

w 0 
0.4 - 

TABLE I 

0.P I . B 1  
- ADDITIONAL FIELD ERRORS IN COIL COLLAR ASSEMOLY WITH 

RIGHT-HAND-SIDE hPERTURE POWERED FOR WARM MEASUREMENTS. 

(UNITS OF AT 17 MM.) AND KOMINAL VALUES FOR A BARE COIL 

WITHOUT COLLAR. 

ha 3.9150 b7 0.7456 b3 -1.6326 b y  -0.0918 
9L 

Nominal Additional 
bz 0.0000 b~ 0.0000 I b2 -0.0737 bfi 0,0000 

bq 0.0000 ba 0,0000 
bg -1.0385 bg 0,1224 

b4 -0.0018 be 0.0000 a w i o0  160 aw ZY suo am 

65 0.4306 bg 0.0081 Awutar ParlUanIdWl 

Fig. 3. Geometric model of the two-dimensional cross-section of the  
intagnet showing iron yokc and cryostat vacuum vessel. 

a1 0.000 
B2 0.G46 a2 0.000 
b~ 5.775 a3 0.000 
b4 0.217 a4 0.000 
b g  -0.914 US 0.000 

B. Influence of the Cryostat Eccentricity 

The cold mass of the two-in-one magnet is placed in the 
vacuum vessel of the cryostat (made of magnetic steel) with 
an off-centering of 80 mm in the vertical plane, see Fig. 3. 

0.422 
ba 0.099 a2 -0.093 
b3 0.015 a3 0.016 
ba 0.005 (t4 -0.002 
b g  0.000 US 0.000 

TABLE I1 
ADDITIONAL FIELD EnIIORS DUE TO ASYMMETRY OF THE VACUUM 

VESSEL AT NOhIINAL FIELD I N  UNITS OP AT 17 M M  AND NOMINAL 

ERRORS FOR A COLD-MASS WITHOUT VACUUM VESSEL. 

Nominal Additional 

C. Fringe Field in the GoiGend Region 

In order to reduce the peak field in the coil-end and thus 
increase the quench margin in the region with a weaker 
mechanical structure, tho magnetic iron yoke ends approx- 
imately SO mm from the onset of the coil-end at thc non- 
connection side and about 300 mm from the onset of thc 
coil-end at the connection end. This asymmetry results 
from the aim of a further reduction of the field in the ramp 
and splice region. The BEM-FEM coupling method is used 
for thc calculation of the end-fields. In particular in 3D, the 
importance for not having to mesh the coil becomcs obvious 
from Fig. 5. Tho ends can be modelled with the required 
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accuracy as the source field can be calculated directly by 
means of Biot-Savart’s law. The two-hone magnet end 
configuration with the common yoke used for the computa, 
Lion is shown in Fig. 6. Fig. 7 shows the field components 

Y l P  
f 

Fig. 5 .  Geometric madcl of the dipole coil-end with local coordinate 
system. 

Y 

Pig. 6. Full 3D modal of coils and two-hone iron yoke. The location 
of the buebar is at x = 285 mm and y = -67 mm. 

along a line in the end-region of the twin-aperture dipale 
prototype magnet (MBPP) from z = - 500 mm (inside the 
magnet yoke) to 2 = 400 mm outside the yoke. The onset 
of the coil-ends are at z = 0. On the non-connection side 
the iron yoke ends at z = -80 mm, on the connection side 
the iron yoke ends at z = -300 mm. This calculation is im- 
portant far the evaluation of the farces acting on the 600 
A and 6 kA auxiliary bus bars. 

V. CONCLUSION 

The BEM-FEM method is specially well suited for the 
calculation of fringe fields in superconducting magnets, as 
the coils and the air ‘regions do not have to be represented in 
the finite-element mesh, discretization errors only influence 
the calculation of the yoke magnetization and there is not 
an artificial ‘Lfar field” boundary condition. The method 
lias been illustrated by three examples, the results of which 

Ofl6 

0 

4.w 

4.1 

FIg. 7. Fringe field outside the dipole cold m w  near the coil-end 
region, Top: connection end, Bottom: return end. 

can be summarized aa follows: 1) For warm measurements, 
an additional field error due to the stainless-steel collar of 
about -1.6 units in the relative b3 component has to  be 
considered. 2) The fringe field outside the cryostat btays 
below 5 I IOp4 T and 3) the  field seen hy the 600 A and 
6 kA auxiliary bus bars stays below 0.21 T in the coil-end 
region. 
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