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Random Errors induced by the Superconducting Windings in the LHC Dipoles

W. Scandale, E. Todesco and I, Wolf -
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Abstract—The problem of estimating the random errors in
the LHC dipole is considered, The main contributions te
random errors are duc to random displacements of the coil
position with respect to nominal design and to the variation of
the magnetization of the superconducting cable.  Cail
displacements can be indnced cither by mechanical tolerances
or by the manufacturing process. Analytical and numerical
scaling Iaws that provide the dependence of the random errors
due to random displacements on the mmllipelar order are
worked out. Both simplified and more realistic medels of the
coil structure are analysed. The obtained scaling laws are used
to extract from experimental field shape data the amplitude of
the coil displacements in the magnet prototypes. Finally,
random errors due to intersivand resistance variation during
the ramp are cstimated

I, INTRODUCTION

The superconducting dipoles of the Large Hadron
Collider [1] will be affected by field shape errors that must
be minimised to avoid detrimental effects on the particle
dynamics. Field shape errovs can be grouped in two parts: a
systematic one that is the same for all the magnets, and a
random part that varics from magnet to magnet, and even
along the longitudinal axis of the magnet.

A source of random errors is due to the difficulty of
reaching the nominal coil position under manufacturing
conditions. The geometry of the actual coil will ditfer from
the neminal one due to thermal and mechanical stresses, and
to tolerances in the magnet parts. Another source of random
errors is the persistent currents in the superconductor
filaments. During the field ramp additional eddy current type
of errors arise. Currents induced in the strands of the
superconducting cables are espeeially important.

In this paper we build a simple analytical model to derive
scaling laws of the geometric random errors on the order of
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Fig. |. Cross section of magnet coils of LHBC dipole, Scale in mm. The
coil consists of two layers wound with different superconducting cables.
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the multipolar expansion. A numerical simulation en a more
reafistic model confirms the wvalidity of the analytical
estimate, A review of the effect of magnetization on the
random errors is also given, A c¢ross-section of the LHC
dipole coil is shown in Fig. 1.

II. ANALYTICAL ESTIMATES OF RANDOM ERRORS DUE TC
COIL DISPLACEMENT

In this section we derive analytical formulag for the effect
of random coil displacements on the ficld-shape, We assume
that a circular iron yoke of infinite permeability is present at
a distance R, We [irst cvaluate the effect of random
displacements for a line current (seciion IL.A). Then the case
of a sector magnet is analysed (section ILB). For the
analytical calculation we basically use techniques, although
with a different notatien, which are similar to those explained
in [2]. The field is asswmed to be 2-dimensional and we usc
complex notation.

A. Random Errors for a Current Line

The field By + iB, ina point z = x + iy (Fig. 2) due to a
line current / located in a point g, = X +iy. = 1. ¢ can be
wrilten as:
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The standard multipolar [ield expansion reads:

B, +iB,= Y €, =Y (B, +id, )", @)
A=l nal .

where # is the harmonic number and B, and A, are the normal

and the skew components respectively. The main component

of the field is indicated by a capital letter N. The multipole

field components b, and a, relative to the main field

B, RY at the reference radius R, are given by:

Fig. 2. Field due te a Line Current in a cylindrical yoke,
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For a current line [see {1)and (2)], the ceefficient C, is
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the multipote coefficient C, (4} changes according to:
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Il the conductor moves by a small amount Az
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Let us now suppose thatl the conductor moves randomly in
any direction [rom the position z, We furthermore suppose

that Az, has an average EE:O and a standard deviation

G/Y2 in each of ils components, corresponding to a standard
deviation of o of the movement, The standard deviation in

B,is 0, =yAB'—AB," =yAB? . With the help of (5) and

supposing that sin{e) =cos{@) =0 we then [ind:
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Similarly for A,
o =n~‘9-°—ﬂ—q— 1+i+2 re” cos(2n8) . (N
An 27 rriHI ﬁ R:u R2|

Note that ¢y, and Og, would be equal if there were no yoke.
Their average value (over 8) is just O}N'Z where:

ﬁAC" —-n-— e —‘ &)

In the following we will usually assume these average
values for g, and Gy, . This cheice scems reasonable since:
1. Inamagnet, there are often several blocks en different
pusitions & varying randomnly. This tends to make gy,
and gy, equal. _

2. In practice the yoke contribution is often small, except
possibly for low orders of r, This would make ¢, and
Ogy equal for any position 8

Note that, because of this choice, op, and @y, are the same

for any position of the conductor on a circle with radius r,.

B. Random Errors in Simple Sector Magnets

For & sector carrying a current £ with constant current density,
extending between r and r, and over an angle 24¢ (Fig. 3)
we find in a similar way:

Hol n 1 1 .
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If we can neglect the yoke contribution and the seetors are
narrow Fp—1,

We consider an 2¥ pole magnet consisting of 4V sectors,
each carrying a current I, and extending from 0 to #3N. We
cheose this angle in order to make the first allowed harmonic
(b3} zero, Then the main field strength Bycan be written as :

643N, 1
=- S, » with 10
R A2 VX (10)
‘- Iiz—N - .’:f_N . rzmz _ Gm: .
v N-2  (N+2)RY

We assume that cach of these sectors is divided in m
equal subscctors (extending from ry to rs, Fig. 3) which can
move independently from each other, In total we (hus have
4Nm independently moving tegions in the magnpe! and ihe
tota} random crror becomes +/4Nm as large as for a single
region. The standacd deviation &, (=g, =o,} in the error

relative to the main lield (5, and a, see {3) } at the reference
radius R, is, using (9 and (10

SR i S S PY (5 |
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As noted above, thc approximation F, = 1 is often
reasonable (sce Fig. 4). For moderately high », small

subscctors and  {r/r,)" <<1 we find the [ollowing

approximation, which justifies equation (17) used for fitting
the numerical simulations:

Ine l-Hn ich -
"on | 38, R 6Nm
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C. Rotaiion and Deformation

(12)

To derive (11) we assumed a rigid coil” which, although it
moves randomly, did not rotate. Tt is intuitively clear that if
the aspect ratio of the coil is close to one the etfect of
rotation is smail. This can be seen by considering a coil with

Fig. 3. Thick (dipole) sector, divided into three equal parls (m = 3) which
can move randomly



cylinder cross-section, where a rotation has #t0 influence on
the field. To make an estimation of the effect of the coil
aspecl ratio when it is rotated we consider a small conductor
carrying a current I, with rectangular cross-section (width w
and height k) which is rotated by small angle Ac around its
CeNIIe Zy: :

ACY s H g emn'(n-iz- 1} [wz —h2]
" 2 (Zm )ni— 12

We compare this change with the change of a single line
current I in the center of the block making a movement

\sz+tha/4 , which is about the average movement in
the block, using (5):

J Act” |~(n+[) 1“’2_}‘2
|Ac(rﬁ.cp,r.wmmr:) - z,ul 3\/;v2 e .

Thercfore a nearly square current block will give little
change to the field error if it is rotated compared to the effect
ol a similar displacement of its centre. The effect of rotation
increases with # however,

Furthermore the form of the coil could change. To study
this- we looked at an elastic deformation of a sector 1n the
radial and the tapgential direction in such a way (hat the
‘center of gravity’ of the sector remains fixed, The resulting
field change was then compared to a displacement of a rigid
sector of the same magaitude as the average displacement in
the deformed coil. Comparing the effect of a displacement
Ar, with stretching the width of the conductor by Z£Ar we
find;

Ax. {13)

{14)
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For a similar azimuthal strotching:
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Fig. 4. Comparison of Analytical Caloulation of Random errors with
Monse-Carlo simulation by computer, Standard deviation of the multipoles
due to random displacement of the blocks of 0,05 mm, The emor is
oxpressed relative to the main ficld at a reference rading Re = 0.017m.
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Equations (14)(13) and (16} show that often rotation and
deformation can be neglected in comparison to a similar
average movement, Therelore we can hope that (11) gives a
reasonable approximation to the total random error dye to the
movements of the magnet coil. Indeed a comparison (see Fig,
4) with computer calculations (see Section IIT) gives a good
agreement. For this analytical calculation we tock a 60
degree sector with 6 sub-sectors. The sector has the same
inner and outer coil and yoke radius as the LHC dipole.

111 NUMERICAL ESTIMATES OF RANDOM ERRORS DUE TO
COIL DISPLACEMENT

A, Numerical Simulations

We carried out some numerical simulations 1o cvaluate
the effect of small random variations of the coil geometry on
a_ mare realistic model of the LHC coil [1]. The coil cross
section is described using the code ROXIE (3] in terms of
blecks of conductors, and a random displacement has been
applied to the nominal design,

Two types of errors in the coil geometry were considered:
displacements of the blocks and displacement of the
conductors. In both cases we consider a random displacement
of each componenl (block or cenductor), neglecting the
geomelrical constraints that relate movements of neighbour
parts. This is somewhat unphysical, especially for the case of
the displacement of conductors, but it should give a first
mdication about what kind of random multipoles could be
expected by mcoherent coil displacements; il is also a first
order modeling of the influence of iolerances on field quality,

The randem displacements are assumed to belong to a
Gaussian distribution with zero average and whose gigma is
set to the value 4, truncated at three sigma, Six different
values of d have been used, ranging {rom 3 to 100u m,

The multipoles arising [rom this medificd configuration
are evaluated, and differences with respect to the multipoles
due 1o the nominal design are computed, 100 configurations
with randomly generated displacements have been analyzed;
anc obtains the distribution of the variation of multipoles
with respect to the nominal case, and averages and sigma are
worked oul for each multipole a, and b, The averages are
very close to zero, wilhin the statistical significance. In Fig. 5
we plot the sigma of the multipoles &, versus the multipole
ordet n, for different values of the sigma of the displacement
. Normal and skew components feature similar sigmas,

B. Scaling Law

Numerical data can be very weil interpolated by the
following three parameter formula;

logo, =a+butent. (17
or equivalently
o, =ABC”. (18)

The interpolating constants for the analysed cases are
shown in Table I. Indeed, multipoles obey the analytical
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Fig. 5. Standard deviation of the multipoles &, versus muitipole order n, for
different values of the randam displacements d. Numerical data: normal
(¢ireles) and skew (crosses) multipeles; interpolation through, (17) {solid
‘line). Case of conductor displacement.

estimate o, < A (R/r)", where In our case R=17 mm is the
reference radius where muliipoles are computed, and ry = 28
mm is the radius of the inner layer. In fact the series of
multipoles evaluated at R, is convergent only for R, < ry,
since the Biot-Savart law features the singularity I/r on the
¢oil, One can observe that & is close to the upper bound
provided by Biot-Savart law: log(17/28) = -0.216, that both

b and ¢ are independent of 4, and that the only dependence

ond liesin e :
a(d): ay+adog, d, (19}
with g5 =1.9 and a; =1.0 . This last value implies that the
effect of random displacements on mullipoles is linear in the
amplitude, i.c. doubling the amplitude of block
displacements, the multipoles are doubled. The obtained
analytical dependence on o can be rewritten in the form
o, (d)=dA,B"C" 20)
with A, B and C independent of ¢ We carried oyt the same
computation for a six blocks design: the parametric
dependence is the same, with small variations of the
constants. .

The same type of simulation is done using random

TABLE]

BSTIMATED COEFFICIENTS FOR I2EPENCENCE OF THIE SIGMA OF THE RANDOM ERRORS
O THE MULTIPOLE ORDER, SIMULATION WITH CONDUCTOR DHSFLACEMENTS,

____________ d a b <
100 034 -0.17 -0.0020
50 0.01 016 10,0024
25 -0.27 017 -0.0019
12.5 056 -0.17 -0.00%20
6.125 © 084 017 -0.0024

30625 -1.17 -0.17 -0.0019

TABLEIL
ESTIMATED CORFFICIENTS FOR DRPENDENCE OF TIHE SIGMA OF THE RANDOM ERRORS
On Tue MULTIFOLE ORDER, STMUTLATION WirH BLOCK DISPLACEMENTS.

d {(um) a b ¢
100 092 -0.21 -0.0041
50 0.60 -0.20 -(.0D40
25 0.28 -0,20 -0.0037
125 -0.05 -0,20 -0.0038
6.125 -0.34 -0.19 -0.0040
30625 -0.64 0,19 -0.0041

displacements of the 164 conductors that form the coils. The
position of the conductors is varied randomly, and the
multipoles are evaluated. The average multipoles are close to
zero also 'in this case, and the sigmas are very well
interpolated by the same equations with somewhat differont
constants {see Table I, One finds that ¢ is smaller (i.e. the
curve is closer to a ling), that » is smaller in absolute value
{i.e. the decaying of higher order multipoles is slower), and
that ¢ depends on d according to {19), with a5 = 1.3 and
ay=1.0. The interpolating constants for the analysed cases
are shown in Table IL,

IV, ESTIMATE OF RANDOM DISPLACEMENTS FROM FIELD
MEASUREMENTS.

The data relative to the field quality at room temperature
of several magnets (four LHC dipoles [3][4] and two LHC
quadrupoles [5]) have been analysed. Using the scaling laws
described in the previous sections, the variation of the
nwltipoles along the magnet axis has been interpreted as due
to uncerrelated ceil displacements, In all cases the variation
of the multipoles is compatible with random displacements
whose standard deviation d 38 between 12 and 25 [im,

V. SUPERCONDUCTOR MAGNETIZATION ERRORS

Bach pole of the LHC dipcle consists of two different
cables, one for the inner layer winding with 7um NbTi
filaments and one for the outer layer with 6um filaments,
According to [7] during series production, the magnetization
of a superconducting cable for LHC could vary between
limits of £5% for a single manufacturer. Fig. 6 shows the
calculated random field errors, at injection level (B, = 0.54T)
of the main dipole, if the standard deviaticn of the
magnetization is 2% in the winding blocks, and 3% of the
average magnetization of a cable. Nofe that it is this last
variation which gives the most important errors. The random
field error is proportional fo the magnetization change for
small variation as in the above case. Programs REM [8] and
ROXIE were used for these calculations.

A, Increase in random errors during magnetization decay.

It has been shown [9] that magnetization of the cable
inside the LHC dipole decays in time, typically 10% within
15 minutos. This decay is not the same in all parts of the
magnet and can lead to an increase in the random errors at
the end of the particle injection period in the machine,
According to the estimations given in [10], the additionai
ervors could be of the same order as given below in Fig. 6.
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Fig. 6. Standatd deviation in mullipole components by, and ay in the LHC
dipole at injection field, due (o variation of superconductor magnetization

VI. RAMP ERRORS.

We discuss here those errors which are due to currents
flowing through the finite resistance hetween the crossing
sirands [11], The (eld errors for a magnet with a given cable
is inversely proportional to the contact resistance R, and
proportional to the rate of change of the main ficld, Random
errors arise because (he contact resistance varies in the
magnetl windings, Principal causes are:

1. variation in the composition and thickness ol the surface
layer of the strand, which in the case of LHC is a thin
SnAg layer, )

2. varialion in (he heat treatment at the cable manufacturer;

3, variation in the coil curing temperature and lime,

It is nol easy to find a good estimation of the cxpeatcd

contact resistance, and even less for it's variation,

Smudies [12] have indicated that a contact resistance R, of

ECables

B Layers

M Total

Rel. field error (107" at R,=17mm

bl al b2 a2 b3 a3 b4 ad b3 a5 b a6 b7 a7

Fig. 7. Standard deviation in multipole components by and a, in the LHC
dipole at injection field, due to variation in the crossing strand contact
resistance of the superconducting cable, with constant ramprate of 6.6
mT/s,
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20u8) can be reliably reached. An attempt to estimate
standard deviations in prototype dipoles using the measured
field [6] found standard deviations as large as 30%. We have
used this value for both variation in an individual conductor
and for the variation of the average of a cable, For the
average contact resistance we took 15p€2 (o finally make the
estimation of Fig, 7. The calculation (see [14] for the
method) was performed using programs CCDI [I1] and
ROXIE.

VII. CONCLUSION

We have discussed an analyiical estimate of the random
errors due to imperfections of the coil geometry, and verified
it through a numerical simulation with a realistic model of the
LHC coil. We also showed why under nsual conditions the
normal and skew random multipoles are about equal. These
estimates can be used to derive the size of the coil
imperfection from the measured field.

The random ervors due to the magnetization of the
superconducting cable at LHC injection field are of the same
order of magnitude as the errors due to coil movements and
are expected to increase with time during the LHC particle
injection period.

Random etror in the LHC dipole clunng the LHC encrgy
ramp can be reduced by a factor of five [13] compared to
Fig, 7 by ramping slowly at the start of the ramp, without
excessively increasing the total ramp time.
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