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Abstract

The tricritical point of the random 2+ p-Satis�ability problem is analytically computed

using the replica approach and found to correspond to pt ' 0:41. The agreement of this

result with previous numerical simulations and rigorous results, as well as its relevance for

`typical' computational complexity issues are briey recalled.
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The satis�ability (SAT) problem [1] is the paradigm of hard (NP{complete) compu-

tational problems arising in complexity theory. A pedagogical introduction to the K-SAT

problem [1], a version of SAT, and to some of the current open issues in theoretical computer

science may be found in [2].

Briey speaking, one is given N Boolean variables and a set of M clauses to be satis�ed

simultaneously. A clause refers to a logical constraint on K Boolean variables, randomly

chosen among the N ones. For large instances (M;N ! 1), K-SAT exhibits a striking

threshold phenomenon as a function of the intensive ratio � = M=N . Numerical simulations

show that the probability of �nding an assignment of the Boolean variables satisfying all

clauses, falls abruptly from one down to zero when � crosses a critical value �c(K) of the

number of clauses per variable [3]. This scenario is rigorously established in the (Polynomial)

K = 2 case, where �c(2) = 1 [4]. For K � 3, much less is known; K(� 3)-SAT belongs to the

NP{complete class, roughly meaning that running times of search algorithms are thought

to scale exponentially in N when the problem instances are critically constrained. Recent

numerical works have provided an estimate for �c(3) ' 4:2� 4:3 [3].

A statistical mechanics approach has been attempted to get insights on the K-SAT

problem, by mapping the latter onto a disordered diluted spin-glass model [5{7]. Replica

Symmetric (RS) theory gives the correct value of the threshold for K = 2 but fails in

predicting the critical �c for K � 3 [6,7]. This stems from the nature of the transition

taking place at �c, which is continuous for K = 2 and appears discontinuous when K � 3.

In the latter case, the precise location of the critical point for the �rst order transition would

require an appropriate replica symmetry breaking scheme. For interacting models with �nite

connectivity, the latter issue is still an open problem under many aspects [8].

In the context of combinatorial optimization, the nature of the phase transition charac-

terizing the di�erent problems might be strictly connected with the appearance of computa-

tionally hard instances, and hence to the onset of exponential regimes in search algorithms

[10]. Recent numerical studies on the so-called 2 + p-SAT problem [9], that smoothly in-

terpolates between 2-SAT (p = 0) and 3-SAT (p = 1) [7], have strongly supported this

statement. It follows that the interest in the precise analytical localization of discontinuous

transitions in random SAT models goes much beyond the purely technical aspects of the

replica formalism.

In this note, we present the analytical calculation of the tricritical point pt of the 2 + p-

SAT model, separating second-order phase transitions (0 � p < pt) from �rst-order ones
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(pt < p � 1). The 2+p-SAT model is a mixed version of 2-SAT and 3-SAT including (1�p)M

(resp. pM) clauses constraining two (resp. three) Boolean variables [7]. This model has a

threshold behaviour as usual K{SAT instances [9,11] at a critical ratio M=N = �c(2 + p).

In addition, a given set of clause cannot be satis�ed if the number of 2{clauses (respectively

3{clauses) exceeds N (resp. �c(3)N). As a consequence, we obtain the following simple

upper bound

�c(2 + p) � min

 
1

1� p
;
�c(3)

p

!
(1)

Our calculation shows that

�c(2 + p) =
1

1 � p
; (0 � p < pt); (2)

i.e. that the upper bound is reached when p is smaller that the tricritical value

pt ' 0:41 : (3)

Most remarkably, since an earlier presentation of our result [9], a rigorous proof of the

equality (2) has been derived for p < 2=5 based on the analysis of the so-called unit clause

algorithm [11].

Following the analysis of ref. [7], the critical threshold �c(2 + p) can be identi�ed by

studying the ground{state properties of a cost-energy function which measures the fraction

of violated clauses in the original combinatorial problem. The free energy of our model can

be obtained by a linear combination of the free energies corresponding to the K = 2 and

K = 3 cases, with respective weights 1� p and p, see eq.(13) in ref. [7]. Within the iterative

scheme for the RS solution discussed in ref. [7], the order parameter is the distribution of

the e�ective cavity �elds [12]

P (h) =
1X

`=�1

r` �

 
h�

`

2q

!
: (4)

In the above equation, 1=q is the resolution of the �eld which eventually goes to zero. The

self-consistent equations for the coe�cients r`'s read

r` =
Z
2�

0

d�

2�
cos(`�) exp

0
@ qX

j=1

j(cos(j�)� 1)

1
A (5)

for all ` = 0; : : : ; q � 1 where

3



j=� = 2 (1 � p) rj + 3 p rj

0
@1 � r0 � 2

j�1X
`=1

r` � rj

1
A ; 8j = 1; : : : ; q � 1

q=� = (1� p)

0
@1 � r0 � 2

j�1X
`=1

r`

1
A+

3

4
p

0
@1 � r0 � 2

j�1X
`=1

r`

1
A
2

: (6)

To �nd the point where the discontinuous transition �rst takes place, we look, within the

RS scheme for the point pt at which the derivative of the order parameter at �c diverges.

For p < pt, the transition is of second order and we expect the RS solution to be valid.

Indeed, some recent rigorous results [11] have reproduced our RS solution for p 2 [0; 0:4],

whereas the validity of the RS solution in the interval [0:4; pt], still has to be proven (we

cannot exclude the existence of a Replica Symmetry Breaking (RSB) solution which could

shift the value of pt to some lower value). Above pt, the RS value for �c(2+p) is presumably

erroneous and RSB e�ects have to be taken into account. Therefore, at the tricritical pt

point, the weights of the functional order parameter in h 6= 0, though discontinuous, appear

with a vanishingly small value. We may expand the saddle point equations (5,6) to the

second order in parameters r` and s � 1� r0. We �nd

r` = �(1 � p)r` +
3

2
� p r`

 
s� 2

`�1X
k=1

rk � r`

!
� �2 (1 � p)2 r` s+

1

2
(1 � p)2�2

`�1X
j=1

rjr`�j + (7)

+ (1 � p)2�2
q�`�1X
j=1

rjr`+j +
1

2
(1� p)2�2rq�`(s� 2

`�1X
k=1

rk) ; (` = 1; :::; q� 1)

and, for ` = 0,

s = �(1 � p)s + 3�p

2
4q�1X
j=1

rj(s� 2
j�1X
`=1

r` � rj) +
1

4
(s� 2

q�1X
`=1

r`)
2

3
5� (8)

� �2(1� p)2

2
4q�1X
j=1

r2j + (
s

2
�

q�1X
`=1

r`)
2

3
5� 1

2
�2(1 � p)2s2 :

The analysis of the linear terms in eqs.(7,8) shows that the threshold is given by (2). Next,

we expand around the latter by posing � = 1

1�p
+ x, r` = B`x and s = Ax. At the critical

point pt, the above quantities fB`; Ag should diverge in order to have a �rst order jump

when x ! 0+. We then assume that B` = �`A, with �` = O(1) and A ! 1, discarding

irrelevant O(x2) corrections to the order parameters. We �nd q equations for pt and �`,

` = 1; : : : ; q � 1.

0 =
3

4

1� 2pt

1� pt
�

q�1X
j=1

�j +
q�1X
j=1

�2j +

0
@q�1X

j=1

�j

1
A
2

(9)
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and, for ` = 1; : : : ; q � 1,

0 =
3

2

pt

1 � pt
�`

0
@1� 2

`�1X
j=1

�j � �`

1
A+

1

2

`�1X
j=1

�j�`�j +

q�`�1X
j=1

�j�`+j + �q�`

0
@1

2
�

q�1X
j=1

�j

1
A� �` (10)

Equations (9,10) can easily be solved iteratively. We have computed pt(q) for q = 1; : : : ; 37.

The logarithmic plot of pt(q) � pt(q + 1) versus q is reported in Figure 1. Discarding the

small q results, we have found that the last twenty points were well �tted by

pt(q)� pt(q + 1) =
C

q�
(q = 17; : : : ; 36) ; (11)

with C = 0:03077 and � = 1:5427, see the line in Figure 1. Summing over the whole range

q = 17; :::;1, eq.(11) gives the asymptotic value of pt

pt = pt(17) � C
1X

q=17

1

q�
' 0:412 : (12)

The estimate (12) of pt does not strongly depend on the choice of the data to be �tted. We

have tried some other reasonable subsets of di�erent sizes and the �nal results always lie in

the range [0:410; 0:415].

From a physical point of view, the nature of the transition manifests itself through the

appearance of a �nite fraction of completely constrained variables when crossing the thresh-

old [7]. Above pt, this fraction discontinuously blows up at �c. The narrow correspondence

between this fact and the onset of computational complexity shown by simulations [9] sug-

gests that the underlying mechanisms causing the increase of the typical computational

search cost could be related to the fact that search algorithms have to �nd the precise values

of a O(N) number of Boolean variables through an extensive enumeration.

To end with, let us mention that the above results have been derived within an iterative

RS scheme allowing for more and more re�ned �eld resolutions. The appearance of non

integer �elds has recently been shown to reect the existence of RSB solutions [8]. Further

work will be necessary to elucidate this point completely.

Acknowledgments : We thank O. Dubois, S. Kirkpatrick, B. Selman for motivating

discussions.
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FIGURES

FIG. 1. Log{Log plot of pt(q) � pt(q + 1) versus q. The continuous line is the �t C

q�
, with

C = 0:03077 and � = 1:5427.
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