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ABSTRACT

Large projects based on applied superconductivity, such as particle accelerators,
tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of
which represents a significant, if not dominant fraction of the total capital and operational
expenditure. It is therefore important to establish guidelines and scaling laws for costing
such systems, based on synthetic estimators of their size and performance. Although such
data has already been published for many years, the experience recently gathered at CERN
with the LEP and LHC projects, which have de facto turned the laboratory into a major
world cryogenic center, can be exploited to update this information and broaden the range
of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K
refrigeration, cryogen distribution and storage systems, and indicate paths towards their
cost-to-performance optimisation.

LARGE-SCALE CRYOGENICS AT CERN

On the spur of increasing demands from forefront accelerator and detector projects for
high-energy physics, which all make intensive use of superconducting devices -
electromagnets and acceleration cavities - CERN has become over the last decade a major
center in helium cryogenics (Figure 1), with 19 refrigerators in operation all over the site,
out of which 9 with capacities ranging from 0.8 to 12 kW @ 4.5 K1.

LEP, the 26.7-km circumference electron-positron collider in operation since 1989,
features four underground experimental areas equipped with high-luminosity insertions
using superconducting quadrupoles, as well as large spectrometer solenoids, two of which
also are superconducting. All these devices are cooled at 4.5 K by dedicated helium
refrigerators and cryogenic systems2, now totalising ten years of current operation. Over the
nineties, the beam energy of LEP has gradually been increased by the addition of 288
superconducting acceleration cavities3, installed in four strings, each 500-m long and
cooled by a dedicated 12 kW @ 4.5 K cryogenic plant4, through some 2 km of gas-shielded
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cryogenic distribution lines5. This constitutes the largest distributed cryogenic system in the
world, and is being routinely operated as an integral part of the LEP2 collider6,7.

The trend towards larger, more powerful systems will continue in the coming years
with the procurement, installation and commissioning of the cryogenic system for the LHC
(Figure 2), a high-energy, high-luminosity proton and ion collider using twin-aperture,
high-field superconducting magnets operating in superfluid helium below 1.9 K8. Due to
start operation in 2005, the LHC will reuse the LEP tunnel and infrastructure, among which
the four large refrigerators, which have been upgraded in preparation for this purpose. It
will also require four new 18 kW @ 4.5 K refrigerators, presently under construction in
European industry9, as well as eight 2.4 kW @ 1.8 K refrigeration units, partially fed from
the 4.5 K cryogenic plants. The LHC cryogenic system will therefore add, to its sheer size
and installed power, the qualitative novelty of large-scale cryogenics at 1.8 K, which has
required the conduction of a dedicated development programme over the past years10. The
LHC will also be characterised by its huge cold mass and large helium inventory, both of
which strongly impact on the technical and economical choices of the cryogenic system.

The demanding projects briefly mentioned above have prompted us to devote
significant effort to the technical and economical optimisation of their cryogenic systems, at
the level of design, technical specification and industrial procurement of equipment, as well
as methods for reliable operation and preventive maintenance. Conversely, they have
provided us with detailed, up-to-date information on the economic aspects of large helium
cryogenic systems, which we try and report in the following, confronting it when relevant
with previously published material in the field.

ECONOMICS OF HELIUM REFRIGERATORS

Technical Scope

Since the now classical studies by Strobridge11,12, the capital cost of helium
refrigerators has been surveyed and tentatively correlated with a single performance
estimator, originally the installed compressor power, and more recently the refrigeration
capacity produced at 4.5 K13,14. This approach has the merit of extreme simplicity, but – as
a consequence - requires careful application for large, complex refrigerators such as those
of CERN, which for reason of site layout and underground implantation, often feature
several cold boxes with interconnecting lines, and in most cases, provide cooling duties –
isothermal and non-isothermal - at a variety of temperature levels15.
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Figure 1. Installed capacity at CERN                                Figure 2. LEP2 and LHC cryogenic systems
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In the following, we shall therefore only consider multi-kW @ 4.5 K cryogenic plants
of modern design, based on modified Claude cycles, using two stages of oil-injected screw
compressors with intercooling, an oil-removal system composed of three stages of
coalescing filters and an adsorber, coldboxes based on brazed aluminium plate-fin heat
exchangers and turbo-expanders with helium-gas bearings. In line with widespread practice
in Europe, the helium refrigeration cycles do not use liquid nitrogen precooling on a
permanent basis, and, in cases when the cryogenic plants considered do feature a large-
capacity liquid nitrogen precooler used for cooldown of the load, its specific cost has been
substracted from the quoted numbers. A peculiarity of the large LEP refrigerators is their
"split-coldbox" design. As a result, the "upper" and "lower" coldboxes are connected by
compound cryogenic lines spanning their vertical separation, and installed in the technical
shafts; the specific cost of these lines must also clearly be removed from significant cost
estimates for "normal" cryogenic plants. Instrumentation and actuators, fault diagnosis and
safety interlocks are included; however the process control hardware and software, which
were purchased separately for the sake of uniformity among refrigerators of different
origins, do not form part of the following estimates.

In order to approach overall exergetic efficiency, the LEP and LHC cryogenic systems
make use of several levels of temperature for heat interception, each of which requiring its
own cooling duty. For the sake of comparison, the multiple cooling duties produced by the
cryogenic plants have been converted, by isoexergetic equivalence, into isothermal
refrigeration capacity at 4.5 K. We are fully aware of the weakness of this modus operandi,
particularly when trading liquefaction and refrigeration loads (Figure 3), but nevertheless
find it an acceptable compromise, at least for cryogenic plants supplying the largest fraction
of their exergetic refrigeration capacity at 4.5 K.

Capital Cost of 4.5 K Refrigerators

The capital cost of the different CERN refrigerators was actualized to 1998 CHF
following16. Figure 4 also shows equation (1) given in14 that was indexed from 1997 USD
to 1998 USD17 and converted into 1998 CHF.

Cost[1998 MCHF] = 2.6 * (Capacity[kW@4.5K])0.7 (1)

Our best practical fit of the data is represented by equation (2)

Cost[1998 MCHF] = 2.2 * (Capacity[kW@4.5K])0.6 (2)

Figure 3.Figure 3. Measured liquefaction rate versus refrigeration capacity of 12 kW @ 4.5 K refrigerators 
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Efficiency, Operation and Maintenance

As the CERN particle accelerators and experiments operate round-the-clock on a
yearly basis – except for a 3- to 4-month long winter shut-down scheduled in the period of
peaking electricity demand – it is legitimate to take operating expenses into consideration,
in view of a global cost optimisation9. The key ingredients of such an optimisation are:

- the thermodynamic efficiency (C.O.P.) of the refrigerators,
- the annual number of hours of operation of the refrigerators, which has been taken at

6600 to account for the fact that cryogenics is usually required to start well in advance of
physics (for equipment tests), and to terminate later (for managing and storing the helium
inventory before shut-down),

- the number of years over which the integrated costs are calculated. For the purpose
of equipment design, the technical lifetime of the LHC has been set at 20 years. However,
in view of the fact that the operating costs over this period have not been actualised, the
operation lifetime for the purpose of economic optimisation has been taken at 10 years,

- the mix of operational modes – each with different cooling duties and corresponding
variable electrical power consumption – encountered in a typical year of operation,

- the marginal cost of electricity, based on the unit price – averaged over the annual
period of operation to smear out strong seasonal price variations – and including
externalities such as the marginal cost contributions of transport and conversion from
400 kV to 3.3 kV, as well as of rejection of the dissipated heat to the environment, globally
amounting to 60 CHF/MWh18,

- the cost of preventive maintenance, including spare parts and manpower. The cost of
spare parts is mostly related to compressor maintenance and can be estimated for LEP2 at
2.5% per year of the capital cost of the compressor system. The manpower expenditure is
equally distributed between the mechanical maintenance of the compressors (3% per year
of the compressor capital cost) and the maintenance of instrumentation (80 CHF per
channel per year),

- the cost of helium, which depends on the nature of the load. For a closed circuit such
as LEP2 with a global helium inventory of 14700 kg, the annual losses amount to about
3400 kg (excluding accidental events),

- the cost of manpower for operation, which strongly depends on the organisation of
the operating team and the level of automation7.

FigureFigure 4 4. Investment cost of 4.5 K refrigerators at CERN versus equivalent capacity
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As the operation costs are dominated by that of electricity, the integrated price
estimates used for the purpose of comparing offers and adjudicating contracts included only
capital and electricity costs9. An expected result of the large relative weight given to
electricity costs, was to drive the refrigerator designs to higher efficiency, now amounting
to about 220 W/W @ 4.5 K or 30% of the Carnot cycle (Figure 5). This was achieved not
so much by improvement of efficiency of single components, such as heat exchangers or
turbo-expanders, than by the arrangement of these components in carefully optimised
cycles19. A less expected consequence of this technical-economical incentive policy has
been to reduce the capital investment of the refrigerators. Contrary to the previously
established belief that more efficient refrigerators were more expensive to build – although
cheaper to operate - , this approach demonstrated that increasing the efficiency for the
same, specified refrigeration output, enables to reduce the process flow-rate, and hence to
down-size the heat exchangers, to gain on the size of the coldbox and compressors, and
even in some cases to make the economy of one compressor unit, all of which result in
overall savings in capital as well as in running costs.

1.8 K REFRIGERATION

Producing large capacity refrigeration at 1.8 K20 requires the use of cold compressors21

to compress helium up to a pressure at which warm compressors become feasible. Figure 6
shows a generic 1.8 K refrigeration scheme, which can be analysed in two parts. The first
part concerns the 1.8 K refrigeration unit containing the cold compressors, the warm
compressor station and a counter-flow heat exchanger. The second part is a standard 4.5 K
refrigerator, producing non-isothermal refrigeration between 4.5 K and a temperature Tr,
which directly depends on the cold compressor pressure ratio (CPR). Figure 7 shows the
corresponding equivalent exergetic load at 4.5 K, as a function of the CPR. The investment
and operation cost of this second part can be assessed as for other 4.5 K refrigerators.
Figure 8 shows the relative cost of 1.8 K refrigeration as a function of the CPR. The
investment and operation costs of the 1.8 K part decrease with increasing CPR. This
reduction is however compensated by the investment and operation costs of the 4.5 K part.
For CPR above 25, the total cost is about constant and other factors, such as compactness or
operational flexibility determine the technical choice. Figure 9 shows the investment costs
as a function of the 1.8 K refrigeration capacity. The total cost of 1.8 K refrigeration for the
LHC is lower than given by this model, due to the use of larger, more cost effective 4.5 K
cryogenic plants, which also provide other cooling duties.
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HELIUM STORAGE AND INVENTORY MANAGEMENT

For closed-circuit cryogenic systems which encounter relatively long shutdown
periods without possibility of re-liquefaction, and fast helium discharge (magnet quenches),
medium-pressure (MP) storage at 2 MPa and ambient temperature is commonly used.
Figure 10 shows the cost of MP storage as a function of unit geometrical volume for
carbon-steel storage vessels. The cost, driven by that of the material, was estimated for
cylindrical and spherical geometries, including transportation and site erection. For large
vessels, it matches the data in22. Due to the huge helium inventory of the LHC, the MP
storage capacity is deliberately limited to 50% of the total, in order to minimise investment.
Consequently, for cooldown and warmup of the machine, it is foreseen to shuffle helium
from the LHC to the market, in the framework of a “virtual storage” type contract.
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CRYOGENIC DISTRIBUTION LINES AND PIPEWORK

The cryogenic lines in the kilometre range used in CERN accelerators exhibit a variety
of types, sizes, design choices and site layouts. While seeking a general estimator of their
cost, we propose to use, as a basis, the cost of stainless steel piping (7.5 CHF/kg),
multiplied by specific “cost multipliers” such as shown in Table 1. The relative cost of
engineering is about constant for pipework at ambient temperature, whereas it strongly
depends on overall tonnage and siting considerations for cryogenic distribution lines. The
cost of singularities, such as valves or bayonet connections, should be added to the
estimate.

Table 1. Cost structure of cryogenic lines and pipework: material cost multipliers
Ambient pipework Cryogenic lines

Material cost 1.0 1.5
Engineering 6 – 8
Installation 1.2 2.5 – 3.0
Tests 0.5 – 0.8
Total 2.2 10.5 – 13.3

CONCLUSION

With the advent of industrial-size helium cryogenic systems, ancillary to large
research or industrial projects using applied superconductivity, a significant fraction of the
total expenditure resides in the cost of cryogenics alone. In view of CERN's long
experience in designing, procuring and operating several such large-capacity cryogenic
systems, we are now able to assess their main economic features, and estimate their cost
with engineering precision. As a result, the main procurement contracts for the cryogenics
of the LHC, which have been adjudicated to specialised industry on a competitive basis
over the last two years, generally fall within budget estimates, an important asset for the
construction and funding on schedule of the project.
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