
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SL-99-072 AP
CLIC Note 421

Thermal and acoustic effects in CLIC
beam absorbers

J.B. Jeanneret and E. Wildner

Abstract

We study thermal and acoustic effects in the beam absorbers of
CLIC. While solid dumps and water at ordinary temperature must
be ruled out, we propose to make a dump of water working at 4 ◦C,
where the thermal elongation vanishes. This solution might solve
the problem of excessive acoustic emission in the dumps which would
otherwise prevent the collision of the beams.
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1 Introduction

This study was triggered by Olivier Napoly [1] who pointed out the potential
difficulties to control at nanometric scale a beam line whose magnetic elements
could experience vibrations generated by the dumps. In this note we consider heat
deposition issues before looking further at the associated acoustic waves. Some
numbers are quite impressive with CLIC beams and severe limitations appear
as for the choice of dump materials. We first consider solid dumps, thermally
(Sections 2.3 and 3) and acoustically (Section 4) and show that both melting and
stress limits are largely exceeded. We estimate the tolerance of the CLIC beams
to vibrations of the quadrupoles in the chromatic correction section (CCS) and
in the final doublet (FD) and compare them to the acoustic power emitted by
the dumps. We show that, expressed in terms of power, the emission of acoustic
waves exceeds the tolerances by several orders of magnitude (Section 4.3). While
a dump made of water at ordinary temperature is acceptable thermally, it is
not as good as solid dumps acoustically (Section 5). We thus propose to make
a dump of water working near the temperature T◦ = 4 ◦C, where the thermal
expansion becomes negligible. This promising solution offers an attenuation by
several orders of magnitude of the emitted acoustic power when compared to
either solid materials or water at ordinary temperature (Section 6).

2 Basic parameters

2.1 Dump materials

As a first approach to the problem, we considered a dump made of a single block
of material which contains all of the energy of the impacting electrons. This
simplification will be commented later. As for the choice of materials, we simply
considered a low-Z, a medium-Z and a large-Z material. Graphite has very inter-
esting mechanical and thermal properties, copper has a good heat conductivity
and tungsten is the best high-Z material mechanically and thermally. This choice
is by far not exhaustive but is adequate to draw a few clear conclusions. Some
basic data are presented in Table 1 for a few materials. No attempt was made
to consider detailed dependence with density or temperature. We just verified
the absence of drastic variations which would falsify our simple calculations. Our
main sources of information were references [2] and [3]. We got some informations
about graphite thanks to Murray Ross [5].

2.2 Electromagnetic shower

The absorption of electrons, positrons and photons (all called particles below) in a
massive object can be described to an adequate precision with a single parameter
called the radiation length named here LR which depends almost only on the
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Table 1: Thermal and mechanical parameters for graphite (C), copper (Cu) and tung-
sten (W), together with notional electomagnetic shower parameters. For all these data,
variations of the order of ±20% must be expected, depending on fabrication processes,
density and other parameters. The average specific heat cv is an estimate between
room temperature To and melting point Tm . The quantity ∆Qm = cv∆Tm is the
melting heat with ∆Tm = Tm − To. The thermal expansion is defined at room tem-
perature. Its variation with T is not significant (compare room temperature values to
αC(2000◦) = 5×10−6, αW (2000◦) = 5.5 10−6). The critical internal stress is estimated
for a lifetime of 106 cycles and is a notional average over many materials. For a specific
material, variations of the order ±60% must be expected. As for electromagnetic show-
ers, we made quite crude estimates, restricting the volume of the shower to its dense
central core, considering a length of ten radiation lengths and a diameter of two radi-
ation lengths. We used the surface and the volume of the corresponding parallelipiped
as an effective surface and volume of the shower. We considered as well the density of
energy deposition to be constant in this volume, as explained in the text.

Parameter Unit C Cu W
Density ρ [g cm−3] 2 8.96 19.3
Specific heat cv [J cm−3(◦)−1] 1.6 3.4 3.5
Melting temperature Tm [◦] 3500 1100 3400
Melting heat ∆Qm [Jcm−3] 5.6 × 103 3.7 × 103 1.2 × 104

Heat conductivity wq [J cm−1(◦)−1s−1] 0.24 3.9 2.0
Thermal elongation α [(◦)−1] 3 × 10−6 2 × 10−5 4 × 10−6

Elastic modulus Y [Pa] 5.4 × 109 1.25 × 1011 3.9 × 1011

Critical Internal stress σc [Pa] 4 × 108 4 × 108 4 × 108

Radiation length LR [cm] 19 1.4 0.35
E-M Shower :
effective length Lsh = 10LR [cm] 190 14 3.5
effective diametre 2LR [cm] 38 2.8 0.7
effective surface Ssh = 80L2

R [cm2] 2.9 × 104 160 9.8
effective volume Vsh = 40L3

R [cm3] 2.7 × 105 110 1.7
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atomic number Z and on the density of the material ρ. The radiation length is
the electromagnetic mean free path for ultrarelativistic particles. The final state
after one interaction is often made of two particles, which interact again after LR

in average. The process is continued and multiplies the number of particles until
their energy is too small to allow further interactions . This statistical process,
called “electromagnetic shower”, increases the energy deposition for increasing
depth z of traversed material . The process reaches a broad maximum between
around z ≈ 10 LR and dies slowly after z ∼ 20LR [3]. The energy deposition in
the medium occurs by the ionisation induced by the charged particles. Its local
density is proportional to the local density of tracks. In the transverse x−y plane
and near its longitudinal maximum, the shower has an approximately gaussian
transverse profile with an r.m.s of ≈ LR. The effective volume of the shower
which is related to the central density of the shower is therefore proportional
to L3

R, introducing strong variations of the thermal behaviour between different
materials (see Table 1).

2.3 Energy and power of collision products

Using the present set of beam parameters of the CLIC beams1 (Nb = 4 109

particles per bunch separated by τb = 0.67 ns, 150 bunches per train, f = 75
trains per second, and finally a beam energy of 1.5 TeV) the energy per beam
train and the average steady power per beam to be dumped are those given in
Table 2. Following D. Schulte [4], we split the total energy and power somewhat
arbitrarily in three categories, depending on what happens to colliding particles
at the crossing point. The categories are

Beam out This contains the particles which do not ’visibly’ interact.

Beamstrahlung The beamstrahlung photons at the collision point.

e+e− pairs The e+e− pairs produced coherently at the collision point.

This is a very approximative approach. The electrons in the final state after
beamstrahlung do not appear explicitly. Neither the location of the dumps nor
the size of the spot of impact at the entrance of the dumps are known at present.
It might be for example that the first two categories pile up. It is also not known
at present how we can expect to play with these collision products to spray them
on large dump areas. The particles of each category are considered as forming
pencil beams, each category being dumped on a separate device.

1During the course of this study, the CLIC parameters were slightly modified, but not so
much as to modify substantially enough our results and even less our conclusions. We therefore
did not update our numerical calculations.
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Table 2: Energy of an beam train (upper part) and steady beam power (lower part.
The first column contains the total energy or power of one beam. These quantities are
split in three kinds of collision products in the trailing columns, see text.

Etrain Ebeam,out Ebeamstrahlung Ee+e−

[kJ] [kJ] [kJ] [kJ]

143.3 85 53 5.3

Ptrain Pbeam,out Pbeamstrahlung Pe+e−

[MW] [MW] [MW] [MW]

10.8 6.4 4 0.4
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Figure 1: The time dependence of temperature in the dump illustrated. Units are
arbitrary. The small steps correspond to the bunch train structure. The slow rise
happens at start-up and is followed by a steady state.
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3 Temperature rise of dump elements

Temperature rise must be considered in two different ways, illustrated in Figure 1.
The deposition of heat of a bunch train, which lasts 100 ns, is adiabatic (see
Section 4.1 about that condition). The temperature is thus increasing by a fast
step given by the density of energy deposition ε in the core of the shower divided
by the specific heat cv , or

∆Ttrain = ε/cv =
E

cvVshower
(1)

where E is the energy per train of one of the kinds of collision products, see
Table 2. The quantity ∆Ttrain is given in Table 3 together with a melting number
mtrain = ε/∆Qmelting, this last quantity being an indication of which material is
usable as a dump.

The average equilibrium temperature at the core of the shower is obtained by
solving the heat equation for a position-dependent power deposition in a much
simplified way. We consider a linear transverse decay of the temperature (illus-
trated in Figure 2), related to our simplified constant power map inside the core
of the shower. The length of the shower along the Z axis is ∼ 5 times larger
than its transverse width, we therefore neglect the longitudinal flow of heat. For
a given Tsteady = Tmax at the crest of the shower (see Figure 2), the integrated
flow of power is

Pout = wq
∂T

∂x
Ssh = wq

Tmax

LR
Ssh. (2)

Definition and constants are given in Table 1. The maximum temperature Tmax =
Tmelting is obtained by the substitution Pout = Pin in (2) , with Pin taken from
Table 2. We define a steady melting number with msteady = Tmax/∆Tm, with the
melting temperature ∆Tm taken in Table 2. The results are given in Table 4.

Immediate conclusions can be drawn by contemplating Table 4. No solid
material can be envisaged for the ’Beam out’ and the ’Beamstrahlung’ dumps.
As for dumping e+e− pairs, graphite and copper might be envisaged if routine
operation of a device near 1000◦ is doable. The inspection of Table 3 indicates
that the impact of even a single train excludes the use of tungsten.

The heat might potentially be evacuated out of the dumps with water (or
another liquid). But the segmentation of the flow of water shall be of the order
of ∼ 0.1LR, in order to satisfy the condition msteady < 1. The robustness of
such a dump is very questionable, and we believe that this option shall not be
considered a priori. We prefer to evaluate first a dump made of liquid. This is
discussed in Section 5 and 6.
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Table 3: Temperature rise per train ∆Ttrain of the different dumps (upper part) and
the corresponding melting number mtrain (lower part) for different materials. See text
for the calculations.

Material Beam out Beamstrahlung e+e−

∆Ttrain

C 0.20◦ 0.12◦ 0.01◦

Cu 230◦ 140◦ 14◦

W 14000◦ 9000◦ 900◦

mtrain

C 6 10−5 4 10−5 4 10−6

Cu 0.2 0.13 0.01
W 4.2 2.6 0.26

Table 4: Melting number msteady of the different dumps for different materials. See
text for the calculations.

Material Beam out Beamstrahlung e+e−

msteady

C 5.0 3.1 0.31 (1200◦)
Cu 13 8 0.8 (900◦)
W 33 21 2
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Figure 2: Simplified transverse temperature distribution, used to estimate the the
peak steady temperature of the dump block.

Figure 3: Oscillation induced by adiabatic temperature rise.

4 Acoustic waves

Vibrations, or acoustic waves are produced in matter when heat deposition is
sudden enough to prevent heat to propagate substantially in the volume heated
and also to prevent elongation with temperature to occur during the time of heat
release. The time scale related to adiabatic release of heat will be discussed in
Section 4.1. Let us first consider a simple 1D-model (Figure 3). A thin bar of
matter of length L0 is heated in an infinitely short time from temperature T0 to
T . By inertia and with the coefficient of elongation α, the bar cannot expand
smoothly to its new rest length L = L0 + ∆L = L0[1 + α(T − T0)] as it would
do with slow enough heating. It is therefore still at its initial rest length L0

while the temperature already increased. The bar is therefore “compressed” by a
factor ∆L/L, with an internal unit stress σ given by Hooke’s law ∆L/L = σ/Y ,
with Y being the Young modulus. But the bar is also free to move. The Hooke
law is linear, therefore the bar will oscillate harmonically in the range of length
[L−∆L, L + ∆L]. In this simple case, the amplitude of the acoustic wave at the
end of the bar is ∆L/2.

In a more general case, considering longitudinal pressure plane waves, we
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obtain a wave equation by considering a thin slice of the former bar of unit
transverse surface. With the left and the right side x and x + dx of the slice
moved respectively by ξ(x) and ξ(x + dx) = ξ(x) + ∂ξ

∂x
dx, the Hooke law and the

law of inertia of Newton write respectively

∂ξ

∂x
=

σ

Y
and ρ

∂2ξ

∂t2
=

∂σ

∂x
(3)

with ρ the density of the material. Combining the two equations after taking the
derivative of Hooke’s law, the wave equation writes

∂2ξ

∂x2
=

Y

ρ

∂2ξ

∂t2
. (4)

The speed of sound is vsound =
√

Y/ρ with Y and ρ taken from Table 2. Numer-
ically, considering a block of graphite and using Table 2, we get vsound = 1600
m/s. In a block long by L = 2 m, the fundamental mode has the wave length
λ0 = 2L = 4 m, with the extremities of the block free to oscillate and a central
node. The fundamental frequency is therefore ν0 = vsound/λ0 = 400 Hz.

4.1 Adiabaticity conditions

With the number derived in the former section, the transient time of propagation
of the waves through the dump is δt = L/vsound ≈ 10−3 s. With a duration of
the bunch train δttrain = 10−7 s, the adiabaticity condition is obviously met.

4.2 Acoustic amplitudes in the shower - the case of e+e− pairs

Using the simple formulae of Section 4, a notional value of acoustic amplitude per
train is obtained with δl = α∆TtrainLsh and in the steady case ∆l = fα∆TtrainLsh

with f = 75 the number of trains per second. Some numbers are given in Table
5. The numbers for copper and tungsten are given just for reference. An ap-
proximate stress number is computed with nstress = (Y/σc) · (∆l/Lsh). Numerical
results are given in Table 5. It was shown in Section 3 that such dumps would
melt anyway. Here we just show that they might break before melting. On the
other hand, the graphite dump would survive to acoustic waves in the e+e− case.

4.3 Acoustic emission in dumps and absorption in magnets

To evaluate the risk to excite the beams to a dangerous level with acoustic waves
emitted by the dumps, a simple approach is to compare the power We which is
emitted by the dumps to the power Wa needed to bring a quadrupole into oscilla-
tion at a critical amplitude beyond which the operation of CLIC is compromised.

A rough estimation of the acoustic power emitted by a dump is obtained
by considering isotropic compression only and, as before, also by neglecting
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Table 5: Acoustic amplitudes per train (δl) and steady ones (∆l) in the e+e− dump.
The steady amplitudes are computed as a coherent addition of the train waves and
with a quite arbitrary damping time τdamping = 1 s and shall be understood in practice
as the integral of a spectral density, see text. The amplitudes δl and ∆l are computed
over the effective shower length Lsh = 10LR, see Table 2. A stress number nstress > 1
indicates that the material shall not resist the thermal shock.

Material δl [nm] ∆l [mm] nstress νexc [Hz]

C 70 5 10−3 4 10−5 400
Cu 4 104 3 7 2 104

W 1.2 105 9 260 2 105

shear waves (most likely a good approximation, the thermal elongation being
an isotropic process in ordinary materials). The energy emitted by a train can
be computed as

Ee =
3

2
Y Vsh

(
δl

l

)2

=
3

2
Y Vshα

2(∆Ttrain)
2 (5)

which gives for the steady state

We = fEe =
3

2
fY Vshα

2(∆Ttrain)
2 . (6)

The results, given in Table 6, must be compared to the power needed to excite
an oscillation in a magnet. In the absence of a precise design of the magnets of
CLIC, we considered a simple object weighting m = 1000 kg supported by a steel
plate of section S = 2 10−3 m2 and height h = 0.5 m. This assembly is a harmonic
oscillator, at least in the vertical plane (coordinate y with y = 0 the rest position
of the assembly). The support plays the role of the spring with a linear recoil
force Frecoil = Sσ with σ = Y δh/h the stress in the support and Y the Young
modulus. With δh = y the elongation of the support and y the corresponding
vertical displacement of the quadrupole we write Frecoil = Y Sy/h = ky and thus
k = Y S/h. With yet undefined friction coefficient r and external force Fext, the
equation of the motion is

ÿ +
r

m
ẏ +

k

m
y = ÿ + γẏ + cy =

Fext

m
. (7)

The proper frequency is ωo =
√

c = 895 rad/s or νo = ωo/2π = 142 Hz, with
E = 2 × 1011 Pa for steel. In the absence of good data for r, we considered,
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maybe optimistically, that the oscillator is at the critical damping, i.e. γ = 2ωo,
such that the power needed to excite the oscillator to an amplitude δy is

Wa =
1

2
γmω2

oA
2 = mω3

o(δy)2 . (8)

The tolerable amplitude of a transverse displacement of the beam shall be
close to Ac = σβ/10 to avoid significant loss of luminosity.

The sensitivity of the colliding beams to the displacement of magnetic ele-
ments of the beam has been treated exhaustively by S. Farthouk [8, 9]. A vertical
displacement δy of a quadrupole at the local maximum of beta βccs = 6 × 105 m
in the chromatic correction section (CCS) induces a displacement at the IP given
by

δy∗ =
√

βccsβ∗ sin(µ∗ − µ)KLδy = 0.13 δyccs (9)

where µ∗−µ = nπ+π/2, KL = 0.0167 m−2 and β∗ = 10−4 m [1, 7]. The tolerance
of the oscillation of the CCS quadrupoles is therefore δyccs = (0.1/0.13)σ∗

y =
0.5nm with σ∗

y = 0.6 nm [1].
In the final doublet, with a phase advance of 90◦ between the quadrupoles and

the crossing point, a transverse displacement of δyfd of a quadrupole displaces the
beam by the same quantity δyfd at the crossing point. The critical amplitude of
excitation in the doublet section is therefore fixed by the vertical beam size at
the crossing point δyfd = 0.1 σ∗

y = 0.06 nm .
The critical power of excitation Wccs and WFD in Table 6 are obtained with

the respective replacement δy = δyccs = 0.5 nm and δy = δyFD = 0.06 nm in
Formula (8).

4.4 Discussion about acoustic waves

While keeping in view several crude approximations made in order to build the
content of Table 6, it nevertheless appears that the beam dump of one beam,
which cannot be much distant from the other beam line, has a strong poten-
tial of nuisance. For the doublet, the ratio Wa/We amounts to about 105 and
107 when considering the e+e− and beam dumps respectively. Even if the self-
damping of the graphite (or of another material) is much stronger than our choice
τdamping = 1s and even if the concrete of the tunnels and of the experimental
areas is a poor “wave guide”, it remains that many orders of magnitude in excess
of tolerable acoustic excitation requires careful further studies.

5 A dump made of warm water

With solids likely being unable to do good dumps, liquids must be considered
with water being an obvious candidate, at least a priori. Some useful parameters
for water are given in Table 5.
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Table 6: Steady acoustic power We emitted in graphite dumps compared to the power
Wccs and Wfd needed to excite respectively an oscillation of dangerous amplitude in a
quadrupole of the section of chromatic correction and in the quadrupoles of the final
doublet (see text).

Dump ∆Ttrain [◦] We [Watt]

Beam out 0.15 5.7 × 10−2

Beamstrahlung 0.10 2.2 × 10−2

e+e− pairs 0.01 2.2 × 10−4

Beam element Acrit [nm] Wa [Watt]

Wccs 0.5 1.7 × 10−7

Wfd 0.06 2.5 × 10−9

5.1 Steady heat flow in water

Contrary to solids, heat conductivity plays little role in liquids at macroscopic
scale. The cooling of the dump shall therefore be made by direct water flow.
In the main dump and fixing a maximum temperature rise of the water of
∆T = 50◦, the flow shall be φ = Pbeam,out/(cv∆T ) = 32 l/s. This flow is
small compared to the volume of the dump which must be larger than the vol-
ume of the shower Vshower = 1900 l. It allows laminar flow thus avoiding the
potential acoustic problems associated to turbulent flow.

5.2 Acoustic waves in water

The production of acoustic waves with heat is similar in liquids and solids. Liquids
do not carry transverse waves, but we did not consider them in solids. Therefore
we compute the emitted acoustic power with (6). Replacing the elastic modulus
by the inverse of the compressibility κ we get

We =
3

2

fVshower

κ

(
δl

l

)2

=
3

2

fVshower

κ
α2

lin(∆Ttrain)
2 . (10)

For the main dump and using the parameters of Table 7 we get We,water = 1.0 W,
i.e. twenty times more acoustic power than in the case of graphite (see Table 7).
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Table 7: Thermal and mechanical parameters of water, compared to those of graphite
(C).

Parameter Symbol Unit H2O C
Density ρ [g cm−3] 1 2
Specific heat cv [J cm−3(◦)−1] 4.18 1.6
Thermal elongation α [(◦)−1] - 3 × 10−6

Thermal elongation αlin = αV /3 [(◦)−1] 130 × 10−6 -
Elastic modulus E [Pa] - 5.4 × 109

Inversed Compressibility κ−1 [Pa] 2.3 × 109 -

Radiation length LR [cm] 36 19
E-M Shower :
effective length 10LR [cm] 360 190
effective diametre 2LR [cm] 72 38
effective surface 80L2

R [cm2] 1.04 × 105 2.9 × 104

effective volume 40L3
R [cm3] 1.9 × 106 2.7 × 105

Temperature step ∆Ttrain [◦] 0.01 0.15

We can conclude that while the heat transfer in the main dump can quite
easily be made with a moderate flow of water, the emission of acoustic waves is
too large in a range of temperature around T = 50 ◦C.

6 A dump made of water at To = 4 ◦C

Water is a liquid which has the maybe unique property of a density function with
temperature ρ(T ) which reaches a maximum near To = 4 ◦C. This property can
also be expressed by saying that the thermal expansion is zero at To by using
the relation dρ/ρ = −dV/V = −αV (T ). We therefore explore the possibility of
using this unique feature to suppress the production of acoustic waves. Our basic
argument is that in the absence of thermal expansivity, no compression occurs
after an adiabatic deposition of heat, thus preventing the relaxation which is at
the origin of the acoustic waves. A second argument which will be quantified
below is related to the small step of temperature ∆Ttrain which occurs at the
time of impact of a bunch train on the dump. This value shall of course be small
enough to avoid a significant change of the value of the thermal expansivity.

We now evaluate which temperature range must be considered to get an ade-
quate suppression factor. With thermal expansivity data from [2], we fit to good
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precision a linear temperature dependence of the volumetric thermal expansivity
around To as

αv(T ) = αo,v · (T − To) (11)

with αo,v = 16.05 × 10−6. To simplify the comparison with solid materials, we
define a linear thermal expansivity α(T ) = αv(T )/3 or

α(T ) = αo(T − To) = 5.35 × 10−6(T − To) . (12)

With (12), the elongation between the temperatures T1 and T2 is

∆l

l1
=
∫ T2

T1

α(T )dT = αo

∫ T2

T1

(T − To)dt =
αo

2

[
T 2

2 − T 2
1 − 2To(T2 − T1)

]
(13)

with l1 the linear size of the heated sample at T1. The function (13) is shown in
Figure 4 for T1 = To and T2 = T together with published dV/V data.

To evaluate the emitted acoustic power, we substitute T1 = T and T2 =
T + ∆Ttrain in (13) with ∆Ttrain taken from Table 7 and get

∆l

l
= αo

[
(T − To)∆Ttrain +

1

2
∆T 2

train

]
. (14)

We finally compute the acoustic power with Formula (10) in which dl/l is replaced
by its expression in Formula (14) with the result

We =
3fVshowerα

2
o

2κ

[
(T − To)∆Ttrain +

1

2
∆T 2

train

]2
. (15)

The numerical results are given in Table 8. In a crude approach of these numbers,
if

|T − To| < 0.2◦ then We < 5 10−5 Watt . (16)

This limit is still a factor hundred above the tolerable power in the CCS. But
we shall remember that we considered a quite arbitrary damping time τdamping

of the dump assembly. By proper acoustic insulation in the dump, a better
damping is likely to be achievable. As well, the power We is the integral of a
spectrum dWe/dω which spreads approximately a low and a high frequenecy fixed
respectively by the length and the width of the shower, i.e. λmax ≈ 20LR = 7.2
m and λmin ≈ 4LR = 1.4 m. Using ν = vs/λ with the speed of sound in water
vs = 1/(ρκ)1/2 = 1500 m/s, we get

νmin ≈ 200 Hz νmax ≈ 1000 Hz (17)

The quadrupoles with a proper acoustic frequency estimated in Section 4.3 to
be near ν ≈ 140 Hz will not absorb all of the emitted spectrum. We therefore
conclude that if the temperature can be confined precisely enough around To =
4 ◦C in its active part a dump of water would solve the problem of the emission of
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acoustic vibrations. As for the even lower tolerance in the FD area, we will see in
Section 7 that the dump shall be located quite far from there. This might solve
or at least help to solve the problem, but this point requires further attention.

We finally rapidly evaluate the conditions needed to satisfy (16). We assume
a flow a water moving in the transverse plane of the shower (see Figure 5).
The temperature at the centre of the shower shall stay inside a range [To −
δ1T ,To + δ1T ]. We express the gradient of temperature integrated across the
transverse size of the shower with 2δ2T . Combining these two conditions in order
to satisfy approximately the condition (16), the allowed temperature excursion
at the effective edge of the shower shall be

δ1T + δ2T < 0.3◦ . (18)

With a guess value δ1T = 0.1◦ it follows δ2T = 0.2◦. The flux of water shall be

φ =
Pbeam,out

4.18 103 × 2δ2T
= 3.8 103 l/s = 3.8 m3/s . (19)

With effective shower width heff = 2LR = 0.72 m and depth deff = 10LR = 3.6
m, the speed of the water is vwater = φ/(heffdeff) ≈ 1.5 m/s. With such section
and flow, the regime shall not be turbulent.

The volume of the installation, the installed power and its regulation certainly
require more careful studies.

7 Dump location

The crossing angle of the CLIC beams shall be of the order of αc = 10 mrad [1].
The distance between the beams thus grows linearly with the distance to the IP in
the absence of strong bending dipoles, which would induce excessive synchrotron
radiation levels (while beamstrahlung photons cannot be bent anyway). With a
half size of the dump ∆x > 2 m, the dump shall therefore be distant by at least
∆s > ∆x/αc = 100 m. The entrance window of the main dump must sustain the
passage of ṅe = 4.15 × 1013 electrons/s. In a sheet of stainless steel of thickness
t = 1 mm, the power deposition would be

P = ṅe
dE

dx
t = 7.6 Watt (20)

with dE/dx = 11.6MeV/cm = 1.85 10−12 J/cm. A power P = 7.6 Watt is a small
number, provided that the beam spot size S in the window is not too small. If
S1/2 = 0.5 cm, the dump must be located at least at ∆s > S1/2/σ∗

v = 1000
m with σ∗

v = 5 10−6 rad the beam divergence at the IP and in the absence of
quadrupole in the dump line. For a proton dump, C. Hauviller gave a limit of
1013 protons mm−2 and proposed a titanium window [10]. With an FD section
ending at 20 meters from the IP and a main dump located at > 500 meters,

15



0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

0 1 2 3 4 5 6 7 8 9

Temperature [ oC]

dL
/L

o

Figure 4: thermal expansion of water around To = 4 ◦C. The quantity displayed as a
function of the temperature is the quantity (1/3)(∆V/Vo) = (αo/2)(T − To)2, see text.
The data points are the published values [2] for ∆V/Vo divided by 3.
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Figure 5: Schematic transverse view of the electron shower in the water flow, see text
for notation.
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Table 8: Steady acoustic power We emitted in water at T = 4 ◦C, compared to
water near T = 50 ◦C, to graphite and to the power Wccs and Wfd needed to excite
respectively an oscillation of dangerous amplitude in a quadrupole of the section of
chromatic correction and in the quadrupoles of the final doublet (see text).

Case T − To [◦] We [Watt]
Graphite - - 5.7 × 10−2

Water near To = 50 ◦ - 1.0
Water near To = 4 ◦ 0.0 3.5 × 10−08

0.1 1.6 × 10−05

0.2 5.9 × 10−05

0.3 1.3 × 10−04

0.4 2.3 × 10−04

0.5 3.6 × 10−04

0.6 5.2 × 10−04

0.7 7.0 × 10−04

0.8 9.1 × 10−03

0.9 1.2 × 10−03

1.0 1.4 × 10−03

Beam element Acrit [nm] Wa [Watt]
CCS 0.5 1.7 × 10−7

FD 0.06 2.5 × 10−9
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it can be hoped that distance would help to attenuate the acoustic waves down
to the tolerance of the FD quadrupoles, but this point need further work. It
shall also be verified with more detailed simulations that the power density in
the early part of the shower where it is still narrow is not excessive, thermically
and acoustically.
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