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Abstract: We review the anomaly inflow mechanism on D-branes and O-planes. In particular, we

compute the one-loop world-volume anomalies and derive the RR anomalous couplings required for

their cancellation.

1. Anomalies and inflow

It is known that a consistent quantum field the-

ory can happen to admit as vacuum a topological

defect carrying chiral zero modes. The anomaly

arising on the world-volume must then be can-

celed by an inflow from the bulk [1]. This is

the case of consistent superstring vacua with D-

branes and O-planes, where no overall anomaly

can arise but zero modes occur. In general, there

can be a net world-volume quantum anomaly,

but by consistency, this must be canceled by an

equal and opposite classical inflow of anomaly.

The W-Z consistency condition implies that

any anomalyA is the descent of some polynomial
I(F,R) of the curvatures F and R of the gauge

and the tangent bundles. Defining I = dI(0) and

δI(0) = dI(1): A = 2πi ∫ I(1). I(F,R) depends
on characteristic classes, like (λa are the skew-

eigenvalues of R)

Â(R) =

D/2∏
a=1

λa/4π

sinhλa/4π
,

L̂(R) =

D/2∏
a=1

λa/2π

tanhλa/2π
,
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e(R) =

D/2∏
a=1

λa/2π ,

ch(F ) = tr exp iF/2π .

Beside quantum anomalies, arising from the

fluctuations of chiral fermions or self-dual tensor

fields, also classical anomalies can occur, for in-

stance in magnetic interactions. Consider indeed

some defects Mi in spacetime X , with the RR

couplings:

S = −
∑

i
µi

∫
Mi

C ∧ Yi ,

where C =
∑
pC(p) and Y = Y (F,R). This can

be written as an integral over X by using the

currents τMi , which are globally determined by

N(Mi) and locally given by τMi ∼ δ(xdi) dxdi ∧
... ∧ δ(xD) dxD [3]. The RR equation of motion
and Bianchi identity become then (the bar rep-

resents complex conjugation)

d∗H =
∑

i
µi τMi ∧ Yi ,

dH = −
∑

i
µi τMi ∧ Ȳi .

The modified Bianchi identity implies that H =

dC −∑i µi τMi ∧ Ȳ (0)
i , and since this must be

gauge invariant, C has to transform as δC =
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∑
i µi τMi∧Ȳ (1)

i . Consequently, the RR couplings

give the anomaly

A = − i
∑

i,j
µi µj

∫
X

τMi ∧ τMj ∧
(
Yi ∧ Ȳj

)(1)
.

Using the property τMi ∧τMj = τMij ∧e[N(Mij)]
[3], we see that the magnetic interaction between

Mi andMj is anomalous on the intersectionMij .

The classical anomaly inflow on each intersection

is Aij = 2πi
∫
Mij

I(1)ij , with

Iij = −µi µj
2π

Yi ∧ Ȳj ∧ e[N(Mij)] . (1.1)

This has to cancel the corresponding quantum

anomaly [2, 3] (even if, strictly speaking, sub-

tleties could arise for self-dual objects [3]).

2. Anomalies on D-branes and

O-planes

Consider two parallel Dp-branes (B) and/or Op-

planes (B) onM . The anomalous fields living on

their world-volumes can be read from the corre-

sponding potentially divergent one-loop ampli-

tudes: the annulus, the Möbius strip and the

Klein bottle for the BB, BO and OO configu-

rations. In the first two cases, one finds chi-

ral R spinors, and in the last case self-dual RR

forms. These fields are dimensionally reduced

from D = 10 to D = p + 1, and will there-

fore split into two sets with opposite chirality or

self-duality. Anomalies can then arise only when

N(M) is non-trivial.

These anomalies are as usual topological in-

dices, which can be computed using index theo-

rems or via a path-integral representation as in

[4]. In this second approach, the topological na-

ture of the results is related to supersymmetry,

and the tangent, normal and gauge bundle cur-

vatures are realized in terms of fermionic zero

modes as (M,N, ... ∈ X ; µ, ν, ... ∈ M ; i, j, ... ∈
N)

Rµν =
1

2
Rµνρσ(x0)ψ

ρ
0ψ
σ
0 ,

R′ij =
1

2
Rijρσ(x0)ψ

ρ
0ψ
σ
0 ,

F =
1

2
Fµν(x0)ψ

µ
0ψ
ν
0 . (2.1)

2.1 Chiral spinors

The anomaly of a chiral spinor reduced from X

to M is

A = lim
t→0
Tr
[
ΓD+1 δ e

−t(i/D)2 ]
.

The trace is over the eigenstates of i/D on M ,

ΓD+1 is the chiral matrix on X , and δ is the

operator representing gauge transformations. By

exponentiating δ, as in [4], this can be written as

A = 2πiZ(1), where
Z = lim

t→0Tr
[
ΓD+1 e

−t(i/D)2 ]
.

Mathematically, Z is the index of a twisted

spin complex: Z = index(i/D). The original chiral

or anti-chiral spinor on X is a section of S±T (X).
OnM ⊂ X , the tangent bundle decomposes into
tangent and normal components and these spin

bundles reduce to E± =
(
S±T (M) ⊗ S+N(M)

) ⊕(
S∓
T (M)⊗S−N(M)

)
. Considering also a gauge bun-

dle V , one has then the two-term complex

i/D : Γ
[
M,E+ ⊗ V ]→ Γ[M,E− ⊗ V ] .

The index theorem for this spin complex reads

index(i/D) =

∫
M

ch(V )
[
ch(E+)− ch(E−)]

Td[T (MC)]

e[T (M)]
,

and explicit evaluation yields [3]

Z =

∫
M

ch(F ) ∧ Â(R)

Â(R′)
∧ e(R′) . (2.2)

Physically, Z can be interpreted as a parti-

tion function. More precisely, for a super quan-

tum mechanics (SQM) with Q = i/D and (−1)F =
ΓD+1, Z would becomes the Witten index [5]:

Z = Tr
[
(−1)F e−tH ] .

The appropriate SQM is obtained by dimensional

reduction of the supersymmetric non-linear sigma

model (SNSM) form D = 1+1 to D = 0+1 with

Neumann and Dirichlet boundary conditions ‖
and ⊥ to M : xi = 0, ψµ1 = ψµ2 , ψ

i
1 = −ψi2. The

Lagrangian is:

L =
1

2
gµν ẋ

µẋν +
i

2
ψµ

(
ψ̇µ + ω µ

ρ ν ẋ
ρ ψν
)

+
i

2
ψi

(
ψ̇i + ω i

ρ j ẋ
ρ ψj
)

+
1

4
Rµνij ψ

µψνψiψj + ...

2
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where the dots stand for standard terms account-

ing for the gauge background. Due to (−1)F , all
the fields are periodic and

Z =

∫
P

Dxµ
∫
P

Dψµ
∫
P

Dψi e−S(t) .

For t → 0, Z is dominated by constant paths

with only small fluctuations: xµ = xµ0 +ξ
µ, ψµ =

ψµ0 + λµ, ψi = ψi0 + λi. It is enough to keep

quadratic interactions and only terms with the

maximum number of ψ0’s, and one finds

Leff =
1

2

[
ξ̇µξ̇

µ + iλµλ̇
µ + iλiλ̇

i

+iRµν ξ̇
µξν +R′ij λ

iλj
]

+
1

2
R′ij ψ

i
0ψ
j
0 + iF ,

with R, R′ and F given by (2.1). The path-
integral gives then

Z =

∫
dxµ0

∫
dψµ0 tr exp {iF t}

detP (iηµν∂τ )

detP (ηµν∂2τ + iRµν∂τ )
detP (iηij∂τ +R

′
ij)∫

dψi0 exp

{
t

2
R′ijψ

i
0ψ
j
0

}
.

Evaluating the determinants, one recovers finally

(2.2) [6].

2.2 Self-dual tensors

The anomaly of a self-dual tensor reduced from

X to M can be written as

A =
1

4
lim
t→0 Tr

[
I ∗D δ e

−tD2 ]
,

where ∗D is the Hodge operator on X and the
trace is over the eigenstates of D = d+ d†. The
dynamics is constrained to M ⊂ X thanks to

the transverse reflection I. As before, this can

be written as A = 2πiZ(1), with

Z = −1
8
lim
t→0 Tr

[
I ∗D e−tD

2 ]
.

Mathematically, Z is in this case a G-index

of the usual signature complex. Indeed, Z =

−1/8 index(DG+), where

D+ : Γ
[
X,+∧ T ∗X] −→ Γ[X,−∧ T ∗X] ,

G : X −→ X
(
I : (xµ, xi) −→ (xµ,−xi)) .

Notice that G = Z2 is orientation-preserving, as

it should be, since D and d must be even. It

leavesM ⊂ X fixed and acts as +1 in T (M) and
−1 in N(M). The G-signature theorem gives
then

index(DG+) =
∫
M

[
ch(E+)− ch(E−)][

ch(F+)− ch(F−)] ch−1(F )
Td[T (MC)]

e[T (M)]
,

with the definitions E± = ±∧ T ∗M , F± = ±∧
N∗M and F = ⊕i(−1)i ∧i N∗M . One finds fi-
nally [6]

Z = −1
8

∫
M

L̂(R)

L̂(R′)
∧ e(R′) . (2.3)

Physically, Z looks again like a partition func-

tion, and for a SQM with H = D2 and a symme-
try Ω = ∗D, it would becomes the supersymmet-
ric index

Z = −1
8
Tr
[
I Ω e

−tH ]
.

The appropriate SQM is known [5] to be the triv-

ial dimensional reduction of the SNSM fromD =

1 + 1 to D = 0 + 1 (Ω : (ψ1, ψ2)→ (−ψ1, ψ2)):

L =
1

2
gMN (x) ẋ

M ẋN

+
i

2

∑
α=1,2

ψαM

(
ψ̇Mα + ω

M
P N (x)ψ

N
α ẋ

P
)

+
1

4
RMNPQ (x)ψ

M
1 ψ

N
1 ψ

P
2 ψ
Q
2 .

Due to I Ω, the fields acquire non-standard peri-

odicities and

Z = −1
8

∫
P

Dxµ
∫
A

Dxi
∫
P

Dψµ1
∫
A

Dψi1∫
A

Dψµ2
∫
P

Dψi2 e−S(t) .

For t → 0, Z is again dominated by constant

paths with small fluctuations: xµ = xµ0 + ξµ,

xi = ξi, ψµ1 = ψµ0 + λµ1 , ψ
i
1 = λi1, ψ

µ
2 = λµ2 ,

ψi2 = ψi0 + λ
i
2. As before, it is enough to keep

terms quadratic in the fluctuations and with a

maximum number of fermionic zero modes. One

3
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finds (with R, R′ as in (2.1))

Leff =
1

2

[
ξ̇µξ̇

µ + ξ̇iξ̇
i + iλ1µλ̇

µ
1 + iλ1iλ̇

i
1

+iλ2µλ̇
µ
2 + iλ2iλ̇

i
2

+Rµν
(
i ξ̇µξν + λµ2λ

ν
2

)
+R′ij

(
i ξ̇iξj + λi2λ

j
2

)]
+
1

2
R′ij ψ

i
0ψ
j
0 .

The path-integral yields then

Z = −1
8

∫
dxµ0

∫
dψµ0

detP (iηµν∂τ ) detA(iηµν∂τ +Rµν)

detP (ηµν∂2τ + iRµν∂τ )

detA(iηij∂τ ) detP (iηij∂τ +R
′
ij)

detA(ηij∂2τ + iR
′
ij∂τ )∫

dψi0 exp

{
t

2
R′ijψ

i
0ψ
j
0

}
.

Finally, evaluating the determinants one recovers

(2.3) [6].

3. Anomalous couplings

Using the results (2.2) and (2.3), the quantum

anomalies on n parallel Dp-branes and/or Op-

planes are found to be

IBB = chn⊗n̄(F ) ∧ Â(R)

Â(R′)
∧ e(R′) ,

IBO = chn⊕n̄(2F ) ∧ Â(R)

Â(R′)
∧ e(R′) ,

IOO = − 1
8

L̂(R)

L̂(R′)
∧ e(R′) . (3.1)

On the other hand, assigning the anomalous cou-

plings

SB,O =
√
2π

∫
C ∧ YB,O , (3.2)

one gets, according to (1.1), the classical inflows

IBB = −YB ∧ ȲB ∧ e(R′) ,
IBO = −

(
YB ∧ ȲO + YO ∧ ȲB

) ∧ e(R′) ,
IOO = −YO ∧ ȲO ∧ e(R′) . (3.3)

Due to the property

√
Â(R)

√
L̂(R/4) = Â(R/2),

the relevant (D+2)-form component of (3.1) and

(3.3) are compatible, and anomaly cancellation

requires

YB = chn(F ) ∧
√
Â(R)

Â(R′)
,

YO = −2p−4
√
L̂(R/4)

L̂(R′/4)
. (3.4)

Notice that for non-trivial embeddings and mul-

tiple branes, the pulled-back curvatures depend

also on the gauge connection (see for instance

[12]).

The presence of anomalous couplings of the

form (3.2) for D-branes and O-planes has been

also predicted in particular cases using string du-

alities [7, 8]. Their actual occurrence in the form

(3.4) has been demonstrated in [9] through a di-

rect string theory computation, by factorizing

RR magnetic interactions between D-branes and

O-planes, encoded in one-loop amplitudes on the

annulus, Möbius strip and Klein bottle surfaces.

These couplings have been also checked through

tree-level computations on the disk and the cross-

cap [10, 11].

4. String theory computation

Interestingly, the anomaly inflow mechanism on

D-branes and O-planes can be analyzed directly

in string theory, where tadpole cancellation guar-

antees overall finiteness and implies anomaly can-

cellation. Recall that one can compute anomalies

by evaluating amplitudes with external photons

and/or gravitons, one of them being pure gauge.

This measures the clash of gauge invariance and

gives directly the anomaly. Only the CP-odd

part of potentially divergent diagrams can con-

tribute. In string theory, these are the annulus,

the Möbius strip and Klein bottle amplitudes in

the RR odd spin-structure.

The amplitudes we want to compute have the

form

A =
∫ ∞
0

dt
〈
V phy.1 ... V phy.n V unphy. (TF + T̃F )

〉
.

The insertion of TF + T̃F is due to the grav-

itino zero mode, and the vertices must have to-

tal superghost charge −1. Take all the V phy.’s

4
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in the 0-picture, with an arbitrary transverse po-

larisation ξM or ξMN , and V
unphy. in the −1-

picture, with a longitudinal polarisation given

by ξM = pMη or ξMN = pMηN + pNηM . In-

teresting enough, the latter can then be writ-

ten as a supersymmetry variation, V unphy. =[
Q+Q̃, V̂ unphy.

]
. Using standard arguments, one

can then move Q+ Q̃ onto the other operators in

the correlation. One gets no effect on the V phy.’s,

since they are supersymmetric, but the supercur-

rent is changed to the energy-momentum tensor,[
Q + Q̃, TF + T̃F

]
= TB + T̃B. The net effect

of TB + T̃B is to take the derivative of the re-

maining correlation with respect to the modulus

t, and one is then left with a total derivative in

moduli space:

A =
∫ ∞
0

dt
d

dt

〈
V phy.1 ... V phy.n V̂ unphy.

〉
. (4.1)

In consistent models, this total anomaly has

to vanish, reflecting a cancellation between one-

loop anomalies and tree-level inflows associated

to the same surface. At finite p’s, only the ul-

traviolet boundary t→ 0 can contribute and has
to vanish by itself. The computation is still diffi-

cult, but fortunately, to get a field theory inter-

pretation, it is enough to restrict to the leading

order in p→ 0. In this limit, the correlation be-
comes t-independent and yields at the same time

the anomaly and the inflow. Moreover, since the

correlation vanishes unless all the fermionic zero

modes are inserted, one can use [9, 6]

V eff.γ =

∮
dτ F ,

V eff.g =

∮
d2z RMN

[
XM (∂ + ∂̄)XN (4.2)

+(ψ − ψ̃)M (ψ − ψ̃)N
]
.

This holds both for physical and unphysical ver-

tices, with

F phys. =
1

2
Fµν ψ

µ
0ψ
ν
0 ,

Runphys.MN =
1

2
RMNµν ψ

µ
0ψ
ν
0 ,

Funphys = η ,

Runphys.MN = pMηN + pNηM .

The generating functional of (4.1) is a parti-

tion function twisted by the interactions (4.2) in

the backgrounds F+η and RMN+pMηN+pNηM .

The correct number of physical vertices is auto-

matically selected, the unphysical one being ob-

tained by restricting to the term linear in η. Not

too surprisingly, the only role of the unphysical

vertex is to take the descent of the remaining

partition function, and the anomaly polynomial

is given by I = Z ′ [13].
It is straightforward to applying this general

result to standard D-branes and O-planes. One

finds (ΩI = Ω I is the T -dual of the world-sheet

parity Ω)

IBB = Z
′
A =

1

4
Tr′R
[
(−1)F e−tH ] ,

IBO = Z
′
M =

1

4
Tr′R
[
ΩI (−1)F e−tH

]
,

IOO = Z
′
K =

1

8
Tr′RR

[
ΩI (−1)F+F̃ e−tH

]
.

These are supersymmetric indices, and only mass-

less modes do contribute. Effectively, one recov-

ers precisely the SQM models seen before, repro-

ducing therefore the same results for the anoma-

lies and the anomalous couplings.

One can apply this general approach also

in more complicated cases, like for instance D-

branes, O-planes and fixed-points in orientifold

models [13, 14]. This provides an efficient tool to

analyse in detail the complicated G-S mechanism

of anomaly cancellation in this kind of models.
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