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Abstract

This report is a collection of notes written during the work on physics and
algorithms of theory-driven hadronic models for the GEANT4 toolkit. These
notes are ”practical answers” for hadronic model code implementors on their
numerous questions about the choice of suitable physical models, about
the derivations of formulas, about model parameter values, about needed
numerical algorithms etc.
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Chapter 1

Introduction.

The hadronic interaction Monte-Carlo (MC) models have twofold applica-
tion: (1) as event generators with aim to predict an information about
hadronic interactions that is needed to suggest or to build an experiment as
well as to analyse and store experimental information, and (2) as auxiliary
model codes with the aim to predict missing information needed for more
general hadron transport code.

The large energy region considered includes different interaction regimes.
For example, the production of pions and ∆’s, as well as heavier mesons and
higher baryon states, is abundant above 1 GeV energies. String excitations
are the characteristic feature of hadronic collisions above 5 GeV/A ener-
gies. Here, hadrons are produced essentially in the soft QCD collisions with
relatively small momentum transfer through the excitation and decay of col-
ored strings. A change in the hadron production mechanism is expected at
RHIC and LHC collider energies, when the so-called semi-hard and hard
parton scattering processes with momentum transfer more than 1 GeV will
dominate. For theoretical predictions of the total production cross sections
the different reaction mechanisms (such as preequilibrium and equilibrium
decays) have to be considered. Presently, there is no unique hadronic model
available, which is able to cover all these reaction mechanisms simultane-
ously.

We describe physics and algorithms of the hadronic event generator mod-
els listed below:

1. The Resonance Decayer. It models a resonance decay according to the
relativistic phase-space.

2. The Cluster Decayer. It models a colourless cluster decay into two
hadrons.

3. The String Decayer. It models longitudinal or kinky string decay into
hadrons.

8
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4. The Elastic Scatterer. It can be used to perform low and high energy
hadron elastic scatterings.

5. The Resonance Interaction Model. It can be used at intermediate
energies to perform hadron inelastic interaction with excitation and
deexcitation of the meson and baryon resonances.

6. The Baryon Annihilator. It models baryon-antibaryon annihilation.

7. The Reggeon Parton String Model. It can be used at high energies
to generate final states of γ-nucleon and hadron-hadron inelastic col-
lisions.

8. The Multiple Parton Hard Scattering Model. It generates final states
of the inelastic nucleon-nucleon collision at collider energies.

9. The Pomeron Parton String Model. It generates final states of the
γ-nucleus, hadron-nucleus and nucleus-nucleus inelastic collisions at
high energies.

10. The Hadron Transport Model. It generates final states of the γ-
nucleus, hadron-nucleus and nucleus-nucleus inelastic collisions at in-
termediate energies and performs the secondary hadron rescatterings
after the ”string” stage of a reaction.

11. The Intranuclear Transport model. It generates final states of the
γ-nucleus, hadron-nucleus and stopped particle-nucleus inelastic colli-
sions at low and intermediate energies.

12. The Preequilibrium Exciton Model. It generates final states of the
nucleon-nucleus inelastic collision and provides a transition of an ex-
cited nucleus to the equilibrium state after ”kinetic” stage of a reac-
tion.

13. The Equilibrium Evaporation Model. It can be used to model the
evaporation of photons, nucleons as well as light fragments from the
excited compound nucleus.

14. The Symmetric and Asymmetric Fissions Model. It models symmetric
or asymmetric fission of heavy excited compound nucleus.

15. The Light Nucleus Multifragmentation Model. It performs decay (ex-
plosion) of the very excited light nucleus into the nuclear fragments.

16. The Heavy Nucleus Multifragmentation Model. It performs decay (ex-
plosion) of the very excited heavy nucleus into the nuclear fragments.
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Energy 0 > 20 > 100− 200 > 800− 1000 > 5− 500 > 500
Projectile MeV/A MeV/A MeV/A GeV/A GeV/A

γ X X X X X
Stopped:
π−, K−,p̄ X
Hadrons:

π , K, n, n̄, ... X X X X X
A X X X X X

Table 1.1: MC hadronic models. Allowed projectiles and bombarding energy
ranges for the interaction with nucleon and nucleus targets.

We also describe the Hadron Cross Section Model and the Nuclear Cross
Section Model are devoted to the calculation of total and elastic hadron
interaction cross sections and total and elastic hadron-nucleus and nucleus-
nucleus interaction cross sections at high energies, respectively

Most of the enumerated models are currently under implementation by
the GEANT4 collaboration (see [1], [3] ).

From the above list there are physically simplified models like the Baryon
Annihilation Model, which considers the annihilation reaction as the only
diquark annihilation. To be more realistic their physics should be essentially
improved. Of course, each model, by definition, should be continuously
improved.

Besides the model descriptions we also present here particle properties,
nuclear properties as well as the kinematic relations.

The high energy Monte Carlo models, which will be capable to predict
final states of reactions with a large variety of projectiles and nucleon and
nuclear targets in the energy region above approximately 20 MeV as well as
for π−, K− and p̄ stopped particles (see Table. 1.1) are considered as an
essential part of the high energy transport codes, e.g. the GEANT4 [2].

One of the peculiarities in using hadronic models for applied purposes
is that they are not used separately. As a rule they are successive applied
to predict as many as possible details of hadronic interaction. For exam-
ple, to model hadron-nucleus interaction at collider energies we can apply
at first the Pomeron Parton String Model to give a prediction for the parti-
cles mostly produced in the central rapidity region. Then the Intranuclear
Hadron Transport Model should be applied to improve predictions for par-
ticles produced in the nucleus fragmentation rapidity region, as well as to
predict residual nucleus parameters. After we should apply the Preequi-
librium Exciton Model to predict production of nuclear fragments and to
provide the parameters of residual nucleus at equilibrium state. Finally
different statistical models (the Equilibrium Evaporation Model, the Sym-
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Bombarding > 20 > 100− 200 > 800 − 1000 > 5− 500 > 500
energy MeV/A MeV/A MeV/A GeV/A GeV/A
Nucleus

deexcitation models:
Equilibrium XX XX XX XXX XXX
Evaporation XXX XXX XXXX XXXX

Light Nucleus XX XX XX XXX XXX
Multifragmentation XXX XXX XXXX XXXX

Symmetric and XX XX XX XXX XXX
Asymmetric Fission XXX XXX XXXX XXXX

Heavy Nucleus XX XX XX XXX XXX
Multifragmentation XXX XXX XXXX XXXX

Intranuclear
Transport X X XX XX

Preequilibrium Exciton X XX XXX XXX
Pomeron Parton
String Model: X X

Table 1.2: Applicability of hadronic models as a function of bombarding
energy. Direct applicability is marked by X. Next order indirect applicability
is marked by XX etc.

metric and Asymmetric Fissions Model as well as the Light and the Heavy
Nucleus Multifragmentation Models) should be applied recursively to per-
form the residual excited nucleus decay and to predict evaporated photons,
neutrons, protons and nuclear fragments. The models are participating in
such inelastic collision generation chains are presented in the Table 1.2.

It is expected that in the intermediate and high energy regimes the in-
clusion of these models will allow for reliable extrapolation of the simulation
results beyond the test-beam energy, projectile and target ranges.
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Chapter 2

Particle properties.

2.1 Particle tables.

The description of particle properties, i. e. characteristics of light and
heavy quarks/antiquarks, light diquarks/antidiquarks, photons, gluons, lep-
tons as well mesons and baryons, can be found in publications of the Particle
Data Group (PDG96) [1] and (PDG98)[2].

2.1.1 Baryon and meson species.

Within the UrQMD approach [3] we can tabulate properties of the 55
different baryon species and 32 different meson species, which are sup-
plemented by their anti-particle and all isospin-projected states. The full
baryon-antibaryon symmetry can be included.

The JP = 1
2

+
, 3

2

+ baryon and baryon resonance states as well as the
JPC meson and meson resonance states are listed below, where J , P and C
denote a spin, a parity and a charge conjugation, respectively.

2.1.2 Tabulated baryon and meson masses, widths, branch-
ing ratios and encodings.

The particle masses are given in GeV and widths in MeV.
The meson and baryon resonances decay branching ratios can be taken

from [3].
The encodings for different baryons and mesons can be taken from the

PDG96 [1]. It should be mentioned that there are no encodings recom-
mended by the PDG96 for some of resonances: h′1(1380), N∗

1900, N∗
1990,

N∗
2080, N∗

2220 and N∗
2250, Ξ∗1690, Ξ∗1950, Ξ∗2030, which spins have been not ex-

perimentally established. Their encodings can be taken from the PDG98
[2].

13
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nucleon delta lambda sigma xi omega
N938 ∆1232 Λ1116 Σ1192 Ξ1315 Ω1672

N1440 ∆1600 Λ1405 Σ1385 Ξ1530

N1520 ∆1620 Λ1520 Σ1660 Ξ1690

N1535 ∆1700 Λ1600 Σ1670 Ξ1820

N1650 ∆1900 Λ1670 Σ1750 Ξ1950

N1675 ∆1905 Λ1690 Σ1775 Ξ2030

N1680 ∆1910 Λ1800 Σ1915

N1700 ∆1920 Λ1810 Σ1940

N1710 ∆1930 Λ1820 Σ2030

N1720 ∆1950 Λ1830

N1900 Λ1890

N1990 Λ2100

N2080 Λ2110

N2190

N2200

N2250

Table 2.1: Baryons and baryon resonances.

0−+ 1−− 0++ 1++ 1+− 2++ (1−−)∗ (1−−)∗∗

π ρ a0 a1 b1 a2 ρ1450 ρ1700

K K∗ K∗
0 K∗

1 K1 K∗
2 K∗

1410 K∗
1680

η ω f0 f1 h1 f2 ω1420 ω1662

η′ φ f∗0 f ′1 h′1 f ′2 φ1680 φ1900

Table 2.2: Meson and meson resonance states.
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resonance m Γ
N∗

1440 1.440 200
N∗

1520 1.520 125
N∗

1535 1.535 150
N∗

1650 1.650 150
N∗

1675 1.675 140
N∗

1680 1.680 120
N∗

1700 1.700 100
N∗

1710 1.710 110
N∗

1720 1.720 150
N∗

1900 1.870 500
N∗

1990 1.990 550
N∗

2080 2.040 250
N∗

2190 2.190 550
N∗

2220 2.220 550
N∗

2250 2.250 470
∆1232 1.232 115
∆∗

1600 1.700 200
∆∗

1620 1.675 180
∆∗

1700 1.750 300
∆∗

1900 1.850 240
∆∗

1905 1.880 280
∆∗

1910 1.900 250
∆∗

1920 1.920 150
∆∗

1930 1.930 250
∆∗

1950 1.950 250

Table 2.3: Masses and widths for non-strange baryon resonances.

resonance m Γ
Λ∗1405 1.407 50
Λ∗1520 1.520 16
Λ∗1600 1.600 150
Λ∗1670 1.670 35
Λ∗1690 1.690 60
Λ∗1800 1.800 300
Λ∗1810 1.810 150
Λ∗1820 1.820 80
Λ∗1830 1.830 95
Λ∗1890 1.890 100
Λ∗2100 2.100 200
Λ∗2110 2.110 200
Σ∗1385 1.384 36
Σ∗1660 1.660 100
Σ∗1670 1.670 60
Σ∗1750 1.750 90
Σ∗1775 1.775 120
Σ∗1915 1.915 120
Σ∗1940 1.940 220
Σ∗2030 2.030 180

Table 2.4: Masses and widths for single-strange baryon resonances.
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resonance m Γ
Ξ∗1530 1.532 9
Ξ∗1690 1.700 50
Ξ∗1820 1.823 24
Ξ∗1950 1.950 60
Ξ∗2030 2.025 20

Table 2.5: Masses and widths for double-strange baryon resonances.

resonance m Γ
ω 0.782 8
ρ 0.769 151
f0(980) 0.980 100
η′ 0.958 0.2
K∗ 0.893 50
φ 1.019 4
K∗

0 1.429 287
a0 0.984 100
f0(1370) 1.370 200
K1(1270) 1.273 90
a1 1.230 400
f1 1.282 24
f1(1510) 1.512 350
K2(1430) 1.430 100
a2(1320) 1.318 107
f2(1270) 1.275 185
f ′2(1525) 1.525 76
K1(1400) 1.400 174
b1(1235) 1.235 142
h1(1170) 1.170 360
h′1(1380) 1.380 80
K∗(1410) 1.410 227
ρ(1465) 1.465 310
ω(1419) 1.419 174
φ(1680) 1.680 150
K∗(1680) 1.680 323
ρ(1700) 1.700 235
ω(1662) 1.662 280
φ(1900) 1.900 400

Table 2.6: Masses and widths for meson-resonances.
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resonance Nγ Nπ Nη Nω N% Nππ ∆1232π N∗
1440π ΛK

N∗
1440 0.70 0.05 0.25

N∗
1520 0.60 0.15 0.25

N∗
1535 0.001 0.55 0.35 0.05 0.05

N∗
1650 0.65 0.05 0.05 0.10 0.05 0.10

N∗
1675 0.45 0.55

N∗
1680 0.65 0.20 0.15

N∗
1700 0.10 0.05 0.05 0.45 0.35

N∗
1710 0.15 0.20 0.05 0.20 0.20 0.10 0.10

N∗
1720 0.15 0.25 0.45 0.10 0.05

N∗
1900 0.35 0.55 0.05 0.05

N∗
1990 0.05 0.15 0.25 0.30 0.15 0.10

N∗
2080 0.60 0.05 0.25 0.05 0.05

N∗
2190 0.35 0.30 0.15 0.15 0.05

N∗
2220 0.35 0.25 0.20 0.20

N∗
2250 0.30 0.25 0.20 0.20 0.05

∆1232 0.01 1.00
∆∗

1600 0.15 0.55 0.30
∆∗

1620 0.25 0.60 0.15
∆∗

1700 0.20 0.10 0.55 0.15
∆∗

1900 0.30 0.15 0.30 0.25
∆∗

1905 0.20 0.60 0.10 0.10
∆∗

1910 0.35 0.40 0.15 0.10
∆∗

1920 0.15 0.30 0.30 0.25
∆∗

1930 0.20 0.25 0.25 0.30
∆∗

1950 0.01 0.45 0.15 0.20 0.20

Table 2.7: Branching ratios for non-strange baryon resonances.

resonance NK̄ NK̄∗
892 Σπ Σ∗π Λγ Λη Λω Λπ Ση Λ∗π ∆K̄

Λ∗1405 1.00
Λ∗1520 0.45 0.43 0.11 0.01
Λ∗1600 0.35 0.65
Λ∗1670 0.20 0.50 0.30
Λ∗1690 0.25 0.45 0.30
Λ∗1800 0.40 0.20 0.20 0.20
Λ∗1810 0.35 0.45 0.15 0.05
Λ∗1820 0.73 0.16 0.11
Λ∗1830 0.10 0.70 0.20
Λ∗1890 0.37 0.21 0.11 0.31
Λ∗2100 0.35 0.20 0.05 0.30 0.02 0.08
Λ∗2110 0.25 0.45 0.30
Σ∗1385 0.12 0.88
Σ∗1660 0.30 0.35 0.35
Σ∗1670 0.15 0.70 0.15
Σ∗1750 0.40 0.05 0.55
Σ∗1775 0.40 0.04 0.10 0.23 0.23
Σ∗1915 0.15 0.40 0.05 0.40
Σ∗1940 0.10 0.15 0.15 0.15 0.15 0.15 0.15
Σ∗2030 0.20 0.04 0.10 0.10 0.20 0.18 0.18

Table 2.8: Branching ratios for single-strange baryon resonances.
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resonance Ξπ Ξγ ΛK̄ ΣK̄
Ξ∗1530 0.98 0.02
Ξ∗1690 0.10 0.70 0.20
Ξ∗1820 0.15 0.70 0.15
Ξ∗1950 0.25 0.50 0.25
Ξ∗2030 0.10 0.20 0.70

Table 2.9: Branching ratios for double-strange baryon resonances.

meson γπ γρ γω γη γK ππ πρ 3π πη 4π KK̄∗ K̄K∗
ω 0.09 0.02 0.89
ρ 1.00
f0(980) 0.70
η′ 0.30 0.05
K∗
φ 0.01 0.13 0.02
K∗

0
a0 0.90
f0(1370) 0.10 0.70
K1(1270)
a1 0.10 0.90
f1 0.07 0.20
f1(1510) 0.50 0.50
K2(1430)
a2(1320) 0.70 0.14
f2(1270) 0.50 0.30
f ′2(1525) 0.01
K1(1400)
b1(1235)
h1(1170) 0.90 0.10
h′1(1380) 0.50 0.50
K∗(1410)
ρ(1465) 0.50 0.50
ω(1419) 1.00
φ(1680) 0.40 0.40
K∗(1680)
ρ(1700) 0.10 0.20
ω(1662) 0.50
φ(1900) 0.40 0.40

Table 2.10: Branching ratios for meson resonances.
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meson ηππ ηρ ρππ ωππ ηη KK̄ KK̄π Kπ K∗π Kρ Kω K∗ππ ωπ
ω
ρ
f0(980) 0.30
η′ 0.65
K∗ 1.00
φ 0.84
K∗

0 1.00
a0 0.10
f0(1370) 0.20
K1(1270) 0.47 0.42 0.11
a1

f1 0.54 0.10 0.09
f1(1510)
K2(1430 0.50 0.25 0.09 0.03 0.13
a2(1320) 0.11 0.05
f2(1270 0.20
f ′2(1525) 0.10 0.89
K1(1400) 0.96 0.03 0.01
b1(1235) 0.10 0.90
h1(1170)
h′1(1380)
K∗(1410) 0.30 0.65 0.05
ρ(1465)
ω(1419)
φ(1680) 0.10 0.10
K∗(1680) 0.40 0.30 0.30
ρ(1700) 0.70
ω(1662) 0.50
φ(1900) 0.10 0.10

Table 2.11: Branching ratios for meson resonances.



CHAPTER 2. PARTICLE PROPERTIES. 20

resonance encoding

N∗
1440 12112, 12212

N∗
1520 1214, 2124

N∗
1535 22112, 22212

N∗
1650 32112, 32212

N∗
1675 2116, 2216

N∗
1680 12116,12216

N∗
1700 21214, 22124

N∗
1710 42112, 42212

N∗
1720 31214, 32124

N∗
1900 41214, 42124

N∗
1990 11218, 12128

N∗
2080 51214, 52124

N∗
2190 1218, 2128

N∗
2220 12110, 21210

N∗
2250 112110, 121210

∆1232 1114, 2114, 2214, 2224

∆∗
1600 31114, 32114, 32214, 32224

∆∗
1620 1112, 1212, 2122, 2222

∆∗
1700 11114, 12114, 12214, 12224

∆∗
1900 11112, 11212, 12122, 12222

∆∗
1905 1116, 1216, 2126, 2226

∆∗
1910 21112, 21212, 22122, 22222

∆∗
1920 21114, 22114, 22214, 22224

∆∗
1930 11116, 11216, 12126, 12226

∆∗
1950 1118, 2118, 2218, 2228

Table 2.12: Encodings for non-strange baryon resonances.
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resonance encoding

Λ∗1405 13122

Λ∗1520 3124

Λ∗1600 23122

Λ∗1670 33122

Λ∗1690 13124

Λ∗1800 43122

Λ∗1810 53122

Λ∗1820 3126

Λ∗1830 13126

Λ∗1890 23124

Λ∗2100 3128

Λ∗2110 23126

Σ∗1385 3114, 3214, 3224

Σ∗1660 13112, 13212, 13222

Σ∗1670 13114, 13214, 13224

Σ∗1750 23112, 23212, 23222

Σ∗1775 3116, 3216, 3226

Σ∗1915 13116, 13216, 13226

Σ∗1940 23114, 23214, 23224

Σ∗2030 3118, 3218, 3228

Table 2.13: Encodings for single-strange baryon resonances.

resonance encoding

Ξ∗1530 3314, 3324

Ξ∗1690 23314, 23324

Ξ∗1820 13314, 13324

Ξ∗1950 33314, 33324

Ξ∗2030 13316, 13326

Table 2.14: Encodings for double-strange baryon resonances.
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resonance encoding

ω 223

ρ -213, 113, 213

f0(980) 10221

η′ 331

K∗ 313, 323

φ 333

K∗
0 10313, 10323

a0 -10211, 10111, 10211

f0(1370) 20221

K1(1270) 10313, 10323

a1 -20213, 20113, 20213

f1 20223

f1(1510) 40223

K2(1430) 315, 325

a2(1320) -215, 115, 215

f2(1270) 225

f ′2(1525) 335

K1(1400) 20313, 20323

b1(1235) -10213, 10113, 10213

h1(1170) 10223

h′1(1380) 10333

K∗(1410) 30313, 30323

ρ(1465) -40213, 40113, 40213

ω(1419) 50223

φ(1680) 10333

K∗(1680) 40313, 40323

ρ(1700) -30213, 30113, 30213

ω(1662) 60223

φ(1900) 337

Table 2.15: Encodings for meson resonances.
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2.2 Parton initial state simulation.

We assume that a nucleon consists only from u, d, s quarks and anti-
quarks as well as gluons g.

The nucleon initial state is simulated according to the procedure, which
described in [4]. It is assumed there is no correlation between momentum
and spatial parton distributions inside a nucleon.

2.2.1 Spatial parton distribution.

Partons are distributed randomly inside the nucleon sphere with radius
RN according to

ρN (r) =
3

4πR3
N

θ(RN − |r|), (2.1)

where θ(x) is the unit step function and r is a parton radius vector.

2.2.2 Parton flavours, momenta and their virtualities.

The centre of mass of the two colliding nucleons is chosen as the frame,
where we model nucleon collision evolution. For this frame nucleons have
zero transverse momenta Pt = 0 and balancing longitudinal momenta Pz

and −Pz.
The parton flavours f , parton momenta p as well as their space-like

virtualities q are sampled using the momentum distribution:

Pf (p,P,Q2
0) =

x
xe

Ff (x,Q2
0)δ(Pz −P)δ2(Pt), (2.2)

where P is the nucleon c.m. momenta, Q2
0 is initial resolution scale and

x = pz/P and

xe =
E

P
=

√
x2 +

p2
t + m2

f + q2

P 2
(2.3)

are the momentum and energy fractions. The total number n(P,Q2
0) of

partons in the nucleon with momentum P at Q2
0 can be obtained from the

momentum distribution function as follows

∑
f

∫
d|q2| d3p

(2π)32E
ePf (p,P,Q2

0) = n(P,Q2
0). (2.4)

The u and d valence quark longitudinal momenta pz are sampled using
the proton or/and neutron valence structure functions Fv(x,Q2

0). The lon-
gitudinal momenta of gluons and sea quarks are sampled according to the



CHAPTER 2. PARTICLE PROPERTIES. 24

summed structure function

F (x,Q2
0) = Fg(x,Q2

0) +
∑
qs

[Fqs(x,Q2
0) + Fq̄s(x,Q2

0)]. (2.5)

Then a particular flavour of quark or gluon is selected according to relative
probabilities

Pg,qs = Fg,qs(x,Q2
0)/F (x,Q2

0). (2.6)

The nucleon scale-dependent structure functions are normalised according
to ∑

i

∫ 1

0
xFi(x,Q2

0)dx = 1 (2.7)

and The number of gluons and sea quarks (antiquarks) ng,s are determined
from the condition:

nv,g,s∑
i=1

xi = 1. (2.8)

The transverse momentum pt of each parton is selected independently
according to the Gaussian distribution:

P (pt) =
1

2πa
exp [−p2

a
] (2.9)

with the normalisation ∫ ∞

0
P (pt)d2pt = 1. (2.10)

The valence quarks are considered as real particles, while the gluon or sea
parton energy is calculated as E = vpz, where v is the nucleon velocity. From
the relation: E(q2) =

√
p2 + m2 + q2 we calculate gluon and sea parton

virtualities q2 < 0. The width of the parton pt distribution is constrained
by the requirement that total invariant mass of partons is equal to the
nucleon mass. We require that total 4-momentum of partons, which belong
to the system of colliding nucleons, is equal the total nucleon 4-momentum.

The initial resolution scale Q2
0 = 1GeV 2 can be chosen.

2.2.3 Boosted parton positions.

The positions of valence quarks are boosted into the nucleon c.m. frame.
The spread of longitudinal positions of gluons and see quarks depends on
their x:

∆z =
h̄

xPz
(2.11)

at ∆z ≤ 2RN , i.e. x > xmin = h̄/(2RNPz).
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2.3 Nucleon structure functions.

The different parametrisations of the nucleon structure functions can be
found in the PDFLIB [5]. Recently the Regge based successful parametriza-
tion of Capella et al. [6] for the nucleon structure functions valid at Q2 <
5 GeV 2 and covering the full x region was suggested. We can use this
parametrization adding some parton phenomenology arguments to separate
impact of different quarks and gluons.

At Q2 > 5 GeV 2 we can employ parametrisation of Glück et al.[7].

2.3.1 Regge based parametrisation of the nucleon structure
functions.

The authors of [6] suggested the following parametrisation of the structure
functions in the region of small Q2 (0 ≤ Q2 ≤ 5 GeV 2):

F2(x,Q2) = Ax−∆(Q2)(1− x)n(Q2)+4[ Q2

Q2+a ]1+∆(Q2)+

+B(x)x1−αR(1− x)n(Q2)[ Q2

Q2+b
]αR .

(2.12)

The first term of the above parametrisation corresponds to the Pomeron
contribution. Its behaviour at x → 0 is

F2(x,Q2) ∼ x−∆(Q2), (2.13)

where

∆(Q2) = ∆0[1 +
2Q2

Q2 + d
]. (2.14)

∆0 and d are free parameters. It was found [6] from the data fit that
∆(Q2 = 0) ≈ 0.08 and ∆(Q2 →∞) ≈ 0.24. The second term of Eq. (2.12)
is the contribution of the reggeons. Its behaviour at x → 0 determined by
the reggeon intercept αR ≈ 0.4− 0.6. n(Q2) determines structure functions
behaviour at x → 1:

n(Q2) =
3
2
[1 +

2Q2

Q2 + c
]. (2.15)

Thus, the second term of Eq. (2.12) behaves as (1− x)1.5 at Q2 = 0 and as
(1 − x)3 at Q2 → ∞. The last factors in two terms of the Eq. (2.12) have
been introduced to calculate the real photon-nucleon total cross section.
The parameter B(x) = Bu + Bd(1 − x) = 0.754 + 0.4495(1 − x) was fixed
using the normalisation condition for valence quarks. Two terms in B(x)
are due to the relation d(x) = u(x)(1 − x), which is used for the valence
quark distribution in the proton.

The values of parameters: A = 0.1502, αR = 0.4150, a = 0.2631 GeV 2,
b = 0.6452 GeV 2, c = 3.5489 GeV 2, d = 1.1170 GeV 2 and ∆0 = 0.07684
were obtained from the fits of experimental structure functions and total
gamma-proton cross section.
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To define gluon distribution it was assumed [6] that the difference be-
tween gluon and sea-quark distributions is the x → 1 behaviour:

Fg(x,Q2) = G(Q2)Fqs(x,Q2)/(1− x), (2.16)

where

G(Q2) = Gg

[
Q2

Q2 + a

]1+∆(Q2)

(2.17)

and Gg = 1.84 was determined from the energy-momentum conservation
sum rule at chosen Q2

0 = 2 GeV 2[6]. Thus, for gluon distribution in the
nucleon we obtain

Fg(x,Q2) = G(Q2)
x−∆(Q2)

x
(1− x)n(Q2)+3. (2.18)

Applying parton phenomenology, i.e.

F2(x,Q2) =
∑

i

e2
i xFi(x,Q2), (2.19)

we can find valence and see quark distribution functions Fi(x,Q2). To find
the strange sea component we can use the parameter δ = 0.06, which is
defined as follows

δ =
∫ 1
0 dxx[Fs(x) + Fs̄(x)]∫ 1

0 dxx[Fu(x) + Fū(x) + Fd(x) + Fd̄(x)]
. (2.20)

2.3.2 Leading order parton distributions [LO].

The authors of [7] have suggested to use the non-singlet distribution in
the form:

xv(x,Q2) = Nxa(1 + Axb + Bx + Cx3/2)(1− x)D. (2.21)

For v = uv

a = 0.590 − 0.024s, b = 0.131 + 0.063s,
N = 2.284 + 0.802s + 0.055s2,
A = −0.449 − 0.138s − 0.076s2,
B = 0.213 + 2.669s − 0.728s2,
C = 8.854 − 9.135s + 1.979s2,
D = 2.997 + 0.753s − 0.076s2,

(2.22)

for v = dv

a = 0.376, b = 0.486 + 0.062s,
N = 0.371 + 0.083s + 0.039s2,
A = −0.509 + 3.310s − 1.248s2,
B = 12.41 − 10.52s + 2.267s2,
C = 6.373 − 6.208s + 1.418s2,
D = 3.691 + 0.799s − 0.071s2,

(2.23)
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and for v = d̄− ū

a = 0.409 − 0.005s, b = 0.799 + 0.071s,
N = 0.082 + 0.014s + 0.008s2,
A = −38.07 + 36.13s − 0.656s2,
B = 90.31 − 74.15s + 7.645s2,

C = 0,
D = 7.486 + 1.217s − 0.159s2

(2.24)

were found. The gluon and sea ū + d̄ distributions have been parametrised
as follows

xw(x,Q2) =

[
xa(A + Bx + Cx2)(ln

1
x

)b + sα exp

(
−E +

√
E′sβ ln

1
x

)]
(1−x)D.

(2.25)
For w = g

α = 0.524, β = 1.088,
a = 1.742 − 0.930s, b = −0.399s2,

A = 7.486 − 2.185s,
B = 16.69 − 22.74s + 5.779s2,

C = −25.59 + 29.71s − 7.296s2,
D = 2.792 + 2.215s + 0.422s2 − 0.104s3,
E = 0.807 + 2.005s, E′ = 3.841 + 0.316s,

(2.26)

and for w = ū + d̄

α = 1.451, β = 0.271,
a = 0.410 − 0.232s, b = 0.534 − 0.457s,

A = 0.890 − 0.140s, B = −0.981
C = 0.320 + 0.683s,

D = 4.752 + 1.164s + 0.286s2,
E = 4.119 + 1.713s, E′ = 0.682 + 2.978s

(2.27)

were found. The strange sea s̄ = s distribution has been parametrised by

xw′(x,Q2) =
sα

(ln 1
x)a

[
1 + A

√
x + Bx

]
exp

(
−E +

√
E′sβ ln

1
x

)
(1− x)D.

(2.28)
For w′ = s̄ = s

α = 0.914, β = 0.577,
a = 1.798 − 0.596s,

A = −5.548 + 3.669
√

s− 0.616s,
B = 18.98 − 16.73

√
s + 5.168s,

D = 6.379 − 0.350s + 0.142s2,
E = 3.981 + 1.638s, E′ = 6.402

(2.29)
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were found. The variable s is defined as

s = ln
ln [Q2/ΛLO]
ln [µ2

LO/ΛLO]
, (2.30)

where µ2
LO = 0.23 GeV 2, ΛLO = 0.232 GeV 2.
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Chapter 3

Resonance decay model.

3.1 Resonance decay simulation.

Resonance decay channels are sampled using the partial decay widths
Γ(m), which depend from masses m of resonances. All resonances are con-
sidered as non-polarised particles. If a resonance is among of the outgoing
particles, its mass is determined according to a Breit-Wigner mass distribu-
tion:

F (m) =
1
2π

Γ(mR)
(mR −m)2 + Γ(mR)2/4

. (3.1)

All pole masses mR and partial decay widths ΓR are taken from the Review
of Particle Properties [1]. If the exit channel contains two, three or four
particles, then the respective N -body phase-space is taken into account for
their momenta.

The Kopylov’s algorithm[2] can be used to sample product particle 4-
momenta. We would stress that Kopylov’s algorithm gives a possibility to
take into account the resonance decay matrix elements.

3.1.1 Kopylov’s algorithm for N-body decay generation.

It allows us to simulate also nuclear fragment production as result of
an excited nucleus decay (see the light nucleus multifragmentation chap-
ter). Using this algorithm one can also calculate decay widths and different
particle distributions.

We can write the n particles state probability

dW =
n∏

i=1

d3pi

2ωi
δ(

n∑
i=1

pi − Pn)|M |2, (3.2)

where Pn = (Pn, En) is the decaying particle 4-momentum and M(p1, p2, ..., pn)
is the reaction amplitude, which depends on the 4-momenta pi of products.
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We know the sum of produced particle masses

µn =
n∑

i=1

mi (3.3)

and c.m. system kinetic energy

Tn = Mn − µn, (3.4)

where Mn =
√

E2
n − P 2

n is the system invariant mass.
Performing integrations of the probability expressed by the (3.2), one

can obtain different particle distributions. The integration over all set of
variables S can be shortly written as

W =
∫

D
Φ(S)dS, (3.5)

where Φ(S) can be considered as the weight of n-particles production event.
The Kopylov’s algorithm is based on the choice of a set of variables S1:

Tk, ηk and φk instead of particle 4-momenta to perform the integration of
dW . The integration range D1 over these new variables is simple. The
angular variables are inside 1 ≥ ηk ≥ −1 and 2πφk ≥ 0, where k = n, n −
1, ..., 2, and kinetic energies of systems with some numbers of particles are
ordered according to Tn ≥ Tn−1 ≥ ... ≥ T2 ≥ T1 = 0. Further substitution
of the variables Tk, ηk and φk by the set variables S2: ξk, γk and βk, which
are limited between 0 and 1, creates an unit hypercube from the integration
range D2:

W ∼
∫ 1

0
...

∫ 1

0

n∏
2

dβkdγk

n−1∏
2

dξkξ
3k−5

2
k

√
1− ξk|M |2. (3.6)

Two sets of variables S1 and S2 are related to each other:

Tk = Tk+1ξk, k = n− 1, ..., 2
ηk = 2βk − 1, k = n, ..., 2
φk = 2πγk, k = n, ..., 2.

(3.7)

The event weight Φ(S1) is [2]:

Φ(S1) =
π

3
2
(n−1)T

3n−5
2

n

2MnΓ(3
2(n− 1))

n∏
k=2

p̂k√
Tk − Tk−1

|M |2, (3.8)

where Γ(x) is the gamma function and p̂k is the 4-momentum of the k-th
particle in the rest frame 0k, where Tk = 0.

As one can see from the Eq. (3.6) the variables ξk, γk and βk can be
considered as the random numbers distributed between 0 and 1. Thus to
generate particle momenta we can apply the next recursive procedure [2].
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1. Sample ξk−1 according to the distribution

F (ξk) = ξ
3k−5

2
k

√
1− ξk, (3.9)

where functions F (ξk) have maxima Fmax = F ((3k−5)/(3k−4)), and
compute Tk−1 = Tkξk−1. If k = 2 then Tk−1 should be set to 0 in
accordance with the definition of the rest frame 0k−1.

The functions F (x) are sharp functions at the large values of k. At
large k we can use another method of sampling with tabulation [2].
In this case for the uniformly distributed between 0 and 1 random
number αk−1 we have to solve equation

Ck−1(ξk−1) = αk−1, (3.10)

where

Ck(ξk) =
∫ ξk
0 dξkξ

3k−5
2

k

√
1− ξk∫ 1

0 dξkξ
3k−5

2
k

√
1− ξk

(3.11)

and find value of ξk−1. Ck(ξk) are tabulated smooth functions and
the linear interpolation can be applied to find function values at the
intermediate points.

2. Compute the total energy

ω̂k = (M2
k + m2

k −M2
k−1)/2Mk (3.12)

and the absolute value of the 3-momentum

p̂k =
√

ω̂2
k −m2

k (3.13)

for the k-th particle in the rest frame 0k, where

µk−1 = µk −mk (3.14)

and
Mk−1 = µk−1 − Tk−1. (3.15)

3. Sample direction of the k-th momentum p̂k, i.e. sample the azimuthal
and polar angles according to φk = 2πγk and cos θk = 2βk − 1, re-
spectively. The γk and βk are uniformly distributed between 0 and 1
random numbers.

4. Calculate the k-th particle energy

ωk =
Ekω̂k + Pkp̂k

Mk
(3.16)

and its 3-momentum

pk = p̂k + P̂k
ωk + ω̂k

Ek + Mk
(3.17)

in the observer frame.
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5. Calculate the total energy Ek−1 and 3-momentum Pk−1 the system
with k − 1 particles:

Ek−1 = Ek − ωk, (3.18)

Pk−1 = Pk − pk. (3.19)

If k = 2, then we can check that m1 =
√

E2
1 − P 2

1 , where p1 = P1 and
ω1 = E1.

As result of the outlined recursive procedure we know momenta of all
products and can calculate the event weight (3.8).

Finally, if Φ(S1) < ξΦmax, where ξ is uniformly distributed between 0
and 1 random number and Φmax is the maximal possible value from the
Φ(S1) set of values, we will accept the event.

We should note that in the non-relativistic case and for |M |2 = 1 the
last step, i.e. the test Φ(S1) < ξΦmax, is not needed [2].

We also should note that the outlined procedure can be used to calculate
the relativistic phase space volume W , i.e. to perform the integral over the
event weight (3.5) at |M |2 = 1. To perform integrations we need to find
the average value of the event weights for N events, where N → ∞. This
method to perform integration is also efficient at |M |2 6= 1, if |M |2 has no
pole behaviour.
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Chapter 4

Cluster decay model.

4.1 Cluster decay simulation.

The cluster decay model is originated from [1], [2]. Each cluster with mass
Mc can decay isotropically in its rest frame into hadron pair with masses
M1 and M2 and spins J1 and J2 by pulling a quark-antiquark or a diquark-
antidiquark pair with a quark (diquark) mass mq. For hadron containing u,
d and s quarks the JP = 0−, 1± meson and JP = 1

2
+
, 3

2
+ baryon states are

allowed. The decay channel is selected according to the probability:

Pdecay = Pflavor(Mc,mq)Pspin(J1, J2)Pps(Mc,M1,M2), (4.1)

where the flavour factor is

Pflavor(Mc,mq) = 1 +
2m2

q

M2
c

√
1− 4m2

q

M2
c

, (4.2)

the spin factor is

Pspin(J1, J2) = (2J1 + 1)(2J2 + 1) (4.3)

and the phase space factor is

Pps =

√
M4

c + M4
1 + M4

2 − 2(M2
c M2

1 + M2
c M2

2 + M2
1 M2

2 )

M2
c

. (4.4)
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Chapter 5

String decay model.

5.1 String types.

The string decay model is capable to predict final states, i.e. pro-
duced hadrons, which belong to the scalar and vector meson nonets and the
baryon/antibaryon octet and decuplet, as result of the longitudinal q− qbar
or qq − qqbar or q − qq or qbar − qqbar string or kinky q − g − qbar or
qq − g − qqbar or q − g − qq or qbar − g − qqbar string decay.

5.2 Longitudinal string decay.

5.2.1 Hadron production by string fragmentation.

A coloured string is stretched between flying away constituents: quark and
antiquark or quark and diquark or diquark and antidiquark or antiquark and
antidiquark. From knowledge of the constituent longitudinal p3i = pzi and
transversal p1i = pxi, p2i = pyi momenta as well as their energies p0i = Ei,
where i = 1, 2, we can calculate string or string with quark ends mass
squared:

M2
S = pµpµ = p2

0 − p2
1 − p2

2 − p2
3, (5.1)

where pµ = pµ1 + pµ2 is the string four momentum and µ = 0, 1, 2, 3.
The fragmentation of a string follows the iterative scheme:

string ⇒ hadron + new string, (5.2)

i. e. a quark-antiquark (or diquark-antidiquark) pair is created and placed
between leading quark-antiquark (or diquark-quark or diquark-antidiquark
or antiquark-antidiquark) pair.

The values of the strangeness suppression and diquark suppression fac-
tors are

u : d : s : qq = 1 : 1 : 0.35 : 0.1. (5.3)
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As an option the possibility of a diquark breaking during the string
fragmentation can be considered.

A hadron is formed randomly on one of the end-points of the string.
The quark content of the hadrons determines its species and charges. In
the chosen fragmentation scheme we can produce not only the groundstates
of baryons and mesons, but also their lower excited states. If for baryons
the quark-content does not determine whether the state belongs to the low-
est octet or to the lowest decuplet, then octet or decuplet are chosen with
probability which defined by spin and isospin of diquark (antidiquark). In
the case of mesons the multiplet must be also determined before a type
of hadron can be assigned. The probability to choose a certain multiplet
depends on the spin of the multiplet.

In case of resonances the mass m is determined according to the Breit-
Wigner distribution:

F (m) = 2π
Γ(mR)

(mR −m)2 + Γ(mR)2/4
, (5.4)

All pole masses mR and total decay widths Γ(mR) can be taken from the
Review of Particle Properties [1].

The zero transverse momentum of created quark-antiquark (or diquark-
antidiquark) pair is defined by the sum of an equal and opposite directed
transverse momenta of quark and antiquark.

The transverse momentum of a created quark is randomly sampled ac-
cording to probability (9.18) with the parameter a = 0.55 GeV−2. Then a
hadron transverse momentum pt is determined by the sum of the transverse
momenta of its constituents.

The fragmentation function fh(z, pt) represents the probability distri-
bution for hadrons with the transverse momenta pt to curry the light cone
momentum fraction z = z± = (Eh±ph

z )/(Eq±pq
z), where Eh and Eq are the

hadron and fragmented quark energies, respectively. ph
z and pq

z are hadron
and fragmented quark longitudinal momenta, respectively. The values of z
are limited between z±min and z±max. z±min,max are determined by hadron mh

and constituent transverse masses and the available string mass. One of the
most common fragmentation function is used in the LUND model [2]:

fh(z, pt) ∼ 1
z
(1− z)a exp [−b(m2

h + p2
t )

z
]. (5.5)

One can use this fragmentation function for the decay of the excited string.
One can use also the fragmentation functions are derived in [3]:

fh
q (z, pt) = [1 + αh

q (< pt >)](1 − z)α
h
q (<pt>). (5.6)

The advantage of last functions as compared to the LUND fragmentation
function is that they have correct three-reggeon behaviour at z → 1 [3].
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5.2.2 Times and coordinates of produced hadrons.

To calculate produced hadron formation times and longitudinal coordi-
nates we consider the (1 + 1)-string with mass MS and string tension κ,
which decays into hadrons at string rest frame. The i-th produced hadron
has energy Ei and its longitudinal momentum pzi, respectively. Introducing
light cone variables p±i = Ei±piz and numerating string breaking points con-
secutively from the right to the left we obtain p+

0 = MS , p+
i = κ(z+

i−1 − z+
i )

and p−i = κx−i .
We can identify the hadron formation point coordinate and time as the

point in space-time, where the quark lines of the quark-antiquark pair form-
ing the hadron meet for the first time (the so-called ”yo-yo” formation point
[2]):

ti =
1
2κ

[MS − 2
i−1∑
j=1

pzj + Ei − pzi] (5.7)

and coordinate

zi =
1
2κ

[MS − 2
i−1∑
j=1

Ej + pzi − Ei]. (5.8)

5.2.3 Lorentz boost and rotation of string.

The simulation of string decay is considered in the rest of string frame,
with string end quarks are moving along z-axis. We can perform Lorentz
transformation to the c.m. of string of the constituent momenta:

pµ1,µ2 → Lµpµ1,µ2, (5.9)

where
L0 = βνpν (5.10)

and

Lk = βkp0 +
3∑

l=1

(δlk +
βkβl

1 + β0
)pl. (5.11)

βµ is defined as follows:
βµ =

pµ

MS
. (5.12)

The string orientation respecting z-axis is determined by two Euler angles
α and β, which can be calculated according to

cos α =
p32√

p2
22 + p2

32

(5.13)

and

cos β =

√
p2
22 + p2

32√
p2
12 + p2

22 + p2
32

. (5.14)
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Then, by string rotation:

pk1,k2 → Rklpl1,l2, (5.15)

we can obtain the motion of constituents along the z-axis. Here the matrix
Rkl is given by

Rkl =
cos β − sinα cos β − cos α sinβ

0 cos α − sin α
sin β − sinα cos β − cos α cos β

(5.16)

and k, l = 1, 2, 3.
Finally after string decay, using Eq. (5.9) and Eq. (5.15) we have

to perform the backward Lorentz boost with −βµ of hadron 4-momenta
and 4-coordinates and the backward rotation of hadron 3-momenta and 3-
coordinates with R−1

kl .

5.3 Kinky string decay simulation.

For kinky string decay simulation we have assumed the two steps process:

1. Split gluon g → q1q̄1 and create two longitudinal strings;

2. Decay longitudunal strings qq̄1 → h and q̄q1 → h into hadrons h.

The production of q1q̄1 is considered similar (the same sampling of quark
flavors and the same pt-distribution for the quarks) as a production of qq̄-
pairs during a longitudinal string decay. The g → q1q̄1 splitting function
[4]:

f q
g (z) = z2 + (1− z)2, (5.17)

where z = Eq+pz
q

Eg+pz
g
, have been derived by Altarelli and Parisi [5].
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Chapter 6

Hadron elastic scattering
model.

6.1 Applicability of the hadron elastic scattering
model.

The hadron elastic scattering model is capable to predict final states of
the hadron elastic collisions.

The elastic angular distribution can be obtained from the Pomeron
eikonal model[1]. It gives a possibility to sample scattering angles at ini-
tial energies

√
s > 2 GeV. At lower energies sampling of scattering angles

are based on the parametrisation of experimental data for nucleon-nucleon
interactions.

6.2 Hadron elastic scatterings at low and high en-

ergies.

At high energies, when string production becomes possible, the angular
distributions of the two-body hadron elastic scatterings are well described
by

dW (s)
dt

= Bel(s) exp [Bel(s)t], (6.1)

where t = −2p2
cm(1 − cos θ) is the four momentum transfer, which is ex-

pressed through the particle centre of mass momentum pcm and the particle
centre of mass scattering angle θ. Thus tmin ≤ t ≤ tmax, where tmax = 0 and
tmin = −4p2

cm. s is the colliding hadrons c.m. energy squared. The slope
parameter Bel(s) is defined in the Regge-Gribov approach [1] as follows

Bel(s) = 2λ(s), (6.2)
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where
λ(s) = R2

P + α
′
P ln(s/s0). (6.3)

As was explained below (see the reggeon based parton string model chapter)
the Pomeron parameters R2

P , α
′
P and s0 can be found from a global fit of the

total, elastic, differential elastic and diffractive cross sections for the nucleon-
nucleon, pion-nucleon and kaon-nucleon interactions at different values of
s. Performing elastic scattering simulations we can use the Eq. (6.1) to
sample t and to calculate scattering angle θ. The Eq. (6.2) is used, when
initial energy

√
s >

√
sth, where the threshold energy

√
sth = 1.6 GeV

for pion-nucleon collisions,
√

sth = 2.0 GeV for kaon-nucleon collisions and√
sth = 2.5 GeV for nucleon-nucleon collisions, respectively.

To sample cos θ at lower energies we can use the parametrisation:

Bel(s) =
2.15R2

P [3.65(
√

s−m1 −m2)]6

1 + [3.65(
√

s−m1 −m2)]6
, (6.4)

where m1 and m2 are masses of colliding particles. This form of angu-
lar distribution was obtained by modifying the parametrisation [2] to make
smooth transition from the high energy region described by the Regge mo-
tivated slopes.

6.3 Hadron elastic scattering MC procedure.

We can use the following MC procedure to sample elastic scattering angle
cos θ:

1. Sample transferred momentum squared according to

t =
1

Bel(s)
ln ξ, (6.5)

where ξ are random numbers, which are uniformly distributed between
0 and 1, tmin ≤ t ≤ tmax;

2. Calculate
cos θ = 1− t

2p2
cm

. (6.6)
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Chapter 7

Hadronic cross section
model.

7.1 Calculation of the total and elastic cross sec-
tions.

The hadron interaction cross sections are functions of the incoming and
outgoing particle types and their c. m. energy √si,j =

√
(pi + pj)2, where

pi = (Ei,pi) and pj = (Ej ,pj) denote the four momenta of the incoming

particle i with mass mi =
√

E2
i − pi

2 and the incoming particle j with mass

mj =
√

E2
j − pj

2, respectively. The hadron interaction cross sections can
either be tabulated or parametrised according to algebraic functions. These
cross sections can be estimated from the additive quark model, the Regge
theory or extracted from other cross sections via general principles, such
as isotopic invariance and detailed balance (see the resonance interaction
model chapter).

7.1.1 Tabulated and parametrised hadron interaction cross
sections.

The total and elastic pp, pn, p̄p, p̄n, π±p and K±p cross sections are well
known [1], [2], [3]. We can tabulate experimentally known total and elastic
cross sections at low energies √si,j < 4 GeV.

At higher energies we can use the CERN/HERA parametrisations [1],
[2]. The parametrisation

σ(p) = A + Bpn + C ln2 p + D ln p, (7.1)

where σ(p) in mb and the initial laboratory momentum p in GeV/c can
be used both for the total and elastic cross section descriptions[1]. The fit
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Reaction A B n C D

σtot
γp 0.147 ± 0.001 0. 0. 0.0022 ± 0.0001 −0.0170 ± 0.0007

σtot
π+p 16.4 ± 1.2 19.3 ± 0.8 −0.42± 0.05 0.19± 0.02 0.

σel
π+p 0. 11.4 ± 0.3 −0.4± 0.2 0.079 ± 0.005 0.

σtot
π−p 33.0 ± 1.2 14.0 ± 1.8 −1.36± 0.29 0.456 ± 0.049 −4.03 ± 0.48

σel
π−p 1.76± 0.42 11.2 ± 0.3 −0.64± 0.07 0.043 ± 0.011 0.

σtot
K+p 18.1 ± 0.1 0. 0. 0.26± 0.03 −1.0± 0.1

σel
K+p 5.0± 1.2 8.1 ± 1.5 −1.8± 0.7 0.16± 0.06 −1.3± 0.5

σtot
K−p 32.1 ± 0.2 0. 0. 0.66± 0.01 −5.6± 0.1

σel
K−p 7.3± 0.1 0. 0. 0.29± 0.01 −2.40 ± 0.09
σtot

pp 48.1 ± 0.1 0. 0. 0.522 ± 0.005 −4.51 ± 0.05
σel

pp 11.9 ± 0.8 26.9 ± 1.7 −1.21± 0.11 0.169 ± 0.021 −1.85 ± 0.26
σtot

pn 47.3± 0.17 0. 0. 0.513 ± 0.023 −4.27 ± 0.15
σel

pn 91.3 ± 0.2 0. 0. 1.05± 0.33 −8.8± 0.02
σtot

pp̄ 38.4 ± 4.4 77.6 ± 2.8 −0.64± 0.07 0.26± 0.05 −1.2± 0.9
σel

pp̄ 10.2 ± 0.7 52.7 ± 1.8 −1.16± 0.05 0.125 ± 0.014 −1.28 ± 0.20
σtot

p̄n 0. 133.6 ± 4.6 −0.70± 0.03 −1.22 ± 0.13 13.7 ± 0.7
σel

p̄n 36.5 ± 1.5 0. 0. 0. −11.9 ± 1.8

Table 7.1: The fit and exponent parameters of the parametrised total and
elastic cross sections.

coefficients A, B, C, D and exponent n are tabulated below. The range of
momentum over the fit was done is also given in the table.

For momenta p < 5 GeV/c other parametrisations for p̄p collisions can
be applied [4]:

σtot(p) = 75.0 + 43.1p−1 + 2.6p−2 − 3.9p, 0.3 < p < 5, (7.2)

σtot(p) = 271.6 exp (−1.1p2), p < 0.3, (7.3)

σel(p) = 31.6 + 18.3p−1 − 1.1p−2 − 3.8p, 0.3 < p < 5, (7.4)

σel(p) = 78.6, p < 0.3. (7.5)

The functional dependence on the total particle c.m. energy √si,j of
the total π±p and K−p cross sections shows the resonance behaviour at
low energies. These cross sections can be calculated. We can calculate
also nucleon-nucleon cross sections for resonance excitation processes (see
the next chapter). The calculation of other cross sections using general
principles, such as isotopic invariance, detailed balance and additive quark
model is explained below.
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7.1.2 The isotopic invariance.

As known from the experimental observations of charge or isotopic invari-
ance of nuclear forces the hadron interaction scattering amplitudes depend
only from the total isospin T , but not from its projection T z. It gives a
possibility to separate cross sections according to the isospin and to find
relations between different hadron interaction cross sections.

Each hadrons h can be characterised by the isospin T and its projection
T z, i. e. using Dirac’s notations we can write for the hadron state |h >=
|T, T z >. Thus, e. g. nucleon and pion states can be defined as follows:
|p >= |1/2, 1/2 >, |n >= |1/2,−1/2 >, |π+ >= |1, 1 >, |π− >= |1,−1 >
and |π0 >= |1, 0 >. The |np >, |pp >, |nn > and different pion-nucleon
states are given by

|h1h2 >=
Th1

+Th2∑
|Th1

−Th2
|
|Th1h2T

z
h1h2

>< Th1T
z
h1

Th2T
z
h2
||Th1h2T

z
h1h2

>, (7.6)

where < Th1T
z
h1

Th2T
z
h2
||Th1h2T

z
h1h2

> are Clebsch-Gordan coefficients, T h1 ,T h1
z

and T h2 ,T h2
z are the isospin and its projection for hadron h1 and hadron h2,

respectively. T h1h2 , T z
h1h2

= T z
h1

+ T z
h2

are the total isospin and its projec-
tion for the h1, h2 system. The Clebsch-Gordan coefficient squared gives the
probability to find hadron system in a state |Th1h2T

z
h1h2

>. In the nucleon-
nucleon (TNN = 0 or TNN = 1) or in the pion-nucleon (TπN = 1/2 or
TπN = 3/2) system only two values of isospin are allowed. If we consider
reactions

p + p → p + p,
p + n → p + n,
n + n → n + n,

(7.7)

then corresponding amplitudes are related to the isospin amplitudes:

Ap+p→p+p =< 1, 1|1, 1 >= A1,
Ap+n→p+n = 1/2 < 1, 0|1, 0 > +1/2 < 0, 0|0, 0 >= 1/2A1 + 1/2A0,

An+n→n+n =< 1,−1|1,−1 >= A1,
(7.8)

where A1 and A0 are the 1 → 1 and 0 → 0 isospin amplitudes. If we consider
reactions

π+ + p → π+ + p,
π− + p → π0 + n,
π0 + p → π0 + p,

(7.9)

then corresponding scattering amplitudes are also related to the isospin am-
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plitudes:

Aπ++p→π++p =< 3/2, 3/2|3/2, 3/2 >= A3/2,

Aπ−+p→π0+n =
=
√

2/3 < 3/2,−1/2|3/2,−1/2 > −√2/3 < 1/2,−1/2|1/2,−1/2 >=
=
√

2/3A3/2 −
√

2/3A1/2,

Aπ0+p→π0+p =
= 2/3 < 3/2, 1/2|3/2, 1/2 > +1/3 < 1/2, 1/2|1/2, 1/2 >=

= 2/3A3/2 + 1/3A1/2,
(7.10)

where A3/2 and A1/2 are the 3/2 → 3/2 and 1/2 → 1/2 isospin amplitudes.
The optical theorem links the total particle interaction cross section σij

tot(sij)
and the imaginary part of the scattering amplitude Aij(0) at zero scattering
angle:

σtot(sij) =
1
sij

ImAij(0). (7.11)

Thus, e. g. for the nucleon-nucleon system isotopic invariance leads to the
relation σnn

tot,el = σpp
tot,el. For the pion-nucleon system one has to measure

only the first two of the above considered elastic and charge-exchange cross
sections, the third one and all other possible elastic and charge-exchange
cross sections can be determined by them. The similar consideration can be
done for kaon-nucleon and other hadronic systems.

7.1.3 The additive quark model cross sections.

In the additive quark model (AQM) cross section depends only on the
quark content of the colliding hadrons [5], [6],[4]:

σAQM
tot = 40(

2
3
)nM (1− 0.4xs

1)(1− 0.4xs
2) (7.12)

and
σAQM

el = 0.039σ
2
3
tot , (7.13)

where nM is the number of colliding mesons and xs
i is the ratio of strange

quarks to non-strange quarks in the i-th hadron. Thus we can use the AQM
to obtain unknown cross sections by the ”scaling” of known cross sections.

7.1.4 High energy hadron-nucleon interaction cross sections.

The hadron-nucleon cross sections at given c.m. energy squared s can
be calculated from the corresponding interaction probabilities pij(b2

ij , s) by
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integration over impact parameter b. Particularly, the hadron-nucleon total
and inelastic cross section can be calculated according to

σtot = 2π
∫ ∞

0
bdbptot

ij (b2
ij , s) = σP f(

z

2
) (7.14)

and
σin = 2π

∫ ∞

0
bdbpin

ij (b2
ij , s) = σP f(z), (7.15)

where
σP = 4πz(s)λ(s), (7.16)

and

f(z) =
∞∑

ν=1

(−z)ν−1

νν!
. (7.17)

The probabilities pij(b2
ij , s), the quantities z(s) and λ(s) are expressed

through the parameters of the Pomeron trajectory, α
′
P and αP (0), and the

parameters of the Pomeron-nucleon vertex R2
P and γP (see the reggeon based

parton string model chapter).
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Chapter 8

Resonance interaction model.

8.1 Allowed projectiles, targets and bombarding
energy range.

The hadron resonance interaction model based on the UrQMD approach[1].
It is capable to predict wide spectrum (see the particle properties chapter)
of baryons as well as wide spectrum of meson and baryon resonances. These
particles are result of the excitation and deexcitation of baryons. They can
also be produced in the meson-meson and meson-baryon interactions by
means of the quark-antiquark annihilations.

The allowed bombarding energy is limited by chosen set (see also the par-
ticle properties chapter) meson and baryon resonances and their excitation
cross sections.

This model is also able to predict baryon resonance excitation in the
photon-nucleon inelastic collisions.

8.2 Hadron resonance interactions.

The modelling of the inelastic meson-meson, meson-baryon (fusion into
one particle in the final state) and baryon-baryon (two particles in the final
state) interactions with resonance excitation as well as the inverse baryon-
baryon inelastic interactions with resonance deexcitation is based on the
resonance excitation and deexcitation cross sections.

The hadron interaction cross sections are a function of the incoming
and outgoing particle types and their c. m. energies √si,j =

√
(pi + pj)2,

where pi = (Ei,pi) and pj = (Ej ,pj) are denoting the four momenta of the

incoming particle i with mass mi =
√

E2
i − pi

2 and the incoming particle j

with mass mj =
√

E2
j − pj

2, respectively.
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8.2.1 Interaction cross sections for meson-baryon collisions
with quark annihilation.

The meson-baryon interactions going through the quark annihilation are
dominated by the formation of an intermediate resonance up to c.m. en-
ergies of 2.2 GeV. Thus the total meson-baryon cross section with quark
annihilation can be approximated as follows [1]

σMB
tot (

√
sMB) =

=
∑

R=∆,N∗ < jM ,mM , jB ,mB ||JR,MR > 2TR+1
(2TM +1)(2TB+1)×

× π
p2

c.m.

ΓtotΓR→MB

(mR−√sMB)2+1/4Γ2
tot

(8.1)

with the total and partial
√

s-dependent decay widths Γtot and ΓR→MB.
In Eq. (8.1) < jM ,mM , jB ,mB ||JR,MR > denotes the Clebsch-Gordan

coefficient determined by meson jM , baryon jB and resonance JR angular
momenta and their projections mM , mB and MR, respectively. TM , TB and
TR are meson, baryon and resonance isospins, respectively, and pc.m. is c.m.
momentum of incoming particles. Similarly, we able to calculate the meson-
meson total interaction cross section going through the quark annihilation
[1].

8.2.2 Nucleon-nucleon resonance interaction cross sections.

Up to incident beam energies of 4− 5 GeV/nucleon particle production
in nucleon-nucleon collisions is dominated by resonance decays. To obtain
resonance excitation cross sections we can employ the practical approach of
[1]. In this approach the resonance excitation cross sections are determined
by

σi,j→k,l(
√

si,j) = (2Sk + 1)(2Sl + 1)
pk,l

pi,j

1
si,j

|M(
√

si,j,mk,ml)|2, (8.2)

where Sk and Sl are spins of outgoing particles and pk,l and pi,j are incoming
and outgoing c.m. momenta. The matrix element |M |2 is assumed to have
no spin-dependence with free parameters are tuned [3] to the experimental
measurements.

8.2.3 Detailed balance cross sections for resonance-nucleon
interactions.

The principle of detailed balance is based on the time-reversal invariance
of the reaction matrix element. It gives a possibility to determine differential
and total resonance-nucleon and resonance-resonance cross sections, e. g.
the cross sections for the processes: ∆1232N → NN and ∆1232∆1232 → NN .
It should be mentioned that inelastic baryon-resonance deexcitations are
very important for nuclear absorption of mesons, which are ”bound” in



CHAPTER 8. RESONANCE INTERACTION MODEL. 53

resonances. According to the detailed balance the cross sections of inverse
f → i and direct i → f reactions, where i and f denote initial and final
states, respectively, are related each other as follows:

σf→i =
p2

i

p2
f

gi

gf
σi→f , (8.3)

where p2
i,f are the c. m. momenta of the initial and final states,

gi,f = (2Si1,f1 + 1)(2Si2,f2 + 1)(2Ti1,f1 + 1)(2Ti2,f2 + 1) (8.4)

are denoting the spin-isospin degeneracy factors.
However, the Eq. (8.3) is exactly valid in the case of stable particles with

well-defined masses. For the case of one incoming resonance this equation
should be modified as it has been derived in [2].

8.2.4 Simulation of hadron resonance interactions.

To simulate two-body scatterings with resonance excitation and deexci-
tation we have to select a proper channel (according to the calculated cross
sections) and sample resonance masses (according to the Breit-Wigner distri-
bution with corresponding pole mass and pole width) and sample scattered
angle.

We can assume [1] that angular distributions for all relevant resonance
excitation and deexcitation processes can be approximated by the angular
of NN elastic scattering with the replacement s → s− (m1 + m2)2 + 4m2

N ,
where m1 and m2 denote the incoming hadron masses.
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Chapter 9

Reggeon based parton string
model.

9.1 Allowed inelastic hadron interactions.

The Reggeon based Parton String Model (RPSM) [1], [2], [3] is capable to
predict final states (produced hadrons which belong to the scalar and vector
meson nonets and the baryon/antibaryon octet and decuplet) of inelastic
hadron collisions.

The allowed bombarding energy in the hadron-nucleon collision should
be above 2-pion production threshold.

This model is also able to predict final states in the photon-nucleon
inelastic collisions at the initial energy above 2-pion production. The last
case is described in the separate chapter.

9.2 Sampling of the longitudinal strings.

9.2.1 MC procedure to define the number of produced strings.

In the Regge-Gribov approach[4] the probability for an inelastic collision
of nucleons i and j as a function of the squared impact parameter difference
b2
ij = (~bi −~bj)2 and s is given by

pij(~bi −~bj, s) = c−1[1− exp {−2u(b2
ij , s)}] =

∞∑
n=1

p
(n)
ij (~bi −~bj, s), (9.1)

where

p
(n)
ij (~bi −~bj , s) = c−1 exp {−2u(b2

ij , s)}
[2u(b2

ij , s)]
n

n!
. (9.2)

is the probability to find the n cut Pomerons[5] or the probability for 2n
string produced in an inelastic nucleon-nucleon collision, if we assume that
each cut Pomeron represents two strings. These probabilities are defined in
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terms of the (eikonal) amplitude of nucleon-nucleon elastic scattering with
the Pomeron exchange:

u(b2
ij , s) =

z(s)
2

exp[−b2
ij/4λ(s)]. (9.3)

The quantities z(s) and λ(s) are expressed through the parameters of the
Pomeron trajectory, α

′
P = 0.25 GeV −2 and αP (0) = 1.0808, and the pa-

rameters of the Pomeron-nucleon vertex R2
P = 3.56 GeV −2 and γP = 3.96

GeV −2:
z(s) =

2cγP

λ(s)
(s/s0)αP (0)−1 (9.4)

λ(s) = R2
P + α

′
P ln(s/s0), (9.5)

respectively, where s0 = 3.0 GeV 2 is a dimensional parameter.
In Eqs. (9.1,9.2, 9.4) the so-called shower enhancement coefficient c = 1.4

can be introduced to determine the contribution of diffractive dissociation[4].
Thus, the probability for diffractive dissociation of a pair of nucleons can be
computed as

pd
ij(~bi −~bj , s) =

c− 1
c

[ptot
ij (~bi −~bj , s)− pij(~bi −~bj, s)], (9.6)

where
ptot

ij (~bi −~bj , s) = (2/c)[1 − exp{−u(b2
ij , s)}]. (9.7)

The Pomeron parameters are found from a global fit of the total, elas-
tic, differential elastic and diffractive cross sections for the nucleon-nucleon
interaction at different energies.

The above equations are suitable for the pion-nucleon and the kaon-
nucleon collisions, but the Pomeron vertex parameters and shower enhance-
ment coefficients should be changed, e. g. Rπ

P 2 = 2.36 GeV −2, γπ
P = 2.17

GeV −2, sπ
0 = 1.5 GeV 2, cπ = 1.6 and RK

P 2 = 1.96 GeV −2, γK
P = 1.92

GeV −2, sK
0 = 2.3 GeV 2, cπ = 1.8 are obtained to describe properly the

total, elastic and diffractive cross sections.

9.2.2 Separation of hadron diffraction excitation.

For each pair of hadrons i and j with chosen impact parameters ~bi and ~bj

we should check whether they interact inelastically or not using the proba-
bility

pin
ij (~bi −~bj, s) = pij(~bi −~bj, s) + pd

ij(~bi −~bj, s). (9.8)

If an interaction will be realized, then we have to consider it to be diffractive
or nondiffractive with the probabilities

pd
ij(~bi −~bj , s)

pin
ij (~bi −~bj, s)

(9.9)
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and
pij(~bi −~bj, s)

pin
ij (~bi −~bj, s)

. (9.10)

9.3 Sampling of the kinky strings.

To determine the number of kinky strings are produced in hard hadron
collisions we assume [6], [7] that each cut Pomeron can be substituted either
by the two longitudinal strings as result of soft hadron interaction or by the
two kinky strings as result of hard hadron interactions.

At the moment it is not completely clear how to choose which cut
pomeron should be substituted by longitudinal and which one should be
substituted by kinky strings.

One recipe is based on the eikonal model [8], [7]

u(b2
ij, s) = usoft(b2

ij , s) + uhard(b2
ij, s). (9.11)

The soft eikonal part is defined as

usoft(b2
ij , s) =

γsoft

λsoft(s)
(s/s0)∆soft exp[−b2

ij/4λsoft(s)]. (9.12)

The hard part is calculated according to

uhard(b2
ij, s) =

σjet

8πλhard(s)
(s/s0)∆hard exp[−b2

ij/4λhard(s)]. (9.13)

The σjet = 0.027 mbarn and ∆hard = 0.47 were found [8] from the fit of the
two–jet experimental cross section [9]. Then from the global fit of the total
and elastic cross sections for pp collisions the values of γsoft = 35.5 mbarn,
∆soft = 0.07 and R2

hard = R2
soft = 3.56 GeV−2 were found.

Thus we can examine each cut Pomeron and substitute it by two kinky
strings with probability

Phard(b2
ij , s) =

uhard(b2
ij , s)

usoft(b2
ij , s) + uhard(b2

ij , s)
. (9.14)

9.4 Longitudinal string excitation.

9.4.1 Hadron inelastic collision.

Let us consider collision of two hadrons with their c. m. momenta
P1 = {E+

1 ,m2
1/E

+
1 ,0} and P2 = {E−

2 ,m2
2/E

−
2 ,0}, where the light-cone

variables E±
1,2 = E1,2 ± Pz1,2 are defined through hadron energies E1,2 =√

m2
1,2 + P 2

z1,2, hadron longitudinal momenta Pz1,2 and hadron masses m1,2,
respectively. Two hadrons collide by means of two partons with momenta
p1 = {x+E+

1 , 0,0} and p2 = {0, x−E−
2 ,0}, respectively.
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9.4.2 Diffractive string excitation.

In the diffractive string excitation (the Fritiof approach [10]) only momen-
tum can be transferred:

P ′
1 = P1 + q

P ′
2 = P2 − q,

(9.15)

where
q = {−q2

t /(x
−E−

2 ), q2
t /(x

+E+
1 ),qt} (9.16)

is parton momentum transferred and qt is its transverse component.

9.4.3 String excitation by parton exchange.

For this case (the QGSM approach [1]) the parton exchange (rearrange-
ment) and the momentum exchange are allowed [1],[2],[3]:

P ′
1 = P1 − p1 + p2 + q

P ′
2 = P2 + p1 − p2 − q,

(9.17)

where q = {0, 0,qt} is parton momentum transferred.

9.4.4 Transverse and longitudinal momenta generation.

The transverse component of the parton momentum transferred is sam-
pled according to the probability

P (qt)dqt =
√

a

π
exp (−aq2

t )dqt, (9.18)

where parameter a = 0.6 GeV−2.
The light cone parton quantities x+ and x− are generated independently

and according to distribution:

u(x) ∼ xα(1− x)β , (9.19)

where x = x+ > xmin or x = x− > xmin. The parameters α = −1 and
β = 0 are chosen for the FRITIOF approach [10]. In the case of the QGSM
approach [1] the parameters α and β are explained below. Masses of the
excited strings should satisfy the kinematic constraints:

P ′+
1 P ′−

1 ≥ m2
h1 + q2

t (9.20)

and
P ′+

2 P ′−
2 ≥ m2

h2 + q2
t , (9.21)

where hadronic masses mh1 and mh2 are defined by string quark contents.
Thus, the random selection of the values x+ and x− is limited by the above
constraints.
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9.4.5 String excitation by quark or diquark annihilation.

We consider also hadron-hadron inelastic processes, when antiquark from
hadron projectile annihilate with suitable quark from hadron target. In this
case excitation of a baryon (string with quark and diquark ends) or a me-
son (string with quark and antiquark ends) string is occurred, respectively.
These processes in the Regge theory correspond to the cut reggeon exchange
diagrams. Initial energy

√
s dependences of these processes cross sections

are defined by the intercepts of reggeon exchange trajectories. For example,
σπ+p→S(s) ∼ sαρ(0)−1, S denotes a string and αρ(0) is the intercept of the
ρ reggeon trajectory. Thus σπ+p→S(s) decreases with the energy rise. Thus
quark annihilation processes are important at relative low initial energies.
Another example of diquark annihilation processes is p̄p → S, which can be
used, e.g. in the hadron transport model to describe final states of the p̄p
annihilation is explained in the baryon annihilation model chapter.

Simulation of such kind process is rather simple. We should randomly
(according to weights are calculated using hadron wave functions) choose
quark/antiquark from projectile and find suitable (with the same flavour
content) partner for annihilation from target. The created string four-
momentum

P = P1 + P2 (9.22)

is approximated by the total reaction four-momentum, an annihilated sys-
tem has small neglected momentum (only low momenta quarks are able to
annihilate).

To determine statistical weights for quark annihilation processes are fol-
lowed a string production and separate them from processes, when two or
more strings can be produced, we can use the Regge motivated expression
for the total cross section:

σtot(s) =
∑

i

σi(s), (9.23)

where σi(s) is the cross section of the i-th subprocess. It can be the elastic
cross section σel(s) or the annihilation cross section with one string produc-
tion σS(s) or the diffraction cross section σD(s) or the multistring production
cross section σMS(s).

From knowledge of the total and elastic cross sections we can calculate
inelastic cross section:

σin(s) = σtot(s)− σel(s) = σS(s) + σD(s) + σMS(s). (9.24)

The diffraction and multistring cross sections are calculated according to the
Regge eikonal model as it was described above. Thus the statistical weight
for the annihilation process can be calculated as follows

WS(s) =
σin(s)− σD(s)− σMS(s)

σin(s)
. (9.25)
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9.4.6 String excitation by the parton exchange and hadron
structure functions.

In the QGSM approach [3] strings (as result of parton rearrangement)
should be spanned not only between valence quarks of colliding hadrons,
but also between valence and sea quarks and between sea quarks. Each
participant hadron should be split into set of partons: valence quark and
antiquark for meson or valence quark/antiquark and diquark/antidiquark for
baryon/antibaryon and additionally the (n − 1) sea quark-antiquark pairs
(their flavours are selected according to probability ratios u : d : s = 1 : 1 :
0.35), if a hadron is participating in the n inelastic collisions.

As an option the possibility to split a hadron additionally into the sea
diquark-antidiquark pairs can be included. Such assumption enhances the
antibaryon production in the central rapidity region.

Thus for each participant hadron we have to generate a set of light cone
variables x2n, where x2n = x+

2n or x2n = x−2n according to the distribution:

fh(x1, x2, ..., x2n) = f0

2n∏
i=1

uh
qi

(xi)δ(1 −
2n∑
i=1

xi), (9.26)

where f0 is the normalisation constant. Here, the quark structure functions
uh

qi
(xi) for valence quark/antiquark qv, sea quark and antiquark qs and va-

lence diquark/antidiquark qq are

uh
qv

(xv) = xαv
v , uh

qs
(xs) = xαs

s , uh
qq(xqq) = xβqq

qq , (9.27)

where αv = −0.5 and αs = −0.5 [1] for the non-strange quarks/antiquarks
and αv = 0 and αs = 0 for strange quarks/antiquarks, βuu = 1.5 and
βud = 2.5 for proton/antiproton and βdd = 1.5 and βud = 2.5 for neu-
tron/antineutron. Usually xi is selected between xmin

i ≤ xi ≤ 1, where
the model parameter xmin = 0.3/

√
s is a function of initial c.m. energy√

s. It prevents the production of strings with low masses (smaller than
hadron masses), while the whole selection procedure should be repeated.
Then the transverse momenta of partons qit are generated according to the
Gaussian probability Eq. (9.18) with a = 1/4λ(s) and under the constraint:∑2n

i=1 qit = 0. The partons are considered as the off-shell or virtual partons.

9.4.7 Baryon and meson splitting.

To perform a simulation of the string excitation we need to split hadron
and choose valence quark/antiquark and diquark/antidiquark. In the case of
a meson we split it into valence quark and antiquark (for the neutral mixed
mesons this sampling is performed according to the quark mixing probabili-
ties.) In the case of baryon we determine probabilities of baryon/antibaryon
state (a quark/antiquark and a diquark/antidiquark with given spin and



CHAPTER 9. REGGEON BASED PARTON STRING MODEL. 61

Baryon type Quark content
p 1/3uu11d + 1/6ud11u + 1/2ud00u
n 1/6ud11d + 1/2ud00d + 1/3dd11u

Σ+ 1/3uu11s + 1/6us11u + 1/2us00u
Σ0 1/3ud11s + 1/12us11d + 1/4us00d + 1/12ds11u + 1/4ds00u
Σ− 1/3dd11s + 1/6ds11d + 1/2ds00d
Ξ− 1/6ds11s + 1/2ds00s + 1/3ss11d
Ξ0 1/6us11s + 1/2us00s + 1/3ss11u
Λ0 1/3ud00s + 1/4us11d + 1/12us00d + 1/4ds11u + 1/12ds00u

∆++ uu11u
∆+ 1/3uu11d + 2/3ud11u
∆0 2/3ud11d + 1/3dd11u
∆− dd11d
Σ∗+ 1/3uu11s + 2/3us11u
Σ∗0 1/3ud11s + 1/3us11d + 1/3ds11u
Σ∗− 1/3dd11s + 2/3ds11d
Ξ∗0 1/3us11s + 2/3ss11u
Ξ∗− 2/3ds11s + 1/3ss11d
Ω− ss11s

Table 9.1: Baryon quark contents. Diquark indices indicate spin-isospin
states.
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isospin) from SU(6) symmetric baryon wave functions. These probabilities
are given below in the Table

We also can use these probabilities to sample baryon or baryon resonance
in the string fragmentation, assuming that a valence diquark/antidiquark
keeps its spin and isospin during reaction.

9.5 Kinky string excitation.

Having sampled configuration of kinky strings we can generate outgoing
gluon-kink momenta.

We assume that kinky strings are produced as result of gg → gg hard
interactions. Our generation of the outgoing gluons (kinks) momenta is
based on the two-jets inclusive production cross section:

dσgg

dx+
g dx−g d cos θ

= f(x+
g , Q2)f(x−g , Q2)

dσgg(ŝ)
d cos θ

, (9.28)

where we take ŝ = Q2 = x+
g x−g s and s is the total centre of mass energy

squared for the colliding system, which is calculated using xi and qti and m2
i

string end partons. The value of s should be large enough to produce gluons
with the transverse momentum above the chosen cutoff Q2

0 = 2 GeV 2. The
QCD gluon-gluon interaction cross section

dσgg(ŝ)
d cos θ

=
9πα2

s(Q
2)

32s
(3 + cos2 θ)3

(1− cos2 θ)2
(9.29)

was calculated in the Born approximation [11]. The scattering angle can be
expressed through the transferred momentum squared t̂:

cos θ = 1 +
2ŝt̂

[ŝ− (mi + mj)2)(ŝ− (mi −mj)2)]
, (9.30)

where mi and mj refer initial parton masses. The sampling of t̂ (see the
multiple parton hard scattering model chapter) is much simple than sam-
pling of the cos θ. The θ is the scattering angle in the centre of mass of the
parton-parton system and −z0 < cos θ < z0 with

z0 =

√
1− 4Q2

0

sx+x−
. (9.31)

The QCD running coupling constant

αs(Q2) =
12π

25 ln (Q2/Λ2)
, (9.32)

which is corresponding to four flavours and Λ2 = 0.01 GeV2 can be taken.
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f(x,Q2) is the momentum fraction distribution of gluons in hadron. It
can be chosen from[12] (see the particle properties chapter).

Thus the MC procedure to build the kinky strings can be outlined as
follows:

• Sample xi, qit and m2
i , where i = 1, 2, ..., 2n, for partons, which will

be on the 2n string ends for both soft and kinky strings.

• For each pair of kinky string calculate total centre of mass energy s
and sample x+ > x+

min and x− > x−min, where xmin = 2Q0/
√

s using
gluon distribution function (see the particle properties chapter).

• Sample the outgoing gluon centre of mass scattering angle θ using Eq.
(9.29).

• For each kinky string recalculate parton string end energies and mo-
menta.

This procedure should be improved taking into account initial and final state
gluon radiation (see the multiple parton hard scattering model chapter).
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Chapter 10

Baryon annihilation model.

10.1 Allowed hadronic reactions.

The baryon annihilation model is able to predict final states (produced
hadrons) with zero net baryon number in the baryon-antibaryon collision at
different energies. The produced hadrons belong to the scalar and vector
meson nonets and the baryon/antibaryon octet and decuplet.

The baryon annihilation process is considered in the diquark-antidiquark
annihilation approximation.

10.2 Baryon annihilation.

10.2.1 Baryon annihilation cross sections.

The baryon annihilation cross section is a function of the incoming and
outgoing particle types and their c. m. energy √si,j =

√
(pi + pj)2. Here

pi = (Ei,pi) and pj = (Ej ,pj) denote the four momenta of the incoming

particle i with mass mi =
√

E2
i − pi

2 and the incoming particle j with

mass mj =
√

E2
j − pj

2, respectively. We follow the approach [1] to calculate
baryon-antibaryon annihilation cross sections. In this approach the same
initial energy dependence is used for all baryon-antibaryon cross sections
and different baryon quark content is taken into account by scaling factor
obtained from the additive quark model (AQM)[2], [3] (in the additive quark
model cross section depends only from the quark content of the colliding
hadrons):

σB̄B(
√

s) =
σAQM

BB

σAQM
NN

σN̄N (
√

s), (10.1)
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where antiproton-proton annihilation cross section σann
p̄p is parametrised as

[4]

σann
p̄p (s) = σ0

s0

s

[
A2s0

(s − s0)2 + A2s0
+ B

]
(10.2)

and antiproton-neutron cross annihilation cross section is treated identically.
The values of parameters are σ0 = 120 mb, s0 = 4m2

N , A = 50 MeV and
B = 0.6.

10.2.2 Baryon annihilation simulation.

Simulation of such kind of processes is rather simple. One should ran-
domly, according to the weight calculated using hadron wave function (see
the baryon content table in the reggeon based parton string model chap-
ter), choose diquark/antidiquark from projectile and find suitable (with the
same flavour content) partner for annihilation from target. The created
string four-momentum

P = P1 + P2 (10.3)

is approximated by the total reaction four-momentum since annihilated sys-
tem has small neglected momentum (only low momenta quarks are able to
annihilate), where P1 and P2 are interacting baryon and antibaryon mo-
menta, respectively.

The baryon annihilation cross section σann(s) is used to determine sta-
tistical weights for diquark annihilation process:

Wann(s) =
σann(s)
σtot(s)

, (10.4)

where σtot(s) is the total baryon-antibaryon interaction cross section as a
function of the total c.m. energy squared.

The baryon annihilation model can be improved by adding another com-
peting subprocesses like the string junction annihilation, where three meson
strings can be produced (see papers[5], [6]).
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Chapter 11

Multiple parton hard
scattering model.

11.1 Allowed hadronic reactions.

The Multiple Hard Scattering Model (MHSM) is capable to predict final
state produced hadrons, which contain only u, d and s flavours and belong
to JP = 0−, 1± meson and JP = 1

2

+
, 3

2

+ baryon states.
The allowed bombarding energies for the nucleon-nucleon collisions should

be above 100 GeV in the laboratory system.
The counting of multiple hard parton rescatterings to explain the prop-

erties of the the high energy hadron and nucleus was suggested by E. Levin,
M. Ryskin and L. Gribov [1]. This particular model is based on the K.
Geiger’s approach [2], [3].

The reaction initialisation procedure was described in the particle prop-
erties chapter. This procedure have many similarities with the initialisa-
tion procedure for nucleus-nucleus collision (see the hadron transport model
chapter). Even more, we would stress that the multiple scattering model as
the model based on the relativistic particle kinetics has many algorithms,
which are similar to the algorithms are used in the hadron transport model.

11.2 Parton propagation.

The propagation of partons obeys the equation:

r(ti) = r(ti−1) +
p
E

∆t, (11.1)

where ∆t is a time step defined as ∆t = ti−ti−1 and p is parton 3-momentum
and E is parton energy. For on-shell partons with masses m, their energies
are E =

√
p2 + m2. For time-like partons with virtualities q2 > 0, their

energies are calculated according to E =
√

p2 + m2 + q2 and space-like par-
tons are considered as massless, i. e. E = |p|.
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11.3 Search of parton collisions.

For each pair (i, j) of partons their total interaction cross section σtot(sij)
is calculated. This cross sections obtained by evaluation (see below) of the
parton 2 → 2 differential cross sections and by sum over all possible final
states. The parton collision cross section is a function of the total parton
c.m. energy squared ŝij = (pi + pj)2, where pi = (Ei,pi) and pj = (Ej ,pj)
are four momenta of partons. The cross section is interpreted geometrically
as an interaction area with the radius

bij =

√
σtot(sij)

π
. (11.2)

It was assumed that two partons will collide, if their transverse (with re-
gards to the relative velocity vector of the partons) distance dij fulfils the
conditions:

dij ≤ bij (11.3)

and ∣∣∣∣∣(r
∗
i − r∗j )(p

∗
i − p∗j )

p∗i − p∗j

∣∣∣∣∣ < (vi + vj)
∆t

2
. (11.4)

The distance dij is the relative distance between two partons at time of
the closest approach calculated in their c.m. frame. These partons have
c.m. coordinates r∗i and r∗j and c.m. momenta p∗i and p∗j , respectively. vi

and vj are the parton c.m. velocities. It is determined by the equation:

d2
ij = (r∗i − r∗j )

2 − [(r∗i − r∗j )(p
∗
i − p∗j )]

2

(p∗i − p∗j )2
. (11.5)

For chosen parton i we can have more than one potential collision partner
j. For this case we choose as a collision partner the j-th parton with the
minimal distance dmin

ij .

11.4 Parton collision cross section.

We consider the following 2 → 2 parton collision processes:

(1)qq′ → qq′, qq̄′ → qq̄′

(2)qq̄ → q′q̄′,
(3)qq → qq,
(4)qq̄ → qq̄,
(5)qq̄ → gg
(6)gg → qq̄,
(7)qg → qg,
(8)gg → gg.

(11.6)
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The total parton collision cross section is calculated from

σ̂ij(ŝ) =
∑
kl

(
∫ p2

tcut

0
dp2

t

dσ̂soft
ij→kl(ŝ)

dp2
t

+
∫ ∞

p2
tcut

dp2
t

dσ̂hard
ij→kl(ŝ)
dp2

t

), (11.7)

where p2
t ≈ t̂û/ŝ ≈ −t̂, ŝ = (pi + pj)2, t̂ = (pi − pk)2, û = (pi − pl)2 are

Mandelstam variables. They are connected by relation: ŝ + û + t̂ =
∑

i m
2
i .

The total parton collision cross section is represented by two terms [4]: the
soft collision at pt ≤ ptcut term σ̂soft

ij→kl(ŝ) and the hard collision at pt > ptcut

term σ̂hard
ij→kl(ŝ). The collision resolution scale is defined as Q2

0 = p2
t .

Hard differential collision cross section is determined by

dσ̂hard
ij→kl(ŝ)

dt̂
=

πα2(Q2
0)

ŝ2
|M(ŝ, t̂, û)|2, (11.8)

where the squared matrix element is calculated in the lowest order pertur-
bative QCD and has been averaged over spin and colour [5], [6]. The matrix
elements for above enumerated parton processes are

|M (1)(ŝ, t̂, û)|2 =
4
9

(
ŝ2 + û2

t̂2

)
, (11.9)

|M (3)(ŝ, t̂, û)|2 =
4
9

(
ŝ2 + û2

t̂2
+

ŝ2 + t̂2

û2

)
− 8

27
ŝ2

t̂û
, (11.10)

|M (5)(ŝ, t̂, û)|2 =
32
27

(
û2 + t̂2

t̂û

)
− 8

3

(
t̂2 + û2

ŝ2

)
, (11.11)

|M (6)(ŝ, t̂, û)|2 =
1
6

(
û2 + t̂2

t̂û

)
− 3

8

(
û2 + t̂2

ŝ2

)
, (11.12)

|M (7)(ŝ, t̂, û)|2 = −9
4

(
û2 + ŝ2

ûŝ

)
+

(
û2 + ŝ2

t̂2

)
, (11.13)

|M (8)(ŝ, t̂, û)|2 =
9
2

(
3− ût̂

ŝ2
− ûŝ

t̂2
− ŝt̂

û2

)
, (11.14)

respectively. The squared matrix element for the process (2) can be de-
scribed by the same equation as for the process (1) with substitution ŝ ↔ t̂.
The squared matrix element for the process (4) can be expressed by the
same equation as for the process (3) with ŝ ↔ û.

The running coupling strength is determined by

α(Q2) =
12π

(33− 2nf ) ln(Q2/Λ2)
, (11.15)
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where nf is the number of quark flavours and Λ is the QCD renormalisation
scale.

The soft collision differential cross section is assumed in the form [4]:

dσ̂soft
ij→kl(ŝ)

dt̂
= W0(P ) exp

[
t̂− t̂cut

t̂0

]
, (11.16)

where t̂cut = −ŝ/2(1 −
√

1− 4p2
tcut/ŝ) and slope parameter t̂0 = 1 GeV 2 is

chosen. The normalisation

W0(Pz) =
σ̂inel(Pz)− σhard(Pz)

exp[−t̂cut/t̂0]− 1
(11.17)

depends from the initial nucleon momentum Pz. The σ̂inel = σ̂hard + σ̂soft

is required to describe measured inelastic nucleon-nucleon cross section.

11.5 Parton scattering simulation.

We can select t̂ (see also the hadron elastic scattering model chapter)
using the probability distribution:

W (t̂) =
1

σ̂(ŝ)

∫ t̂

t̂min

dσ̂(ŝ)
dt̂

dt̂, (11.18)

where ŝ and t̂ are the total c.m. parton energy squared and parton mo-
mentum transferred t̂min, respectively. t̂min is defined by the transverse
momentum cut. In the above equation the normalisation is done according
to

σ̂(ŝ) =
∫ t̂max

t̂min

dσ̂(ŝ)
dt̂

dt̂. (11.19)

The azimuthal symmetry is assumed. The scattering angle cos θ is deter-
mined by the equation:

cos θ = 1 +
2ŝt̂

[ŝ− (mi + mj)2)(ŝ− (mi −mj)2)]
, (11.20)

where mi and mj refer initial parton masses.

11.6 Initial state radiation.

The partons with negative virtualities can participate in space-like cas-
cades, when their virtualities increase from initial values q2

0 = −Q2 at which
they were originally resolved in the nucleon structure function until virtu-
alies q2 = −Q2

0. At each decay step we will also have the parton are produced
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with the time-like virtuality. It can initiate a time-like cascade. The prob-
ability for a space-like parton in−1 to be involved into decay in−1 → inkn

between Q2 and Q2 + dQ2 is [7]

dWin−1in(xin−1 , xin , Q2) =
α(Q2)
2πQ2

Fin−1(xin−1 , Q
2)

Fin(xin , Q2)
1
ẑ
Pin−1→inkn(ẑ)dẑdQ2,

(11.21)
where parton x = pz/Pz , ẑ = xin/xin−1 and Q2 is taken at scattering vertex
of parton in. Here Fi(xi, Q

2) presents the nucleon structure function.
The backward evolution procedure [7] can be applied to simulate space-

like cascades. We consider process starting from the scattering vertex, i.e.
we are moving from virtuality q2

n < 0, where |q2
n| > |q2

n−1, to virtuality
q2
n−1 < 0.

The Sudakov form factor for space-like decay, i.e. probability that decay
will not occurred, is defined by

Ss(xin , Q2, Q2
0) = exp

−∑
in−1

∫ Q2

Q2
0

dQ′2
∫ ẑmax(Q′2)

ẑmin(Q′2)
dẑdWin−1in(xin−1 , xin , Q′2)

 .

(11.22)
From the Sudakov form factor we can find the probability distribution for
parton in to be produced in the branching in−1 → in + kn between Q2 and
Q2 + dQ2:

P decay
s (xin , Q2

max, Q2) = Ss(xin , Q2
max, Q2

min)
d

dQ2

(
1

Ss(xin , Q2
max, Q2

min)

)
,

(11.23)
where Q2

max is the maximal value of virtuality for the parton i and Q2
min =

Q2
0.

From the above distribution we can select Q2 for the generated decay by
solving the equation:

Ss(xin , Q2, Q2
0)) =

Ss(xin , Q2
max, Q2

0)
ς

, (11.24)

where ς is random number, which is uniformly distributed between 0 and 1.
The situation when ς < Ss(xin , Q2, Q2

0) means that was no decay occurred.
If decay was occurred, the next step is to specify partons according to the
relative probabilities of allowed channels:∫

dzγin−1→inkn

Fin−1(xin−1 , Q
2)

Fin(xin , Q2)
, (11.25)

where γin−1→inkn is branching functions [8], [9]. Having Q2 and parton
flavours, we can select ẑ according to the probability given by integrand
of Eq. (11.25). Then decay kinematics, i.e. daughter parton 4-momenta
and virtualities can be constructed. The outlined procedure is repeated by
replacing xin → xin−1 Q2

max → Q2 until the virtuality becomes nearly Q2
0.
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11.7 Final state radiation.

The time-like parton produced in the hard scattering has virtuality m2
i ≈

Q2
0 > 0, where Q2

0 is the resolution scale at hard parton collision. It will
decay with probability

dWi→kl(ξ, z) = PLP (m2
i ,∆t)

α(Q2)
2πξ

Pi→kl(z)dzdξ. (11.26)

The first factor PLP (m2
i ,∆t) takes into account the virtual parton life-time

1/mi [11]. It is a probability for virtual parton to decay at given time
step ∆t. The probability PLP (m2,∆t), which was introduced in [4] effec-
tively describes the Landau-Pomeranchuk effect [10] by the time delay of
parton emission. The next two factors determine the QCD Altarelli-Parisi
branching probability [9] with the branching factor Pi→kl(z). The variables
z = Ek/Ei, 1− z = El/Ei, ξ = (pk · pl)/(EkEl) ≈ 1− cos θkl [12] and m2 are
connected with each other through the relation

m2
i = m2

k + m2
l + 2Eiz(1 − z)ξ, (11.27)

where Ei, Ek, El and mk, ml are parton energies and masses, respectively.
The Q2 scale is chosen as

Q2 = 2z2(1− z)2E2
i ξ. (11.28)

Q2 ≈ k2
t , where kt the relative transverse momentum between partons k and

l at the decay vertex.
The Sudakov form factor for time-like decay, i. e. probability that decay

will not occurred between ξ and ξmin, is defined as follows

St(ξmin, ξ) = exp[−
∫ ξ

ξmin

dξ′
∫ z+

z−
dzWi→kl(ξ′, z)], (11.29)

where value ξmin regularizes infrared divergences and values z± regularize
collinear divergences. These values are represented by

ξmin =
4m2

cut

E2
i

, (11.30)

z− =
mcut√
ξEi

(11.31)

and
z+ = 1− z−, (11.32)

where m2
cut is a cutoff virtuality.
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From the Sudakov form factor we can find the probability distribution
for parton i to decay into partons k and l between ξ and ξ+dξ with ξ < ξmin:

P decay
t (ξ, ξmax) = St(ξmin, ξmax)

d

dξ

(
1

St(ξ, ξmin
)
)

, (11.33)

where ξmax = (pi·pj)/(EiEj) is the value was calculated at parton i produced
vertex, i.e. at a parton-parton collision n + m → i + j. The above defined
probability distribution is used for time-like cascades generation [13]. The
decay is simulated by solving the equation

St(ξ, ξmin) =
St(ξmax, ξmin)

ς
, (11.34)

where ς is random number uniformly distributed between 0 and 1. From
the equation we find the virtuality of parton i. If this virtuality is less than
the cutoff virtuality m2

cut, then time like branching will be stopped.
In the case of decay we can select decay channel, i.e. specify the flavour

of the daughter partons using the relative probabilities given by integrals
over z for branching functions γi→kl(z) [8], [9]:

γq→qg = Cq

(
1 + z2

1− z

)
, (11.35)

γq→gq = Cq

(
1 + (1− z)2

z

)
, (11.36)

γg→gg = 2Cg

(
z(1− z) +

z

1− z
+

1− z

z

)
(11.37)

and
γg→qq̄ =

1
2

(
z2 + (1− z)2

)
, (11.38)

where Cq = (n2
c − 1)/2nc, Cg = nc with nc = 3. The last step for known

virtuality of i and k and l flavours is to select variable z according to the
probability distribution γi→kl(z).

The decay kinematics, i.e. daughter parton 4-momenta and virtualities
can be constructed [13] from the values of ξ and z. The decay chain is
generated until virtualities of partons drop bellow m2

cut. Then partons can
be put on mass shell with the effective masses [13] mg = 0.5mcut and mq =√

0.25m2
cut + m2

q for gluons and quarks, respectively.

11.8 Colour neutral cluster formation.

The hadronization of coloured partons can be done by means of the colour
neutral cluster formation [14]. The created clusters will subsequently decay
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into stable hadrons and hadron resonances (see the cluster decay chapter).
After partonic stage of the collision evolution we will have the time-like pro-
duced partons, as well as the space-like and valence mass shell spectator
partons. These two types of partons will arise two types of clusters: pro-
duced clusters from the time-like partons and spectator clusters from the
space-like and mass shell partons.

Before to look for produced cluster parton candidates, the time-like glu-
ons are forced to split into collinear qq̄ pairs. The q and q̄ have random (with
uniform probability) momenta, which collinear with the parent gluon mo-
mentum. If the invariant mass of pair exceeds the kaon mass, their flavours
are assigned to the u, d or s randomly with the equal probabilities.

Each time-like quark can be combined with an time-like or mass shell
antiquark, if they have no common gluon parent. The quark combining
procedure can be outlined as follows:

1. The phase-space distances

dij =
√

xν
ijxij,ν

√
pµ

ijpij,µ, (11.39)

where x denotes 4-vector (r, t), xij = xi − xj and pij = pi − pj are
calculated for all possible antiquark partners;

2. The chosen quark will form a cluster with an antiquark having minimal
phase space distance. The cluster momentum and cluster radius vector
are determined according to

P ν
c = pν

i + pν
j , (11.40)

Rc =
miri + mjrj

mi + mj
, (11.41)

respectively.

The spectator clusters are created from the spectator partons having the
same sign of the longitudinal momenta. Their four momenta are calculated
according to

P ν
c =

∑
i

pν
i (11.42)

and their radius vectors are

Rc =
1
n

∑
i

ri, (11.43)

where n is number of partons included into a cluster. To fulfil the charge
conservation law, if it was broken during spectator cluster assignment proce-
dure, one of the lowest energy charge unbalanced quark can be put on mass
shell and assigned to a produced cluster. If it is necessary this procedure is
repeated until the restoration of charge conservation law.



CHAPTER 11. MULTIPLE PARTON HARD SCATTERING MODEL.76

11.9 Hadronization procedure.

The produced clusters decay into stable or resonance hadrons. We can use
the cluster decay model described in the cluster decay chapter. For hadron
containing u, d and s quarks the JP = 0−, 1± meson and JP = 1

2

+
, 3

2

+

baryon states are allowed. If mass of a produced cluster is small to decay
into 2 hadrons, then it is substituted by the lightest hadron having the same
quark content and its energy-momentum is adjusted keeping the energy-
momentum of produced cluster system.

If mass of a cluster is larger than M2
s = 4 GeV than cluster is considered

as a string and string decay model (see the string decay model chapter) can
be invoked to decay it.

The spectator clusters are pulled on the mass shells of two barions
through the pairwise interaction [14] with squared momentum transfer t,
which is distributed according to

W (t) ∼ exp (At + Bt2), (11.44)

with parameters A and B are taken from the single and double nucleon-
nucleon diffractive scattering measurements.
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Chapter 12

Nuclear properties.

12.1 Nuclear masses and binding energies.

We can tabulate [1] values of nuclear masses and binding energies. We also
have a possibility to determine nuclear masses as well as binding energies
from the liquid drop model formulas.

12.1.1 Cameron’s formula.

According to the Cameron’s liquid drop model formula [2] values of mass
defect dM(A,Z) can be determined from the equation:

dM(A,Z) = MV olume(A,Z) + MSurface(A,Z) + MCoulomb(A,Z)+
+MExchange(A,Z) + ∆C

Shell(A,Z) + ∆C
Pair(A,Z)+

+(A− Z)mN + ZmH .
(12.1)

Here

MV olume(A,Z) = −17.035

[
1− 1.846

(
A− 2Z

A

)2
]

A (12.2)

is the volume energy,

MSurface(A,Z) = 25.8357

[
1− 1.712

(
A− 2Z

A

)2
] [

1− 0.62025
A2/3

]2
A2/3

(12.3)
is the surface energy,

MCoulomb(A,Z) = 0.779
Z(Z − 1)

A1/3

[
1− 1.5849

A2/3
+

1.2273
A

+
1.5772
A4/3

]
(12.4)

is the Coulomb energy and

MExchange(A,Z) = −0.4323
Z4/3

A1/3

[
1− 0.57811

A1/3
− 0.14518

A2/3
+

0.49597
A

]
(12.5)
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is the exchange energy. The masses mN = 8.07169 MeV and mH = 7.8922
MeV are the mass excesses of neutron and the hydrogen atom, respectively.
The values of ∆C(A,Z) = ∆C

Shell(A,Z) + ∆C
Pair(A,Z) are corrections con-

nected with influences of shell structure and pairing effect. These values are
tabulated in [2].

12.1.2 Bethe-Weizsäcker’s formula.

In this approach[3] a nucleus binding energy B(A,Z) is given by

B(A,Z) =

= −0.01587A + 0.01834A2/3 + 0.09286
(
Z − A

2

)2
+ 0.00071 Z2

A1/3 ,
(12.6)

i.e. volume, surface and Coulomb energy terms are summed.

12.2 Nuclear potential for nucleons.

For i-th nucleon this potential is defined by sum of the Fermi-potential

TF (ri) =
[pF (ri)]2

2mi
, (12.7)

the binding energy B(A,Z) and the Coulomb potential VC(Z, ri) (for pro-
tons only):

V (A,Z, ri) = TF (ri) + B(A,Z) + VC(Z, ri). (12.8)

The Fermi momentum in the local Thomas-Fermi approximation [4] de-
pends from the proton or neutron density ρZ,N(r) as follows

pF (r) = h̄(3π2ρZ,N)1/3, (12.9)

were h̄ = 197.327 MeVfm.
The Coulomb barrier is (in MeV) given by

VC(A,Z) = C
Z

r0(1 + A1/3)
, (12.10)

where C = 1.44 MeVfm and r0 = 1.3 fm.

12.3 Fission barriers.

The fission barriers are determined as differences between the saddle-
point and ground state nuclear masses. In the general case fission barriers
are functions of the charges Z, atomic mass numbers A, excitation energies
of fissioning nuclei E∗, their angular momenta L and their deformations α.
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Shell structure effects play an essential role at the fission barrier. The
height of fission barrier can be approximated as follows

Bfis = B0
fis + ∆Shell + ∆SP , (12.11)

where B0
fis is the so-called liquid drop component of the fission barrier,

∆Shell is the shell correction for the mass of a nucleus in the ground state
and ∆SP is the shell correction for the mass of nucleus in the saddle point.
The last correction is very important for the actinide nuclei. It leads to a
double-humped shape of the fission barrier.

There are many models for fission barriers: the phenomenological ap-
proach of Barashenkov et al. [6], the semiphenomenological approach of
Barashenkov and Gereghi [7], the liquid-drop model (LDM) with Myers and
Swiatecki’s parameters [8], the LDM with Pauli and Ledergerber’s param-
eters [9], the single-Yukawa modified LDM of Krappe and Nix [10], the
Yukawa-plus-exponential modified LDM [11], the subroutine BARFIT of
Sierk [12], which provides macroscopic fission barriers of rotating nuclei in
the Yukawa-plus-exponential modified LDM [11], double-humped fission bar-
riers for transuranium nuclides have been proposed in [13]. As the first ap-
proximation we can implement the simple semiphenomenological approach,
which has been suggested by Barashenkov and Gereghi [7]. In their approach
fission barriers Bfis(A,Z) are approximated by

Bfis = B0
fis + ∆C

Shell + ∆C
Pair + δ(A,Z), (12.12)

where shell and pairing corrections are taken from the Cameron’s liquid
drop mass formula [2]. δ(A,Z) = 0 for even Z and even N = A − Z,
δ(A,Z) = 1.248 MeV for odd A and δ(A,Z) = 2.496 MeV for odd Z and
odd N . According to the Eq. (12.12) fission barrier height B0

fis(x) varies
with the fissility parameter x. B0

fis(x) is determined by

B0
fis(x) = aSA2/30.83(1 − x)3 (12.13)

for 2/3 ≤ x ≤ 1 and

B0
fis(x) = aSA2/30.38(3/4 − x) (12.14)

for 1/3 ≤ x ≤ 2/3. The fissility parameter x is given by

x =
E0

C

2E0
S

=
(aC/2aS)Z2/A

1− k[(N − Z)/A]2
, (12.15)

where E0
C and E0

S are Coulomb and surface energies of a spherical nucleus,
respectively.

The liquid drop model parameters aS = 17.9439 MeV, aC = 0.7053 MeV
and k = 1.7826 are taken from the paper[5].
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The fission barrier height is a function of the excitation energy. There is
a possibility to use empirical relation has been proposed in [6] to estimate
the excitation energy E∗ dependence:

Bfis(E∗) =
Bfis

1 +
√

E∗
2A

. (12.16)

12.4 Level density parameter.

This parameter plays a major role in the level density models. The
parametrization a = A/k MeV−1, where k ≈ 8, is the approximation, which
is frequently employed in equilibrium decay calculations. It is not adequate
in the neighborhood of the magic nuclei. Instead, marked shell effects ap-
pear for these nuclei and these effects manifest themselves by an associated
decrease of the level density parameter at the binding energy. It has been
argued by Ignatyuk [14] that these shell effects disappear with the rise of
excitation energy. So at sufficiently high excitation energies a simple linear
mass dependence of the level density parameter is recovered. The Iljinov’s
systematics for a(Z,A,E∗) [15] can be implemented. The authors of [15]
used a functional form proposed by Ignatyuk [14]:

a(Z,A,E∗) = a0(A)
[
1 + ∆C

Shell(Z,A)
f(E∗ −∆Pair)

E∗ −∆Pair

]
, (12.17)

where
a0(A) = αA + βA2/3Bs (12.18)

is the Fermi-gas value of the level density parameter at high excitation en-
ergies and

f(U) = 1− exp (−γE∗). (12.19)

Bs is the ratio of the surface of a nucleus to the surface of the sphere with
the same volume. It was taken Bs = 1. ∆Shell(Z,A) is the shell correction
in the nuclear mass formula [2]. The parameters α = 0.072, β = 0.257 and
γ = 0.052 MeV−1 were found in [15].

12.5 Nucleus initial state simulation.

12.5.1 Sampling of the nucleon coordinates and momenta.

The initialisation of each nucleus, consisting from A nucleons and Z pro-
tons (N = A − Z neutrons) with coordinates ri and momenta pi, where
i = 1, 2, ..., A should be performed in the case of nuclear collision simula-
tion. For the hadron transport model, the intranuclear hadron transport
model and for the pomeron based parton string model the MC initialisation
procedures are similar except of some peculiarities, which can be taken into
account (see the corresponding chapters):
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• Nucleon radii ri are selected randomly in the rest of nucleus according
to proton or neutron density ρ(ri). For heavy nuclei with A > 16 [16]
normalised nucleon density is

ρ(ri) =
ρ0

1 + exp [(ri −R)/a]
(12.20)

where

ρ0 ≈ 3
4πR3

(
1 +

a2π2

R2

)−1

. (12.21)

Here R = r0A
1/3 fm and r0 = 1.16(1− 1.16A−2/3) fm and a ≈ 0.545

fm. For light nuclei with A < 17 normalised on unity nucleon density
is given by a harmonic oscillator shell model [17], e. g.

ρ(ri) = (πR2)−3/2 exp (−r2
i /R

2), (12.22)

where R2 = 2/3 < r2 >= 0.8133A2/3 fm2 or

ρ(ri) =
4

π3/2R3

[
1 +

A− 4
6

(
ri

R

)2
]

exp (−r2
i /R

2), (12.23)

where

R2 =
(

5
2
− 4

A

)−1

(< r2
ch >A − < r2

ch >p) (12.24)

The mean charge radii squared of the nucleus < r2
ch >A and proton

< r2
ch >p are taken from the lepton-nucleus scattering experiments

[18]. To take into account nucleon repulsive core it is assumed that
internucleon distance d > 0.8 fm;

• The initial momenta of the nucleons are randomly chosen between 0
and pF

max(r), where pF
max(r) is calculated according to the Eq. (12.9).

• To obtain coordinate and momentum components, it is assumed that
nucleons are distributed isotropically in configuration and momentum
spaces;

We assume [19] that nucleons are not points in configuration space
and they are represented by Gaussian shaped density distributions:

φ(xi, t) =
(

2α
π

)3/4

exp {−α[xi − ri(t)]2 +
i

h̄
pi(t)xi}, (12.25)

where α = 0.25 fm−2 is a model parameter. It gives us a possibility
to take into account the Pauli blocking (the Pauli blocking procedure
is described in the hadron transport chapter), i. e. if the phase space
of i-th nucleon is already occupied by other nucleons, its sampling is
deserted;
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• A nucleus must be centred in configuration space around 0, i. e.∑
i ri = 0 and it must be at rest, i. e.

∑
i pi = 0 and

∑
i ri × pi = 0.

To provide the first two conditions we can perform shifts of nucleon
coordinates r′i = ri − 1/A

∑
i ri and momenta p′i = pi − 1/A

∑
i pi of

nucleon momenta.

• There is a possibility to unpack a nucleus into ”free” streaming nu-
cleons by computing the energy per nucleon as e = E/A = mN +
B(A,Z)/A, where mN is nucleon mass and a nucleus binding energy
B(A,Z) is given by the Bethe-Weizsäcker formula (Eq. (12.6)) and
assign the effective mass meff

i =
√

(E/A)2 − p2′
i for each nucleon.

12.5.2 Random rotation of a nucleus.

The nucleus initialisation can be performed at once, even if one needs
to simulate multiple nuclear interactions, when the same nucleus is partic-
ipating. Each time before interaction the nucleus is randomly rotated in
coordinate and momentum spaces. To perform this rotation three Euler an-
gles: 0 < θ1 < 2π, 0 < θ2 < 2π and 0 < θ3 < 2π are selected (with uniform
probabilities) randomly. Then the nucleon coordinates ri = {rxi, ryi, rzi}
and momenta pi = {pxi, pyi, pzi} are rotated sequentially:

ri → riR1 → riR2 → riR3, (12.26)

and
pi → piR1 → piR2 → piR3, (12.27)

where the rotation matrices are detrmined as follows

R1 =
cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1
(12.28)

and

R2 =
cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2

(12.29)

and

R3 =
cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1
(12.30)
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Chapter 13

Nuclear cross section model.

13.1 Glauber model at high energies.

We can use the Glauber approach [1] to calculate total, elastic and differ-
ential elastic hadron-nucleus and nucleus-nucleus interaction cross sections
at high (more than hundreds of MeV) energies.

13.1.1 Hadron-nucleus and nucleus-nucleus total and elastic
interaction cross sections.

The knowledge of the nuclear elastic scattering amplitude F (~q, s), where
s is total hadron-nucleon or nucleon-nucleon c.m. energy squared and ~q is
the momentum transfer vector, gives us a possibility to calculate total cross
section (the optical theorem)

σtot(s) =
4π
k

ImF (0, s), (13.1)

where k is a hadron or nucleon projectile momentum in the target nucleus
rest frame. Using this amplitude we are also able to calculate differential
elastic cross section

dσel(s)
dΩ

= |F (~q, s)|2 (13.2)

or
dσel(s)

dt
=

π

k2
|F (~q, s)|2 (13.3)

and total elastic cross section

σel(s) =
∫

dΩ|F (~q, s)|2 =
1
k2

∫
dq|F (~q, s)|2. (13.4)

The elastic scattering amplitude can be expressed through the profile
function

Γ( ~B, s) = 1− S( ~B, s) (13.5)
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as follows
F (~q, s) =

ik

2π

∫
d2 ~B exp [i~qΓ( ~B, s)], (13.6)

where S( ~B, s) is the S-matrix and ~B is the impact parameter vector per-
pendicular to the incident momentum ~k.

The total and elastic cross sections can be obtained from the profile
function Γ( ~B, s):

σtot(s) = 2
∫

d2 ~BReΓ( ~B, s) (13.7)

and
σel(s) =

∫
d2 ~B|Γ( ~B, s)|2. (13.8)

Thus to calculate the total, elastic and differential cross sections we need
to know S-matrix S( ~B, s).

13.1.2 Hadron-nucleus and nucleus-nucleus S-matrix.

Let us consider nucleus-nucleus scattering at given impact parameter ~B
and at given squared total c.m. nucleon-nucleon energy s.

In the Glauber approach [1] an elastic nucleus-nucleus interaction is a
result of the interactions between nucleons from the projectile and target nu-
clei. The S-scattering matrix SAB( ~B, s) for nucleus A on nucleus B collision
in the impact parameter representation can be expressed as follows:

SAB( ~B, s) =

〈
A∏

i=1

B∏
j=1

[1− Γij( ~B +~bA
i −~bB

j , s)]

〉
(13.9)

where < ... > means integration over the sets {~bA
i } and {~bB

j } with weight
functions TA({~bA}) and TB({~bB}). These functions

TA,B(~bA,B
i ) =

∫
ρ((~bA,B

i zi)dzi (13.10)

can be obtained from the nucleon densities ρ((~bA,B
i , zi). The nucleon profile

function is

Γij( ~B +~bA
i −~bB

j , s) =
σij(s)

4πβij(s)
exp

[
−( ~B +~bA

i −~bB
j )2

2βij(s)

]
. (13.11)

The last equation has been obtained by means of the following nucleon-
nucleon amplitude parametrisation:

fij(q, s) =
ikσij(s)

4π
exp

[
−1

2
βij(s)q2

]
. (13.12)
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The equation (13.9) is a result of the assumptions that the AB-scattering
phase is sum of the nucleon–nucleon scattering phases and no correlations
between nucleons inside a nucleus are taken into account.

The hadron-nucleus S-matrix is calculated in similar way using Eq.
(13.9) for i = 1 and ~bi = 0. In this case we need to apply the parame-
ter σhN(s) and βhN (s) in the nucleon profile function.

As we will show below the hadron-nucleon and nucleon-nucleon elastic
scattering amplitudes at high energies can be expressed through the reggeon-
nucleon vertex parameters and the parameters of the reggeon trajectory[2].

13.2 High energy MC cross section algorithm.

To obtain total (see Eq. (13.7)) and elastic (see Eq. (13.8)) hadron-
nucleus or nucleus-nucleus cross section at given initial energy we have to
integrate the nucleon profile function Γ( ~B, s) = 1−S( ~B, s). This can be with
help of the Monte Carlo averaging procedure [3], [4] are used to obtain the S-
matrix values from the Eq. (13.9). These values depend on the squared total
c.m. energy of the colliding (i, j) pair sij = (pi + pj)2, where pi and pj are
the particle 4-momenta, respectively. Performing Monte Carlo averaging
one has to pick up projectile and target nucleons randomly according to
the weight functions T ([~bA

i ]) and T ([~bB
j ]), respectively. The last functions

represent probability densities to find sets of the nucleon impact parameters
[~bA

i ], where i = 1, 2, ..., A and [~bB
j ], where j = 1, 2, ..., B. Then by integration

over ~B we find the total and elastic cross sections. To obtain the elastic
differential cross section from the Eqs. (13.2) and (13.3) we have at first to
perform the back Fourier transform of the nucleon profile function (see Eq.
(13.6)).
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Chapter 14

Hadron transport model.

14.1 Reaction initial state simulation.

14.1.1 Allowed hadron reactions.

The Hadron Transport Model (HTM) is capable to predict final states, i.
e. produced hadrons, which belong to the pseudoscalar meson nonet and the
baryon/antibaryon octet, for the reactions on nucleon and nuclear targets
with a large variety of hadron (the same types as final state hadrons) and
nuclear projectiles. The allowed bombarding kinetic energy in the hadron-
nucleon, hadron-nucleus and nucleus-nucleus collisions is recommended to
be more than 200 MeV in the laboratory frame. The upper limit of initial
kinetic energy is approximately 10 GeV per initial particle.

This model is also able to predict final states in the photon-nucleon and
photon-nucleus inelastic collisions. The last case is described in the separate
chapter.

One can also apply this model to simulate hadron kinetics after the ”par-
ton string” stage of nuclear interaction, taking account secondary hadron
rescatterings.

We can simulate initial nuclear state, when a nucleus becomes ”un-
packed” into the free streaming nucleons, according to the procedure de-
scribed in the nuclear properties chapter.

14.1.2 Impact parameter sampling.

The impact parameter 0 ≤ b ≤ Rp + Rt is randomly selected according
to the distribution:

P (b) = b, (14.1)

where Rp and Rt are the target and projectile radius, respectively. In the
case of nuclear projectile or target the nuclear radius is determined from the
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condition:
ρ(R)
ρ(0)

= 0.01. (14.2)

Then one should update the transversal components of nucleon coordinates:

rxi → rxi + bx (14.3)

and
ryi → ryi + by. (14.4)

14.1.3 Lorentz boost of nucleon longitudinal momenta and
energies.

In the case of fast moving nucleus with initial momentum per nucleon
P0 = {0, 0, Pz0} one should perform Lorentz transformation of the nucleon
longitudinal momenta

pzi → γi(pzi − βiei) (14.5)

and the nucleon energies

ei → γi(ei − βipzi), (14.6)

where βi is defined as

βi =
Pz0√

P 2
z0 + meff2

i

(14.7)

and γi is given by

γi =
1√

1− β2
i

. (14.8)

The meff
i denote an effective i-th nucleon mass (see the nuclear properties

chapter).

14.1.4 Lorentz contraction of the fast moving nucleus.

For the fast moving nucleus one needs also to perform its Lorentz con-
traction, i. e.

rzi → rzi/γi. (14.9)

14.1.5 Longitudinal shift of the target nucleus.

For target nucleus, if a projectile is centred around the origin of coordinate
system, one should perform a shift of the nucleon longitudinal coordinates:

rzi → rzi + ∆rz/γi, (14.10)

where ∆rz = Rp + 1.5 fm + Rt + 1.5 fm can be taken.
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14.1.6 Initial angular momentum.

In the case of hadron-nucleus collision we can determine the initial angular
momentum of the target nucleus:

~L = ~p0 × ~r0, (14.11)

where ~p0 and ~r0 are initial momentum and enter radius vector of incoming
hadron in the target nucleus rest frame.

14.2 Hadron propagation.

The hadrons are transported along the straight line paths (cascade ap-
proach), i. e. particle coordinates r for the time ”shift” ∆t = t1−t0 between
t0 and t1 are updated according to

r(t1) = r(t0) +
p(t0)
E(t0)

∆t, (14.12)

where p and E denote particle momenta and energies. The intranuclear
nucleons are assumed to be ”frozen” before collision, i. e. they are allowed to
move only with the c. m. nucleus velocity. However, to find interaction cross
sections or characteristics of the secondary particles produced in the course
of the intranuclear collision their Fermi momenta are taken into account.

14.3 Selection of particle collisions and particle
decays.

For each pair (i, j) of particles their total interaction cross section σtot(sij)
is calculated. This cross section depends on the particle quantum numbers.
It is also a function of the total particle c.m. energy squared sij = (pi +
pj)2, where pi = (Ei,pi) and pj = (Ej ,pj) are four momenta of particle

i with mass mi =
√

E2
i − pi

2 and particle j with mass mj =
√

E2
j − pj

2,
respectively. The cross section is interpreted geometrically as an interaction
area with radius

bij =

√
σtot(sij)

π
. (14.13)

It is assumed that two particles will collide, if their transverse (with re-
gards to the relative velocity vector of the particles) distance dij fulfils the
condition:

dij ≤ bij . (14.14)

For the distance dij we choose the relative distance between two particles
at the time of the closest approach calculated in the c.m. frame of two
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particles with coordinates x∗i and x∗j and momenta p∗i and p∗j , respectively.
It is determined by

d2
ij = (x∗i − x∗j )

2 − [(x∗i − x∗j )(p
∗
i − p∗j )]

2

(p∗i − p∗j )2
. (14.15)

For the distance dij one can choose also the distance of the closest ap-
proach at the time in the rest frame of particle i or in the rest frame of
particle j. In the rest frame of one or another particle it can be calculated
using the Lorentz invariant expression [1]:

d2
ij = −(∆xij)2 −

(∆xijpi)2p2
j + (∆xijpj)2p2

i − 2(∆xijpi)(∆xijpj)(pipj)
(pipj)2 − p2

i p
2
j

,

(14.16)
where notation ∆xij = xj − xi and xi = (ti,xi) and xj = (tj,xj) are four
coordinates of particles. Because the particles are distance dij apart, in an
reference frame the collision event will have two different times tij and tji.

These times are given by

tij − ti =
Ei[(∆xijpi)p2

j − (∆xijpj)pipj ]
(pipj)2 − p2

i p
2
j

(14.17)

and

tji − tj =
Ej[(∆xijpj)p2

i − (∆xijpi)pipj]
(pipj)2 − p2

i p
2
j

. (14.18)

The particle j is moving away from particle i at the time ti if tij < ti.
If we will consider more than two particles, each particle will have a set

of possible collision times. Therefore the time ordering of the individual
binary collisions strongly varies with the respective reference frame. The
final result does depend on this criterion [1], [2].

The common recipe is to define the average of the two times τcoll = tij+tji

2
as the collision time τcoll for particles i and j. On the other hand one could
choose for τcoll either the earliest or the latest of the two times.

We order collisions in the observer reference frame for the hadron-nucleus
or nucleus-nucleus interaction. Thus using the particle locations x and the
particle momenta p in the observer reference frame one can obtain for the
time of the closest approach for two colliding particles:

τcoll = tij = tji = −(xi − xj)(pi/Ei − pj/Ej)
(pi/Ei − pj/Ej)2

. (14.19)

14.3.1 Hadron resonance lifetime.

The lifetime t for each particle with mass m can be sampled according to
the probability:

P (t) = 1− exp
(
− tΓtot(m)

γh̄

)
, (14.20)
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where γ = E/m is the Lorentz factor, defined for the particle with total
energy E. The particle resonance width Γtot(m) depends from particle mass
m.

The full decay width Γtot(m) of a resonance can be defined as the sum of
all partial decay widths and depends on the mass m of the excited resonance:

Γtot(m) =
Nbr∑

br={i,j}
Γi,j(m), (14.21)

where the partial decay widths Γi,j(m) for the decay into the exit channel
with particles i and j can can be parametrised as follows [3]

Γi,j(m) = Γi,j(mR)
mR

m

(
pi,j(m)
pi,j(mR)

)2l+1
1.2

1 + 0.2
(

pi,j(m)
pi,j(mR)

)2l
, (14.22)

where mR is the pole mass of a resonance, Γi,j(mR) its partial width for
decay into the channel i and j at the pole and l the decay angular momentum
of the exit channel and

pi,j(m) = pc.m.(m,mi,mj) =
1

2m

√
(m2 − (mi + mj)2)(m2 − (mi −mj)2).

(14.23)
All pole masses and partial decay widths can be taken from the Review of
Particle Properties [10].

14.4 Hadron collision simulation.

In the accordance with the chosen elastic, total and annihilation hadron
interaction cross sections we need to simulate two-body hadron elastic scat-
terings, two-body inelastic scatterings, which include the diffractive scatter-
ings as well as the antibaryon-baryon annihilations.

14.4.1 High energy non-resonance hadron kinetics.

To simulate these processes we can use the elastic scattering model and
the Reggeon based parton string model are described above. We can call
this version of our hadron transport model as the high energy non-resonance
hadron transport model to stress that we neglect the resonance hadron in-
teractions. In spite of that the production of resonances mostly through
string decay and decay of resonances are taken into account. This simpli-
fied version of the hadron transport model makes sense, when we need to
perform fast simulations.

The final state of a baryon-antibaryon annihilation can be simulated
using the baryon annihilation model, where only diquark annihilation sub-
process is taken into account. Another subprocesses as initial quark redis-
tribution, production of two and more strings can also be implemented (see
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[9]). All these subprocesses have strong initial energy dependencies. Par-
ticularly, initial quark redistribution plays crucial role at stopped baryon
annihilation and three string production process is main process at high
energies.

14.4.2 Intermediate energy resonance kinetics.

The more advanced version of the hadron transport model should also
include baryon-baryon, meson-baryon and meson-meson resonance interac-
tions as well as pion absorptions.

We can use the resonance interaction model described before to simulate
two-body baryon scatterings with resonance excitations and deexcitations.
Within this model we select a proper channel (according to the calculated
cross sections), then sample resonance masses (according to th Breit-Wigner
distributions with corresponding pole masses and pole widths) and finally
sample scattering angles. It is assumed that angular distributions for all
relevant two-body processes without string production are similar and can be
approximated by the angular of NN elastic scattering [3]. For the scattering
angle cos θ distribution parametrisation we can use the angular distribution
of NN elastic scattering. It can be extended to all two-body collisions by
the replacement s → s− (m1 + m2)2 + 4m2

N , where m1 and m2 denote the
masses of incoming hadrons.

The meson-baryon and meson-meson resonance interaction can also be
simulated using the resonance interaction model. From the knowledge of
resonance interaction meson-baryon and meson-meson cross sections we are
able to select a resonance, which should be created at given initial energy.

14.4.3 π-absorption simulation.

It can be performed by means of the two-steps (resonant) absorption,
which is going through the baryon resonance excitation and deexcitation, e.
g. (1) π + N → ∆ and (2) ∆ → NN .

14.5 Counting of the hadron formation time.

As it was discussed in the string decay chapter the creation of hadrons
requires formation times. During the formation times the interaction hadron
cross sections are reduced [6], [3] as compared with the free hadron interac-
tion cross sections. The cross section reductions depend on hadron contents.
If a hadron does not include its parent (colliding hadron) valence quarks,
then its cross section is considered to be zero. If a hadron includes valence
quarks of its parent, then its cross section can be estimated from the additive
quark model [7], [8]: σqh = 1/3σBh for baryons keeping a valence quark from
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its parents, σqqh = 1/2σBh for baryons keeping a valence diquark from its
parents, σqh = 1/2σMh for mesons keeping a valence quark from its parents.

14.6 Pauli blocking simulation.

A free fermion particle interaction cross section is also reduced to an
effective cross section by the Pauli-blocking due to the Fermi statistics. For
each collision the phase-space densities fi, where i means fermion, in the
final states should be checked in order to assure, that the final distribution
in phase space is in agreement with the Pauli principle, which rules out the
possibility of finding more than one fermion in a single quantum state. The
Quantum Molecular Dynamics (QMD) Pauli blocking procedure (see e.g.,
[4]) can be applied for any final state fermions.

14.6.1 Pauli blocking probability.

We consider nucleons (and other fermions) are not points in phase space.
They are represented by Gaussian shaped density distributions [3]:

φ(xi, t) =
(

2α
π

)3/4

exp {−α[xi − ri(t)]2 +
i

h̄
pi(t)xi}, (14.24)

where α = 0.25 fm−2 is a model parameter and h̄ = 197.327 MeVfm. The
total wave function is assumed to be a direct product of these functions.
The phase-space density can be obtained by the Wigner transform of the
wave function:

f(r,p) =
∑

i

fi(r,p), (14.25)

where

fi(r,p) =
1

(πh̄)3
exp {−2α[r− ri(t)]2 − 1

2αh̄2 [p− pi(t)]2} (14.26)

with normalisation ∫
drdpfi(r,p) = 1. (14.27)

The normalised on the number of particles density is

ρ(r) =
∑

i

ρi(r), (14.28)

where

ρi(r) =
∫

dp
(πh̄)3

fi(r,p) =
(

π

2α

)−3/2

exp {−2α[r − ri]2}. (14.29)
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The normalised on the number of particles momentum density is

g(p) =
∑

i

gi(p), (14.30)

where

gi(p) =
∫

dr
(πh̄)3

fi(r,p) = h̄−3(2πα)−3/2 exp {− 1
2αh̄2 (p− pi)2}. (14.31)

The overlap phase-space density f ovp
i and particle density ρovp

i of particle
i with other particles are given by

f ovp
i =

∑
j 6=i

∫
drdpfi(r,p)fj(r,p) =

= 1
8(πh̄)3

∑
j 6=i exp {−α(ri − rj)2 − 1

4αh̄2 (pi − pj)2} (14.32)

and

ρovp
i =

∑
j 6=i

∫
drρi(r)ρj(r) =

∑
j 6=i

(
π

α
)−3/2 exp {−α(ri − rj)2}. (14.33)

Thus the phase-space fermion overlapping densities f ovp
i at the final

states can be directly calculated and used for simulation of Pauli-blocking.
For two indistinguishable nucleons i and j the function

F block
i =

∑
j 6=i 8(πh̄)3δσiσjδτiτj

∫
drdpfi(r,p)fj(r,p)] =

= δσiσjδτiτj exp {−α(ri − rj)2 − 1
4αh̄2 (pi − pj)2} (14.34)

can be interpreted as the Pauli-blocking probability. Here σi,j = ±1 and
τi,j = ±1 denote spin and isospin indices of nucleons, respectively. For
example the Pauli-blocking of the two-body collisions can be checked by the
blocking-probability 1− (1− F block

i )(1− F block
j ).

14.6.2 The QMD Pauli-blocking algorithm.

For each produced baryon, which is located at position r and has momen-
tum p, the value of F block

i and at the same time the value of

di =
∑
j 6=i

exp {−2α(r− ri)2} (14.35)

are calculated. As was found in [4], there is the approximately straight line
dependence:

F block
i = afit + bfitdi, (14.36)

where afit = 1.49641 and bfit = 0.208736, which divides (F block
i − di)-plane

into two the Pauli-blocked and the Pauli-allowed domains. Thus a collision
is only allowed, if computed values fulfil the conditions:

F block
i ≤ afit + bfitdi (14.37)

for each outgoing baryon i.
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14.7 Calculation of the residual nucleus character-
istics.

If we need to consider inelastic interaction after the pomeron parton
string model work completion or after hadron-nucleus and nucleus-nucleus
collisions applying the preequilibrium exciton or equilibrium model, we have
to know characteristics of a residual nucleus or residual nuclei. It should be
remembered for above cases we do not use any potentials since we have
”unpacked” free streaming nucleons from the participating nucleus at the
beginning of reaction.

Calculation of the atomic mass and charge, number of holes (see the
preequilibrium exciton model chapter), the energy-momentum for residual
nucleus is trivial since we are able to separate nucleon participants and
nucleon spectators.

For the particle-nucleus interaction we can estimate also the angular
momentum of a residual nucleus:

Lres = L0 −
Nout∑
i=1

lci . (14.38)

Here L0 is initial ”particle-nucleus” angular momentum and lci denote the
angular carried away by the ith outgoing particle¿ Nout is total number of
the outgoing particles.

The angular momentum of emitted particle is treated as a classical vector
lci = [piri], where rc

i is the radius vector at the exit of the transported
particle i from the nucleus and pc

i is its momentum.
The excitation energy calculation is not so straightforward. For this we

can apply the procedure suggested in the paper[5].

14.7.1 Calculation of nucleus excitation energy.

The excitation energy U of a residual nucleus is defined as the energy
above the ground state energy (mass) Mres(Ares, Zres) of residual nucleus
with mass number Ares and charge Zres:

U = Eres(Ares, Zres) + Erecoil −Mres(Ares, Zres), (14.39)

where Eres(Ares, Zres) is the c. m. total energy of the residual nucleus and
Erecoil is the so-called recoil energy [5]. The residual nucleus recoil energy
is calculated summing the recoil energies of particles leaving the nucleus. If
particle leaves a nucleus, we reduce its energy by the effective potential (the
recoil energy) and rescale its momentum.
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14.8 Search collision and decay algorithm [6].

We have neglected by the field interactions and kept only particle collisions
and decays. The hadrons move along straight trajectories. Thus, at the
beginning of simulation we look for all possible collision candidates and
create an ordered in time list of potential candidates for collisions. After
each realized collision we only have to look for the collisions between new
produced particles and the existing particles, as well as decay candidates
from produced resonances. Then the number of computations at given time
”shift” will be nprodn, where nprod is the number of produced particles during
the last collision or decay and n is the total number of particles under
consideration (not including nprod. We also do not need to use fixed time
step. We ”shift” particle system on times between events of collisions or
decays. It should be noted that in this case we have to maintain the list of
potential particle collision or decay events. For this algorithm we have the
criterion to stop system of particles evolution process: the list of potential
particle collision candidates and decay candidates is empty.
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Chapter 15

Intranuclear hadron
transport model.

15.1 Allowed hadronic reactions.

The Intranuclear Hadron Transport Model (IHTM) is capable to predict
final states, i. e. produced hadrons, which belong to the pseudoscalar meson
nonet and the baryon/antibaryon octet, of reactions on nucleon and nuclear
targets with a large variety of hadron projectiles. The allowed bombarding
kinetic energies in the hadron-nucleon and hadron-nucleus collision is rec-
ommended to be more than 20 MeV in the laboratory frame. The upper
limit of initial kinetic energy is approximately 10 GeV.

This model is also able to predict final states in the photon-nucleon and
photon-nucleus inelastic collisions as well as the nuclear absorption of the
stopping π−, K− and p̄ particles.

γ-nucleus and hadron-nucleus interactions are considered in the target
nucleus rest frame. It gives us a possibility to take into account intranuclear
potentials, as well as absorption of photons and pions by nuclear medium
of the target. Thus preparing initial reaction state as it was described in
the hadron transport model chapter we do not need to boost and contract a
target nucleus. For this case we also do not need to modify nucleon masses
by fixing nucleon energies: e = mN + B(A,Z)/A (see the nuclear properties
chapter).

The reaction initialisation procedure is described in the hadron transport
model chapter as well other simulation details. Here we only describe some
peculiarities of this model as compared to the hadron transport model.

15.2 Phenomenological potentials.

We can take into account the mean field nuclear potentials for nucleons,
antinucleons, pions, kaons, lambdas and sigmas particles. Thus we will have

101
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a possibility to consider nuclear absorption of these particles and therefore to
calculate residual nucleus excitation energy as well as the number of excitons
(see the preequilibrium exciton model chapter). The hadron potential energy
VA(p, r) is in general case a function of momentum p and position r of a
hadron in the field of a nucleus as a whole. At the moment we do not
consider the momentum dependent potential to avoid problem connected
with energy conservation within this approach. The nucleon potential was
already described in the nuclear properties chapter. For other particles we
can use the real parts of the corresponding optical potential.

15.2.1 Nucleon potential.

The i-th nucleon potential is defined as the sum of Fermi-potential TF (r),
binding energy B(A,Z) and Coulomb potential VC(Z, r) (only for protons):

V (A,Z, ri) = TF (ri) + B(A,Z) + VC(Z, ri), (15.1)

where ri is the i-th nucleon radius vector, A is the nucleus atomic number
and Z is the nucleus charge, respectively.

15.2.2 Optical potentials.

The optical potential represents all particle-nucleon interactions between
incident particle and target nucleus. Its real part describes the scattering
and its imaginary part describes the absorption. The real part is often used
to describe bound states. The simplest form of optical potential is

Vopt = U(r) + iW (r), (15.2)

where the real part of optical potential is defined as U(r) = −U0f(r). Here
U0 is depth and f(r) is the radial form factor. This form factor is often
taken in the Woods-Saxon form

f(r) =
1

1 + exp ( r−R
a )

(15.3)

where R and a are the radius and surface diffuseness parameters, which are
different for different nuclei. The shape of imaginary part of the optical po-
tential W (r) varies, essentially depending on the energy of incident particle.
At low incident energies the absorption takes place mainly near the nuclear
surface, whereas the energy rises absorption inside nuclear volume becomes
important. Such form of optical potential is used mainly for description of
nucleon, antiproton, kaon as well as lambda and sigma nucleus interactions.
The optical potential is used for pions has more complicated form [3]:

Vopt = β(k, r) −∇α(k, r) −∇2q(k, r), (15.4)

where the functions β, α, and q depend on the coordinate r and momentum
p of an incident particle.
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15.2.3 Pion-nucleus interaction potential.

The optical πA-potential of the second order [3] defined by Eq. (15.4), is
a rather complicated function of the pion momentum and of the pion radius
r. This potential can be either attractive or repulsive. Such potential is
difficult to implement. To simplify situation for pions we can use

Vπ(r) = −V π
0 θ(r), (15.5)

where V π
0 = 25 MeV and θ(x) is the unit step function. The value V π

0 = 25
is often used in the cascade models [6]. Also the value V π

0 = 0 MeV is
recommended by authors of [7].

15.2.4 Kaon-nucleus interaction potential.

This optical potential is used for an analysis of kaon atoms and can be
written in the form

Vopt(r) = −2π
µ

(
1 +

mK

m

)
[aeff

K−nρn(r) + aeff
K−pρp(r)], (15.6)

where µ is K-nucleus reduced mass, mK is kaon mass and m is mass of
the nucleon. ρn(r) and ρp(r) are the neutron and proton density distribu-
tions. They are normalised to give the number of nucleons. aeff

K−n and aeff
K−p

are complex effective scattering lengths for kaon-neutron and kaon-proton
interactions, respectively.

The simplest form of this optical potential is often used together with
Coulomb potential:

Vopt(r) = −2π
µ

(
1 +

mK

m

)
aρ(r), (15.7)

where ρ(r) is the nuclear density distribution normalised to the number of
nucleons. The complex coefficient a = 0.35± 0.03 + i(0.82± 0.03 fm can be
found in [4] and a = 0.63±0.06+ i(0.89±0.05 fm can be found in [5]. These
coefficients are determined by fit of the K-atom data.

15.2.5 Antiproton- and sigma-nucleus interaction potential.

For antiproton and sigma atoms an optical potential with the form similar
to the kaon-nucleus potential can be used:

Vopt(r) = −2π
µ

(
1 +

mp̄

m

)
aρ(r), (15.8)

where µ is p̄-nucleus reduced mass and mp̄ is the antiproton mass. The
complex coefficient a = 1.53 ± 0.27 + i(2.50 ± 0.25 fm is determined by
fit of the p̄-atom data [4]. To fit the sigma-atom data the value of a =
0.36 ± 0.05 + i(0.19 ± 0.03 fm was applied [4].
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15.3 Hadron propagation.

We can take into account the curvatures of hadron (except pions) trajec-
tories due to particle potentials.

Usually the curvature effects and other potential effects are simplified in
a cascade approach by taken into account the refraction and reflection of
nucleons due to a jump of potential [6], [7]. The influence of intranuclear
nucleons on the incoming nucleon is taken into account by adding to its
kinetic energy this effective nuclear potential, i.e. the kinetic energy of a
nucleon is calculated from the bottom of a potential well. For a proton
leaving the nucleus the kinetic energy of this proton has to be sufficiently
high to overcome Coulomb barrier is given by

VC(A,Z) = C
Z

r0(1 + A1/3)
, (15.9)

where C = 1.44 MeVfm, r0 = 1.3 fm.
To consider a potential influence at each time step ∆t we have to solve

equations of motion. The equations of motion of the i-th hadron with 3-
coordinate ri and 3-momentum pi are the Newtonian equations:

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
. (15.10)

Hamiltonian H is given by

H = T (pi) + Vi(ri), (15.11)

where T (pi) and Vi(ri) are i-th hadron kinetic energy and potential energy,
respectively.

Numerical integration of the Newtonian’s equations of motion (15.10)
can be done by the Heun’s method. This is an improved version of the
second order Runge-Kutta method [8]. Thus, ri and pi for particle i are
calculated according to

ri(t + ∆t) = ri(t) + ∆t

[
c1

∂H(t)
∂pi

+ c2
∂H(t + c3∆t)
∂pi(t + c3∆t)

]
, (15.12)

pi(t + ∆t) = pi(t)−∆t

[
c1

∂H(t)
∂ri

+ c2
∂H(t + c3∆t)
∂ri(t + c3∆t)

]
, (15.13)

where time step ∆t = 0.01 fm/c can be chosen. Parameters c2 = 0.75,
because this value is known [8] to reduce numerical errors (e.g. c2 = 0.5 gives
results the second order Runge-Kutta method), and c1 = 1−c2, c3 = 1/(2c2).

15.4 Pion absorption by the nuclear meadium.
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15.4.1 Cross section of π-absorption by a quasi-deutron pair.

We consider two mechanisms of the pion absorption. For low energy the s-
wave (non-resonant) absorption is dominated, while the energy rises the two-
steps p-wave (resonant) absorption, which is going through the resonance
excitations and deexcitations, e. g. π + N → ∆ then ∆ → NN , plays an
important role.

The s-wave absorption is also important for the stopped negative pions.
The s-wave absorption cross section of pion with energy Eπ and momentum
p in the laboratory frame is derived from the optical model [1] as

σA
s (Eπ) =

4π
p

[
1 +

Eπ

2m
ImB0(Eπ)

]
ρ(r), (15.14)

where ρ(r) is nuclear density and ImB0 = 0.14 fm4 can be taken.

15.4.2 π-absorption simulation.

From Eq. (15.14) we can find the absorption mean free path

λabs(p, r) = 1/[σA
s (Eπ)ρ(r)] (15.15)

and use it to sample pion absorption point r.
Sampling of the absorption point can be done according to the next

algorithm [2]. The number of mean free paths of travel particle is

nλ =
∫

dr

λ(r)
. (15.16)

nr is a random variable denoting the number of mean free paths from a
given point until the interaction point. It is distributed according to

P (nr < nλ) = 1− exp (−nλ). (15.17)

Thus, nλ can be sampled according to

nλ = − ln ξ, (15.18)

where ξ are random numbers uniformly distributed between 0 and 1. nλ is
updated after each step ∆r using the relation:

n′λ = nλ − ∆r

λ(r)
, (15.19)

until n′λ ≤ 0.
This algorithm can also be used to find interaction point in the case of

the photon absorption.
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The s-wave (non-resonant) pion absorption is determined mainly by the
the simplest cluster consisting of two nucleons. Once a pion has been ab-
sorbed by a nucleon pair, the pion mass is converted into kinetic energy of
nucleons. Each nucleon has energy EN = mπ/2 in the centre of mass system
of the pair. In this system nucleons fly away isotropically in the opposite
directions. The initial momentum of the pair is taken as the sum of the
nucleon Fermi momenta.

15.5 Pauli blocking simulation.

A free particle interaction cross section is reduced to an effective cross
section by the Pauli-blocking due to the Fermi statistics. For each collision
the phase-space densities fi, where i means fermion, in the final states should
be checked in order to assure that the final distribution in phase space is in
agreement with the Pauli principle, which rules out the posibility of finding
more than one fermion in a single quantum state. We can apply the so-called
cascade Pauli blocking procedure [6], [7] for the nucleon final states.

15.5.1 Cascade Pauli blocking procedure.

In this procedure, a nucleus with atomic number A and charge Z is
treated as an ideal local completely degenerated Fermi gas of nucleons with
coordinates r, momenta p. The nucleon phase-space density is approximated
by

fi(r,p) = Θ[pF
i (r)− p]. (15.20)

Because all states below Fermi-level are already occupied, after each inter-
action one should check that the momenta p′i of all secondary nucleons are
above the Fermi-level, i. e.

p′i > pF
i (r). (15.21)

If among the secondary nucleons there is a nucleon with momentum lower
the the Fermi-level, then such collision is considered as prohibited (Pauli-
blocked).

15.6 Residual nucleus parameters.

The number of nucleons Ares as well as the number of protons Zres and
total momentum Pres of the residual nucleus are determined by the relations:

Ares = A + qp −
Nout∑
i=1

qc
i , (15.22)

Zres = Z + ep −
Nout∑
i=1

ec
i , (15.23)
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Pres = pp −
Nout∑
i=1

pc
i , (15.24)

Lres = L0 −
Nout∑
i=1

lci . (15.25)

Here A, Z are the numbers of target nucleons and protons, qp, ep,pp are
the baryon number, the charge and momentum of incoming particle, respec-
tively. L0 is initial particle-nucleus angular momentum. qi, ei,pi, lci denote
the baryon number, charge, momentum and angular momentum, respec-
tively, carried away by the ith outgoing particle. Nout is the total number
of outgoing particles. As in the case of the hadron transport model angular
momentum of emitted particle can be treated as a classical vector lci = [piri],
where rc

i is the radius vector at the exit of the transported particle i from
the nucleus and pc

i is its momentum.
The excitation energy U of residual nucleus is

U = Ein −
Nout∑
i=1

Ei, (15.26)

where Ein is the initial excitation energy and Ei is the energy of outgoing
particle, if it is not a nucleon. In the case of nucleon projectile the initial
excitation energy Ein is defined by nucleon kinetic energy Tin and nuclear
binding energy B(A,Z):

Ein = Tin + B(A,Z). (15.27)

In the case of non-nucleon projectile Ein is simple total projectile energy.
If nucleon is an outgoing particle, then Ei = Ti + B(A,Z), where Ti is the
nucleon kinetic energy.

For the preequilibrium exciton model (see the corresponding chapter) we
need also to know the number of excitons, which consists from the number
of ”particles” and the number of ”holes”. All cascade nucleons, which were
not able to leave a nucleus are called ”particles”. The ”holes” are results of
intranuclear interactions, when particles stroke nucleons from a nucleus and
they occupy states below the Fermi level TF (r).

15.7 Stopped particle absorption.

15.7.1 Mechanism of the stopped particle absorption by a
nucleus.

The absorptions of the stopped π−-meson, K−-meson and p̄ by a nucleus
proceeds in several steps [7]:
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• Particle is captured by the Coulomb field of a nucleus forming a pion
or a kaon or p̄-atom;

• Such atom deexcites through the emission of Auger-electrons and X-
rays;

• Stopped particle from the atomic orbit is captured by the nucleus (
by two or more of intranuclear nucleons in the case of a stopped pion
or by reaction on a quasifree nucleon producing the pion and Λ or
Σ hyperon in the case of the stopped kaon or by annihilation on a
quasifree nucleon in the case of p̄-capture);

• Rescatterings of fast hadrons produced in a stopped particle absorp-
tion (intranuclear hadron transport);

• Decay of the excited residual nucleus.

Thus absorption processes for the stopped pion, kaon and antiproton are
similar. However, there are some peculiarities for a particular absorption
process.

15.7.2 Absorption of the stopped π− by a nucleus.

As follows from calculations within the framework of the optical model [9]
with the Kisslinger potential [10] the capture a pion from an orbit of atom
takes place at radius r in the nuclear surface and absorption probability
Pabs(r) can be approximated by

Pabs(r) = P0 exp

[
−0.5

(
r −Rπ

Dπ

)2
]
, (15.28)

where parameter Rπ ≈ R1/2 and R1/2 is the half-density radius. The values
of another parameter Dπ for different nuclei can be found in [7].

The absorption of the pion can be considered as the s-wave (non-resonant)
absorption mainly by the the simplest cluster consisting of two nucleons (np)
or (pp).

15.7.3 Absorption of the stopped K− by a nucleus.

In this case the absorption probability can be chosen the same as in
annihilation of the stopped antiprotons.

15.7.4 Annihilation of the stopped p̄ by a nucleus.

In this case the absorption probability is also given by Eq. (15.28) with the
values of Rp̄ = Rπ and dispersion D2 = 1 fm2 [11].
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The annhihilation of antiproton on a quasifree nucleon can be modelled
via the annihilation of a diquark-antidiquark with subsequent fragmentation
of the meson string within the baryon annihilation model (see the corre-
sponding chapter).

15.8 MC procedure for the stopped particle ab-
sorption.

The stopped particle absorption MC procedure consists from several
steps:

1. Sample position inside nucleus, where absorption takes place, accord-
ing to phenomenological probability distribution;

2. Simulate particle absorption according to particular particle absorp-
tion mechanism;

3. Using the intranuclear hadron transport model perform rescatterings
of final state (after absorption) particles;

4. Using corresponding deexcitation model (see the corresponding chap-
ters) perform decay of a residual excited nucleus.

15.9 Intranuclear transport model algorithm.

The hadron transport algorithm can be considered as a step by step
updating of a particle vector:

1. Create a vector of particles: assign initial particle types, their co-
ordinates and momenta etc. Assign initial value for time evolution
parameter;

2. For chosen evolution parameter (time step) find pairs of particles (ac-
cording to a collision criterion), which are assumed to collide and par-
ticles (according to their life times), which are assumed to decay;

3. Perform particle collisions and particle decays. Collisions and decays
convert incoming particles into outgoing particles. During this step
one should update also particle coordinates and momenta (particle
propagation);

4. Starting from (2) perform the next step.

At any evolution parameter step one needs a possibility to interrupt ”up-
dating” process. Thus, at each evolution time step for the system consisting
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from n particles we are looking for the particles, which will decay accord-
ing to their lifetimes and the pairs (i, j), where i 6= j and i, j = 1, 2, ..., n,
of particles, which will collide according to the chosen collision criterion.
The found pairs are ordered chronologically using their collision times. This
algorithm is very simple and general enough, but it is the CPU time con-
suming, if n is large. At each time step we need to perform n(n− 1)/2 ∼ n2

computations.
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Chapter 16

Pomeron based parton string
model.

16.1 Reaction initial state simulation.

16.1.1 Allowed hadron high energy reactions.

The Pomeron based Parton String Model (PPSM) is capable to predict
final states, i. e. produced hadrons, which belong to the pseudoscalar meson
nonet and the baryon/antibaryon octet, for the reactions on nucleon and
nuclear targets with a large variety of hadron (the same types as final state
hadrons) and nuclear projectiles. The allowed bombarding energies in the
hadron-nucleon collision should be above 2-pion production threshold. In
the case of hadron-nucleus or nucleus-nucleus collisions the initial energies√

s > 5 AGeV is recommended. This model is also able to predict final
states in the photon-nucleon and photon-nucleus inelastic collisions at the
initial energies

√
s > 5 AGeV. The last case is described in separate chapter.

The procedure to generate initial reaction state is the same as for the
hadron transport model (see the hadron transport model chapter). The
chosen ”working” frames, where interaction process is simulated, for this
particular model is the c.m. frame of colliding particles and the particle
equal velocities frame in the case of nuclear interaction.

16.2 Nuclear collision participants.

16.2.1 MC procedure to define collision participants.

The inelastic hadron-nucleus or nucleus-nucleus interactions at ultra-
relativistic energies are considered as independent hadron-nucleon or nucleon-
nucleon inelastic collisions. It was shown long time ago [1] for the hadron-
nucleus collision that such picture can be obtained starting from the Regge-
Gribov approach [2], when one assumes that the hadron-nucleus elastic scat-
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tering amplitude is the result of reggeon exchanges between initial hadron
and nucleons from target-nucleus. This result can be extended for the
nucleus-nucleus collision case and leads to simple and efficient MC procedure
[3] to define the interaction cross sections and the number of the nucleons
participating in the inelastic nucleus-nucleus collision:

• We randomly distribute A nucleons from the projectile-nucleus and B
nucleons from the target-nucleus inside the impact parameter plane
according to the weight functions T ([~bA

i ]) and T ([~bB
j ]), respectively.

These functions represent probability densities to find sets of the nu-
cleon impact parameters [~bA

i ] and [~bB
j ], where i = 1, 2, ..., A and j =

1, 2, ..., B, respectively.

• For each pair of nucleons i and j with chosen impact parameters ~bA
i

and ~bB
j we check whether they interact inelastically or not using the

probability pij(~bA
i − ~bB

j , s), where sij = (pi + pj)2 is the total c.m.
energy squared of the given nucleons with the 4-momenta pi and pj,
respectively.

The described MC procedure is based on the probability P ( ~B, s) at given
impact parameter ~B and at given total c.m. nucleon-nucleon energy squared
s ( to simplify notations, we assume, that all interacting nucleon pairs have
the same s) of a such configuration, when several pairs of nucleons from
projectile and target nuclei interact inelastically and the rest of the nucleons
do not participate in collisions:

P ( ~B, s) =

〈 ∏
i,j=1

pij(~bA
i −~bB

j , s)
∏

k,l=1

[1− pkl(~bA
k −~bB

k , s)]

〉
. (16.1)

The last equation can be rewritten more explicitly as follows

P ( ~B, s) =
∫ ∏

i,j=1
pij(~bA

i −~bB
j , s)

∏
k,l=1

[1− pkl(~bA
k −~bB

l , s)]×
×TA(~bA

1 )TA(~bA
2 )...TA( ~B −~bB

B)d~bA
1 d~bA

2 ...d~bB
B .

(16.2)

In the Regge-Gribov approach [4], [2] the probability for an inelastic
collision of nucleons i and j as a function of the squared impact parameter
difference b2

ij = (~bA
i −~bB

j )2 and s is given by

pij(~bA
i −~bB

j , s) = c−1[1− exp {−2u(b2
ij , s)}] =

∞∑
n=1

p
(n)
ij (~bA

i −~bB
j , s), (16.3)

where

p
(n)
ij (~bA

i −~bB
j , s) = c−1 exp {−2u(b2

ij , s)}
[2u(b2

ij , s)]
n

n!
. (16.4)

is the probability to find the n cut Pomerons or the probability for 2n string
produced in an inelastic nucleon-nucleon collision, if we assume that each cut
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Pomeron can be substituted by two strings. These probabilities are defined
in terms of the (eikonal) amplitude of nucleon–nucleon elastic scattering
with Pomeron exchange:

u(b2
ij , s) =

z(s)
2

exp[−b2
ij/4λ(s)]. (16.5)

The quantities z(s) and λ(s) are expressed through the parameters of the
Pomeron trajectory α

′
P = 0.25 GeV −2 and αP (0) = 1.0808, and the pa-

rameters of the Pomeron-nucleon vertex R2
P = 3.56 GeV −2 and γP = 3.96

GeV −2:
z(s) =

2cγP

λ(s)
(s/s0)αP (0)−1 (16.6)

λ(s) = R2
P + α

′
P ln(s/s0), (16.7)

respectively, where s0 = 3.0 GeV 2 is a dimensional parameter.
In Eqs. (16.3,16.4) the so-called shower enhancement coefficient c = 1.4

can be introduced to determine the contribution of diffractive dissociation[2].
Thus, the probability for diffractive dissociation of a pair of nucleons can be
computed as

pd
ij(~b

A
i −~bB

j , s) =
c− 1

c
[ptot

ij (~bA
i −~bB

j , s)− pij(~bA
i −~bB

j , s)], (16.8)

where
ptot

ij (~bA
i −~bB

j , s) = (2/c)[1 − exp{−u(b2
ij , s)}]. (16.9)

The Pomeron parameters are found from a global fit of the total, elas-
tic, differential elastic and diffractive cross sections of the nucleon-nucleon
interaction at different energies.

For the pion-nucleon and kaon-nucleon collisions the Pomeron vertex
parameters and shower enhancement coefficient should be changed, e. g.
Rπ

P 2 = 2.36 GeV −2, γπ
P = 2.17 GeV −2, sπ

0 = 1.5 GeV 2, cπ = 1.6 and
RK

P 2 = 1.96 GeV −2, γK
P = 1.92 GeV −2, sK

0 = 2.3 GeV 2, cπ = 1.8 can be
used to describe properly the total, elastic and diffractive cross sections (see
the hadron cross section chapter).

Describing this model we consider only the Pomeron exchanges in the
hadron elastic scattering amplitude. With such amplitude we are not able
to predict properly the hadron interaction cross sections and also the cor-
responding interaction probabilities in the whole energy range under inves-
tigation. We will strongly underestimate the low energy cross section parts
and the corresponding interaction probabilities.

At this energy region neglecting by the real part of hadron scattering
amplitude we can express the eikonal u(b2

ij , s) through experimental values
of the total σtot(s), elastic σel(s) and single diffraction σd(s) cross sections:

z

2
=

σtot(s)
4πBel(s)

(16.10)
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λ(s) = 2Bel(s), (16.11)

where

Bel(s) =
σ2

tot(s)
8π[σel(s) + σd(s)]

. (16.12)

16.2.2 Single diffraction cross section.

The proton-proton single diffraction cross section was parametrised in paper
[5]

σSD(s) = (0.68 ± 0.05)
(

1 +
36± 8

s

)
ln (0.6 + 0.1s), (16.13)

where s is the total c.m. energy squared.

16.2.3 Separation of hadron diffractive excitation.

For each pair of nucleons i and j with chosen impact parameters ~bA
i and

~bB
j we should check whether they interact inelastically or not using the

probability

pin
ij (~bA

i −~bB
j , s) = pij(~bA

i −~bB
j , s) + pd

ij(~b
A
i −~bB

j , s). (16.14)

If interaction will be realized, then we have to consider it to be diffractive
or nondiffractive with the probabilities

pd
ij(~b

A
i −~bB

j , s)

pin
ij (~bA

i −~bB
j , s)

(16.15)

and
pij(~bA

i −~bB
j , s)

pin
ij (~bA

i −~bB
j , s)

. (16.16)

We should note that, if we will consider all inelastic nucleon or hadron-
nucleon collisions as the diffractive collisions (see the string excitation mech-
anism in the reggeon based parton string model chapter), we will obtain
(as an option) the model version, which is very similar to the FRITIOF
model[8].

16.3 Sampling of the kinky strings.

To determine the number of kinky strings are produced in hard hadron
collisions we assume [6], [7] that each cut Pomeron can be substituted either
by the two longitudinal strings as result of soft hadron interaction or by the
two kinky strings as result of hard hadron interactions. This procedure was
described in the reggeon based parton string model chapter.
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16.4 Longitudinal and kinky string excitations.

The longitudinal and kinky string excitations for hadron-nucleon inelas-
tic collision as well as hadron-nucleus and nucleus-nucleus inelastic collisions
were described in the reggeon based parton string model chapter. It should
be noted that in the hadron-nucleus and nucleus-nucleus cases we will pro-
duce also string spanned between valence and sea quarks.

16.5 Calculation of the residual nucleus character-
istics.

It was described in the hadron transport model chapter.

16.6 MC procedure.

The pomeron based parton string model algorithm can be considered as
a set of steps should be performed:

1. Create two vectors (projectile and target) of particles: assign initial
projectile and target particle types, their coordinates and momenta. In
the case of hadron-nucleus (or nucleus-nucleus) interaction one should
perform target nucleus (or projectile and target nuclei) initial state
simulation and sample impact parameter;

2. Sample collision participants and separated them into diffractive and
non-diffractive. Store the total interaction four momentum of partici-
pants;

3. For non-diffractive inelastic collisions sample the number of the soft
longitudinal and hard kinky string can be produced;

4. Excite and reexcite colliding particles in the case of diffractive col-
lisions and create diffractive longitudinal strings, if particles are not
participate in further soft or hard collisions;

5. Perform longitudinal and kinky string excitations;

6. Perform string decay simulation;

7. Correct energies and momenta of produced particles, if it is needed.
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Chapter 17

Hadron interaction with
photons.

17.1 Reaction initial state.

The γ-nucleon and γ-nucleus interaction model is capable to predict final
states, i.e. produced hadrons which belong to the pseudoscalar meson nonet
and the baryon/antibaryon octet, of photon reactions on nucleon and nuclear
targets.

The recommended bombarding energies in the photon-nucleon or photon–
nucleus interaction have to be more than 20 MeV in the laboratory frame.

17.2 Photon-nucleon and photon-nucleus interac-

tions at intermediate energies.

We can use the above described intranuclear hadron transport model
to perform simulation of the γ-nucleus inelastic collisions at intermediate
energies. In this particular model interaction of a particle with target nucleus
is reduced to the interaction of a particle with intranuclear nucleons. We
can realize several different mechanisms of the γ-nucleon interaction.

The first one is the absorption of γ-quantum by a quasideutron pair

γ + (np) → np. (17.1)

The photoabsorption cross section can be calculated according to quasi-
deutron model [1], [2]

σA = kZ(1− Z/A)σD , (17.2)

where σD is the cross section for deutron photodisintegration and A, Z are
the mass and charge numbers of the nucleus in question, respectively. The
model parameter k = 10 can be taken. Using this cross section we are able
to calculate the mean free path length λ(e, r) = 1/σA(e)ρ(r), where e is the
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photon energy and ρ(r) is nucleon density at radius vector r. The algorithm
to find absorption point inside nucleus is described in the intranuclear hadron
transport model chapter.

The second one is the excitation of resonance and production of mesons:

γN → ∆(1232), γN → N∗(1535) (17.3)

At high energies the Regge approach can be used to calculate γ-nucleon
cross sections (see the hadronic cross section model chapter) and the inelastic
γ-nucleon interactions can be simulated using the reggeon based parton
string model as described below.

17.3 Photon-nucleon and photon-nucleus interac-
tions at high energies.

To simulate high energy photon interactions with nucleon and nucleus
we can use the approach[4]. We consider following kinematics variables for
γ-nucleon scattering: the Bjorken-x variable defined as x = Q2/2mν with
Q2, ν and m the photon virtuality, the photon energy and nucleon mass,
respectively. The total energy squared of the γ-nucleon system is given by
s = Q2(1 − x)/x + m2. We restrict consideration to the range of small
x-values and Q2 is much less than s.

The Generalised Vector Dominance Model (GVDM) [3] assumes that the
virtual photon fluctuates into intermediate qq̄-states V of mass M , which
subsequently may interact with a nucleon N . Thus, the total photon-nucleon
cross section can be expressed by the relation [4]:

σγN (s,Q2) = 4παem

∫ M2
1

M2
0

dM2D(M2)

(
M2

M2 + Q2

)2(
1 + ε

Q2

M2

)
σV N (s,Q2),

(17.4)
where integration over M2 is performed between M2

0 = 4m2
π and M2 = s.

Here αem = e2/4π = 1/137 and the density of qq̄-system per unit mass
squared is given by

D(M2) =
Re+e−(M2)

12π2M2
, (17.5)

Re+e−(M2) =
σe+e−→hadrons(M2)
σe+e−→µ+µ−(M2)

≈ 3Σfe2
f , (17.6)

where e2
f the squared charge of quark with flavour f . ε is the ratio between

the fluxes of longitudinally and transversally polarised photons.
Similarly the inelastic cross section for the scattering of a photon with

virtuality Q2 with a nucleus of A nucleons at impact parameter B and the
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γ-nucleon c.m. energy squared s is given by [5]:

σγA(s,Q2, B) = 4παem

∫ M2
1

M2
0

dM2D(M2)

(
M2

M2 + Q2

)2(
1 + ε

Q2

M2

)
σV A(s,Q2, B),

(17.7)
To calculate γ-nucleon or γ-nucleus inelastic cross sections we need a

model for the M2-, Q2- and s-dependence of the σV N or σV A. We can apply
the Gribov-Regge approach, similarly as it was done for h-nucleon or h-
nucleus inelastic cross sections (see the pomeron based string parton model
chapter).

The effective cross section for the interaction of a qq̄-system with squared
mass M2 with nucleus while the coherence length

d =
2ν

M2 + Q2
(17.8)

exceeds the average distance between two nucleons can be written as follows

σV A(s,Q2, B) =
∫ A∏

i=1

d3riρA(ri)

1−
∣∣∣∣∣

A∏
i=1

[1− u(s,Q2,M2, b2
i )]

∣∣∣∣∣
2
 .

(17.9)
Here the amplitude (eikonal) u(s,Q2,M2, b2

i ) for the interaction of the hadron
fluctuation with i-th nucleon is given by [5]

u(s,Q2,M2,bi) =
σV N (s,Q2,M2)
8πλ(s,Q2,M2)

(
1− iρ exp

[
− b2

4λ(s,Q2,M2)

])
,

(17.10)
where ρ ≈ 0 is the ratio of real and imaginary parts of scattering amplitude
at zero angle. The amplitude parameters are an effective qq̄-nucleon cross
section

σV N (s,Q2,M2) =
σ̃V N (s,Q2)

M2 + Q2 + C2
, (17.11)

where C2 = 2 GeV2, and

λ(s,Q2,M2) = 2 +
m2

ρ

M2 + Q2
+ α′P ln

(
s

M2 + Q2

)
. (17.12)

The values of σ̃V N (s,Q2) are calculated in paper [5]. It was shown [5] that
Q2 dependence of σV N (s,Q2) is very week at Q2 < m2

ρ + C2, where mρ

is the ρ-meson mass. We can omit this dependence and we also can use
σV N (s,Q2) has been calculated in [5] at M2 = m2

ρ.
If coherence length is smaller that the integrated over B distance between

two nucleons, then cross section σV A = AσV N .
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17.4 MC procedure.

At intermediate energies γ-nucleon and γ-nucleus interactions can be
performed within the intranuclear hadron transport model similarly as the
hadron-nucleon and hadron-nucleus interactions.

At high energies the Monte Carlo procedure in the case of γ-nucleon
collision can be outlined as follows:

• At given c.m. energy squared and at given virtuality Q2 sample mass
M2 of hadron qq̄ fluctuation according to the Eq.(17.5) and sample
its flavour according to statistical weights: ωuū = 1/2, ωdd̄ = 1/4 and
ωss̄ = 1/4 are derived from (17.6);

• Sample the momentum fraction x of a valence quark inside a hadron
fluctuation according to

ρ(x) ∼ 1√
x(1− x)

(17.13)

and transverse momentum of a quark according to the Gaussian dis-
tribution as for hadrons;

• Split nucleon into quark and diquark as it was described for hadron-
nucleon interaction in the reggeon based parton string model chapter;

• Create two strings spanned between quark from a hadron fluctuation
and diquark from nucleon and between antiquark from a hadron fluc-
tuation and quark from nucleon;

• Decay string into hadrons as it was described in the string decay chap-
ter.

In the case of γ-nucleus collision the MC procedure is following:

• At given c.m. energy squared and at given virtuality Q2 sample mass
M2 of hadronic qq̄ fluctuation and sample its flavour as it was described
for the γ-nucleon collision;

• Calculate coherence length d;

• If coherence length less than intranuclear distance, then simulate in-
elastic hadron fluctuation-nucleon collision at chosen impact parame-
ter B as was described above;

• If coherence length more than distance between nucleons, then perform
simulation of hadron fluctuation-nucleus collision at chosen impact
parameter B using the Pomeron based parton string model similarly
as for meson-nucleus interactions. For this case the probability of
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inelastic collision of hadron fluctuation with nucleon i at given impact
parameter bi is calculated according to

pV N (s, b2) = 1− exp[−2u(s, b2)]; (17.14)

with the eikonal u(s, b2) defined by the Eq. (17.10) at Q2 = 0 and
M2 = Mρ.
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Chapter 18

Preequilibrium exciton
model.

18.1 Reaction initial state.

The preequilibrium exciton model based on the approach[1]. It is consid-
ered as an extension of a hadron transport model. It gives a possibility to
extend the low energy range of the intranuclear hadron transport model ap-
plicability for nucleon-nucleus inelastic collision and it provides a ”smooth”
transition from kinetic stage of reaction described by the intranuclear trans-
port model to the equilibrium stage of reaction, which can be described by
equilibrium deexcitation models (see the next chapters).

The initial information for calculation of preequilibrium nuclear stage
consists from the atomic mass number A, charge Z of residual nucleus, its
four momentum P0, angular momentum ~L0, its excitation energy U and
number of excitons n equals the sum of number of particles p (pZ from them
are charged) and number of holes h.

The exciton energies are calculated in the intranuclear hadron transport
model from the Fermi energy level TF . All cascade nucleons with kinetic
energies above TF and absorbed by the target nucleus are called particles.
The holes are results of cascade interactions, when particles stroke nucleons
from nucleus. The holes occupy states below TF .

There are some peculiarities to get an initial information about pree-
quilibrium stage for different kind of reactions. Particularly, the excitation
energy of nucleus in the case of nucleon-nucleus interaction can be calculated
as

U = Tinit + B(A,Z), (18.1)

where Tinit is initial nucleon kinetic energy and B(A,Z) is the binding energy
of a nucleon. The initial number of exciton is a model parameter and usually
defined from comparison with experimental data. The recommended initial
configuration is 2p1h, i. e. n = 3.
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Another way to obtain this information is to invoke the intranuclear
hadron transport model. As it was described in the intranuclear transport
model chapter this model is able to predict the excitation energy and the
exciton numbers of residual nucleus as well as its other parameters.

At the preequilibrium stage of reaction we take into account all possible
nuclear transition, when the number of excitons n is changed on the ∆n =
+2,−2, 0 [1]. These transitions are described by the corresponding transition
probabilities. Only emission of neutrons, protons, deutrons, thritium and
helium nuclei are taken into account.

18.2 Simulation of the preequilibrium reaction.

The preequilibrium stage of nuclear reaction is modelled until nuclear
system is not an equilibrium state. Further emission of nuclear fragments or
photons from excited nucleus can be simulated using an equilibrium emission
model (see the next chapter).

18.2.1 Equilibrium condition.

In the state of statistical equilibrium, which is characterised by the equi-
librium number of excitons neq, all three type of transitions are equiprobable.
Thus, neq is fixed by ω+2(neq, U) = ω−2(neq, U). From this condition we can
obtain

neq =
√

0.5 + 2gU. (18.2)

18.2.2 Level density of the excited (n-exciton) states.

To obtain Eq. (18.2) it was also assumed an equidistant scheme of single-
particle levels with the density g ≈ 0.595aA, where a is the level density
parameter (see the nuclear properties chapter). The level density of the
n-exciton state is

ρn(U) =
g(gU)n−1

p!h!(n− 1)!
. (18.3)

18.2.3 Transition probabilities.

The partial transition probabilities to change the exciton number by ∆n
are determined by the squared matrix element averaged over allowed tran-
sitions < |M |2 > and the density of final states ρ∆n(n,U), which are really
accessible in this transition. They can be defined as follows:

ω∆n(n,U) =
2π
h

< |M |2 > ρ∆n(n,U). (18.4)

The density of final states ρ∆n(n,U) were derived in paper [2] using the Eq.
(18.3) for the level density of the n-exciton state and later corrected for the
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Pauli principle and indistinguishability of identical excitons in paper [3]:

ρ∆n=+2(n,U) =
1
2
g
[gU − F (p + 1, h + 1)]2

n + 1
[
gU − F (p + 1, h + 1)

gU − F (p, h)
]n−1,

(18.5)

ρ∆n=0(n,U) =
1
2
g
[gU − F (p, h)]

n
[p(p− 1) + 4ph + h(h− 1)] (18.6)

and
ρ∆n=−2(n,U) =

1
2
gph(n − 2), (18.7)

where F (p, h) = (p2 + h2 + p − h)/4 − h/2 was taken to be equal zero.
To avoid calculation of the averaged squared matrix element < |M |2 > it
was assumed [1] that transition probability ω∆n=+2(n,U) is the same as the
probability for quasi-free scattering of a nucleon above the Fermi level on a
nucleon of the target nucleus, i. e.

ω∆n=+2(n,U) =
< σ(vrel)vrel >

Vint
. (18.8)

In Eq. (18.8) the interaction volume is estimated as Vint = 4
3π(2rc +λ/2π)3,

with the De Broglie wave length λ/2π corresponding to the relative velocity
< vrel >=

√
2Trel/m, where m is nucleon mass and rc = 0.6 fm.

The averaging in < σ(vrel)vrel > is further simplified by

< σ(vrel)vrel >=< σ(vrel) >< vrel > . (18.9)

For σ(vrel) we take approximation:

σ(vrel) = 0.5[σpp(vrel) + σpn(vrel]P (TF /Trel), (18.10)

where factor P (TF /Trel) was introduced to take into account the Pauli prin-
ciple. It is given by

P (TF /Trel) = 1− 7
5

TF

Trel
(18.11)

for TF
Trel

≤ 0.5 and

P (TF /Trel) = 1− 7
5

TF

Trel
+

2
5

TF

Trel
(2− Trel

TF
)5/2 (18.12)

for TF
Trel

> 0.5.
The free-particle proton-proton σpp(vrel) and proton-neutron σpn(vrel)

interaction cross sections are estimated using the equations [4]:

σpp(vrel) =
10.63
v2
rel

− 29.93
vrel

+ 42.9 (18.13)
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and
σpn(vrel) =

34.10
v2
rel

− 82.2
vrel

+ 82.2, (18.14)

where cross sections are given in mbarn.
The mean relative kinetic energy Trel, which is needed to calculate <

vrel > and the factor P (TF /Trel), was computed as Trel = Tp + Tn, where
mean kinetic energies of projectile nucleons Tp = TF + U/n and target
nucleons TN = 3TF /5, respectively.

Combining Eqs. (18.4) - (18.8) and assuming that < |M |2 > are the same
for transitions with ∆n = 0 and ∆n = ±2 we obtain for other transition
probabilities:

ω∆n=0(n,U) =
= <σ(vrel)vrel>

Vint

n+1
n [ gU−F (p,h)

gU−F (p+1,h+1) ]
n+1 p(p−1)+4ph+h(h−1)

gU−F (p,h)

(18.15)

and
ω∆n=−2(n,U) =

= <σ(vrel)vrel>
Vint

[ gU−F (p,h)
gU−F (p+1,h+1) ]

n+1 ph(n+1)(n−2)
[gU−F (p,h)]2 .

(18.16)

18.2.4 Emission probability for nucleons.

Emission process probability has been chosen similar as in the classical
Weisskopf-Ewing evaporation theory [5] (see also the next chapter). Proba-
bility to emit nucleon b in the energy interval (Tb, Tb + dTb) is given by

Wb(n,U, Tb) = σb(Tb)
(2sb + 1)µb

π2h3
Rb(p, h)

ρn−b(E∗)
ρn(U)

Tb, (18.17)

where σb(Tb) is the inverse (absorption of nucleon b) reaction cross section.
Here sb and mb are nucleon spin and reduced mass,respectively. The factor
Rb(p, h) takes into account the condition for the exciton to be a proton or
neutron. ρn−b(E∗) and ρn(U) are level densities of nucleus after and before
nucleon emission are defined in the evaporation model (ses the quilibrium
evaporation model chapter), respectively. E∗ = U−Qb−Tb is the excitation
energy of nucleus after fragment emission.

18.2.5 Emission probabilities for complex fragments.

It was assumed [1] that nucleons inside excited nucleus are able to ”con-
dense” and form complex fragment. The condensation probability to create
fragment consisting from Nb nucleons inside nucleus with A nucleons is given
by

γNb
= N3

b (Vb/V )Nb−1 = N3
b (Nb/A)Nb−1, (18.18)

where Vb and V are fragment b and nucleus volumes, respectively. The
last equation was estimated [1] as the overlap integral of (constant inside a
volume) wave function of independent nucleons with that of the fragment.
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During the preequilibrium stage a condensed fragment can be emitted.
The probability to emit the fragment can be written as [1]

Wb(n,U, Tb) = γNb
Rb(p, h)

ρ(Nb, 0, Tb + Qb)
gb(Tb)

σb(Tb)
(2sb + 1)µb

π2h3

ρn−b(E∗)
ρn(U)

Tb,

(18.19)
where

gb(Tb) =
Vb(2sb + 1)(2µb)3/2

4π2h3
(Tb + Qb)1/2 (18.20)

is the single-particle density for complex fragment b, which is obtained by
assuming that complex fragment moves inside volume Vb in the uniform
potential well whose depth is equal to be Qb. The factor Rb(p, h) provides
correct isotopic composition of the fragment b.

18.2.6 Total probability.

This probability is defined as

Wtot(n,U) =
∑

∆n=+2,0,−2

ω∆n(n,U) +
6∑

b=1

Wb(n,U), (18.21)

where total emission Wb(n,U) probability to emit fragment b can be ob-
tained from Eqs. (18.17) and (18.19) by integration over Tb:

Wb(n,U) =
∫ U−Qb

Vb

Wb(n,U, Tb)dTb. (18.22)

18.2.7 Calculation of kinetic energies for emitted particles.

The equations (18.17) and (18.19) can used to sample kinetic energies of
emitted fragment.

18.2.8 Angular distribution of emitted fragments.

The formulation of the preequilibrium exciton models in the term of
master equation for population probability for the n-exciton states does not
give a possibility to obtain angular distribution of emitted fragments[1].
The assumption about isotropic emission of fragments, which is used in the
equilibrium emission models (see the next chapters) contradicts experimen-
tal fragment angular distributions. To improve isotropic approximation the
next simple prescription [1] can be applied. It is considered that the particle
emission will be isotropic in the proper n-exciton system and the incoming
nuclear momentum is shared only by the n-exciton system rather than whole
excited nucleus. Thus, in the nucleus rest frame the angular distribution of
emitted particles will be anisotropic.

The next algorithm can be used to obtain anisotropic angular distribu-
tions. After each preequilibrium transition:
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• We sample the absolute value of nucleon Fermi momentum p according
to

p = pmax
F ξ1/3, (18.23)

where pmax
F is maximal Fermi momentum of a nucleon has been calcu-

lated at the maximal value of the nucleon density and ξ is a random
number uniformly distributed between 0 and 1;

• The vector p considered as an isotropic vector;

• We calculate a new momentum vector

p′ = p +
P0

Np
, (18.24)

Np is the number of particles and P0 is a momentum of residual nucleus
at the moment of transition.

Finally, the isotropically sampled momentum of outgoing particle produced
at preequilibrium emission is rotated on the angle between two vectors: p′

and residual nucleus velocity V vector.
There is another approach [6], [7] related on the fast particle approxi-

mation. In this model the angular orientation of nucleus at each exciton
collision step is defined by the direction of the fast particle, which changes
gradually in series of two-body collisions. The transition rate between differ-
ent exciton states and the emission probability are assumed to be factored
in angle dependent and energy dependent factors.

18.2.9 Angular momenta of the emitted fragments.

The angular momenta of and emitted particles are considered as classical
vectors li and estimated in the sharp cut-off approximation [8], [9] according
to

P (lb)dlb ∼ lbdlb, 0 ≤ lb ≤ lmax
b , (18.25)

where
lmax
b =

√
2µb(Eb − Vb)Rb/h̄. (18.26)

Here Rb is radius of the interaction of the b-th emitted particle with the
residual nucleus, Eb,Vb and µb are the energy in the centre of mass system,
Coulomb barrier and reduced mass of particle, respectively.

18.2.10 Parameters of residual nucleus.

After fragment emission we update parameters of decaying nucleus:

Af = A−Ab;Zf = Z − Zb;Pf = P0 − pb;

E∗
f =

√
E2

f − ~P 2
f −M(Af , Zf ); ~Lf = ~L0 − ~lb.

(18.27)
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Here pb is the evaporated fragment four momentum. The spins of the emitted
particles are not taken into account. Angular momenta of residual nuclei
are calculated without taking into account the spin of initial target nucleus
and intermediate nuclei during the precompound emission.

18.2.11 MC procedure.

The Monte Carlo simulation of the preequlibrium process is outlined as
follows:

1. For given excitation energy U , atomic number A and number of exci-
tons n calculate the equilibrium number neq of excitons according to
the Eq. (18.2). If exciton number n ≥ neq, then further emission of
fragments are simulated using an equilibrium model. If n < neq, then
perform next step.

2. Taking into account reaction threshold and Rb(p, h) factor calculate
transition (according to the Eqs. (18.8),(18.14) and (18.15)) and emis-
sion probabilities (the Eqs. (18.17) and (18.19) are integrated over Tb).
Then use the Eq. (18.21) to normalise calculated probabilities and ob-
tain statistical weights for subprocesses. Select a subprocess according
to the calculated statistical weights.

3. In the case of a transition update the number of excitons, if it is needed
and proceed step (1). In the case of a fragment emission one should
perform the next step.

4. Sample fragment kinetic energy according to the Eq. (18.17) or (18.19).

5. Sample fragment angles using the isotropic angular distribution in the
exciton system rest frame. Calculate fragment momentum and per-
form boost to the nucleus rest frame.

6. Update characteristics of the residual nucleus according to the Eqs.
(18.27) and proceed step (1).



Bibliography

[1] Gudima K. K., Mashnik S. G., Toneev V. D., Nucl. Phys. A401 329
(1983).

[2] Williams F. C., Phys. Lett. B31 180 (1970).
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Chapter 19

Equilibrium evaporation
model.

19.1 Reaction initial state.

The equilibrium evaporation model is based on the approach described in
[1]. It is capable to predict final states photons, nucleons as well as nuclear
fragments due to their evaporation from an excited nucleus with atomic
number A > 16.

The initial information for simulation of the evaporation stage consists
from the atomic mass number A, charge Z of residual (e. g. after kinetic
stage) nucleus, its four momentum P0, angular momentum ~L0 and excitation
energy E∗.

The evaporation of photons, neutrons, protons, deutrons, thritiums, al-
phas, as well as the fission of heavy residual nuclei with A > 65 are taken
into account as the competiting channels.

This model can be applied neither after kinetic stage of nuclear inter-
action or after another break-up process for an excited nucleus, e. g. the
fission or the multifragmentation.

19.2 Simulation of fragment evaporation.

The evaporation of neutron, proton, deutron, thritium and alpha frag-
ments are taken into account.

19.2.1 Evaporation threshold.

One should take into account the energy condition for fragment emission,
i. e. the nucleus excitation energy should be higher than the reaction
threshold:

Tmax
b = E∗ −Qb − Vb > 0. (19.1)
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Here Tmax
b is the maximal kinetic energy carried by emitted fragment b.

Qb = M(A,Z) − M(Af , Zf ) −Mb is the fragment b binding energy. Vb is
the Coulomb potential energy, i. e. the Coulomb barrier for fragment b.
M(A,Z) is the mass of the initial nucleus, M(Af , Zf ) is the mass of the
nucleus after emission of fragment b and Mb is the fragment b mass (see the
nuclear properties chapter). It should be noted that the expression (19.1) is
only valid, when the recoil kinetic energy equals zero. Instead we can apply
the condition:

Tmax
b = Emax

b −Mb − Vb > 0, (19.2)

where

Emax
b =

[M(A,Z) + E∗]2 + M2
b −M2(Af , Zf )

2[M(A,Z) + E∗]
. (19.3)

19.2.2 Coulomb barrier calculation.

The Coulomb barrier:
Vb = Cb

ZbZf

Rf + Rb
, (19.4)

where Cb = 1.44 MeVfm, Zf and Rf are charge and radius of nucleus after
fragment emission, Zb and Rb are charge and radius of fragment. The value
Vb(E∗) varies with the excitation energy E∗ by substitution [2]

Vb(E∗) =
Vb

1 +
√

E∗
2A

. (19.5)

The radii of nuclei (in fm) are approximated by R = rCA1/3, where [1]

rC = 2.173
1 + 0.006103ZbZf

1 + 0.009443ZbZf
. (19.6)

19.2.3 Fragment evaporation probability.

The statistical decay Weisskopf-Ewing theory [3] gives the probability to
evaporate particle b in the energy interval (Tb, Tb + dTb) per unit of time:

Wb(Tb) = σb(Tb)
(2sb + 1)mb

π2h̄3

ρb(Ub −Qb − Tb)
ρc(Uc)

Tb, (19.7)

where σb(Tb) is the inverse (absorption of particle b) reaction cross section.
Here sb and mb are particle spin and mass, respectively. ρc and ρb are level
densities of the compound nucleus and the nucleus after particle evaporation,
respectively. The energies Ub and Uc are defined as Ub = E∗ − ∆b and
Uc = E∗ − ∆c, where ∆b,c are pairing energies ∆Pair of the compound
and residual nuclei, respectively. The pairing energy ∆Pair (in MeV) is
calculated according to

∆Pair = κ
12√
A

, (19.8)



CHAPTER 19. EQUILIBRIUM EVAPORATION MODEL. 134

were κ = 0, 1, and 2 for the odd-odd, the odd-even and the even-even nuclei,
respectively.

We should note, that Eq. (19.7) is written for the case, when we have
neglected angular momenta and parities of the compound and residual nuclei
as well as the spin of the evaporated fragment (see below the extention of
this equation).

19.2.4 Inverse reaction cross section.

The inverse reaction cross section is assumed to have the form [4]

σb(Tb) = (1 + Cb)(1 − kbVb/Tb)πR2 (19.9)

for charged charged fragments with Ab ≤ 4 interaction and

σb(Tb) = α(1 + β/Tb)πR2 (19.10)

for neutrons. Here, kb is the barrier penetration coefficient (its tabulated
values [4]) can be used. R = r0A

1/3 denotes the absorption radius, where
r0 = 1.5 fm, α = 0.76 + 2.2A−1/3 and β = (2.12A−2/3 − 0.05)/(0.76 +
2.2A−1/3).

19.2.5 Level density.

The nuclear level density is approximated by the Fermi-gas approach [1]:

ρ(E∗) = C exp (2
√

aE∗), (19.11)

where C is a constant, which does not depend from nucleus properties and
excitation energy E∗, a is the level density parameter, which was explained
in the nuclear properties chapter. The system entropy is defined by S =
2
√

aE∗.

19.2.6 Total evaporation probability.

The total probability Wb or total partial width Γb = h̄Wb to evaporate
particle b can be obtained from Eq. (19.7) by integration over Tb:

Wb =
∫ U−Qb

Vb

Wb(Tb)dTb. (19.12)

Here the summation is carried out over all excited states of the fragment.
Integration in Eq. (19.12) for probability to emit fragment b can be

performed analytically, if we will use Eq. (19.11) for level density and the
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Eqs. (19.9)-(19.10) for inverse cross section. The probability to emit a
charged particle:

Wb = γbA
2/3
b B exp[−2

√
aU ] (1+Cb)

a2
b
{abT

max
b [2 exp(2

√
abT

max
b ) + 1]−

−3
√

abT
max
b exp(2

√
abT

max
b )− 3[1− exp(2

√
abT

max
b )]/2},

(19.13)
where Tmax

b is defined by the equation (19.1). The following notations were
introduced: Ab = A − ∆Ab, B = mNr2

0/(2πh2), γb = (2sb + 1)mb/mN .
∆Ab is the number of nucleons in b particle. mb, mN and sb are mass of
particle b, mass of nucleon and spin of particle b, respectively. ab is level
density parameter for nucleus after emission of fragment b. Similarly for the
neutron evaporation probability we obtain the following equation:

Wn = γnA
2/3
n B α

2a2
n

exp[−2
√

aE∗ + 2
√

anTmax
n ][4anTmax

n +
+(2anβ − 3)(exp (−2

√
anTmax

n ) + 2
√

anTmax
n − 1)].

(19.14)

Using probabilities Eq. (19.13) and Eq. (19.14) we are able to sample type
of the emitted fragment.

19.2.7 Kinetic energy of the emitted fragment.

The equation (19.7) can be used to sample kinetic energies of evaporated
fragments. For example, keeping terms in Eq. (19.7), which depend from
Tb and using the approximations for inverse cross section is given by Eq.
(19.9) and for level densities are given by Eq. (19.11), we will obtain for the
charged fragments:

W (x) = C1x exp[2
√

a(Tmax
b − x)] = C2Tb exp[2

√
aE∗], (19.15)

where C1 and C2 do not depend from Tb, x = Tb−Vb. To generate values of
x we can use the next procedure, changing the expression for W (x) to have
W (xmax) = 1 (xmax = [(ab + Tmax

b + 1/4)1/2 − 1/2]/ab):

1. Choose two random numbers ξ1 and ξ2 are distributed with equal
probabilities between 0 and 1;

2. Find kinetic energy of particle b from Tb = Tmax
b ξ1+Vb, if the condition

ξ2 ≤ W (ξ1T
max
b ) is fulfilled;

3. If the last condition is not fulfilled, proceed step (1).

19.2.8 Angular distribution and angular momenta of the emit-
ted fragments.

We consider the angular distribution for emitted fragments as the isotropic
distribution in spite of that the excited nucleus has an angular momentum.
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We have no information about the residual nucleus polarisation (see below).
The angular momenta of the evaporated particles are considered as clas-
sical vectors li and estimated in the sharp cut-off approximation (see the
preequilibrium exciton model chapter).

19.2.9 Parameters of the residual nucleus.

After fragment emission we update parameter of decaying nucleus accord-
ing to the equations:

Af = A−Ab;Zf = Z − Zb;Pf = P0 − pb;

E∗
f =

√
E2

f − ~P 2
f −M(Af , Zf ); ~Lf = ~L0 − ~lb.

(19.16)

Here pb is the evaporated fragment four momentum.
The spins of the emitted particles are not taken into account. Angular

momenta of residual nuclei are calculated without taking into account the
spin of initial target nucleus and of intermediate nuclei during emission of
particles.

19.2.10 Counting of the excited nucleus angular momentum.

The angular momentum influence on evaporation and fission processes can
be approximately taken into account. The angular momentum L dependence
of the level density can be approximated [5] by

ρ(E∗ −∆Pair, L) = ρ(U, 0), (19.17)

where U = E∗−∆Pair−ER and ER are the thermal and rotational energies
of a nucleus, respectively. The fission barrier Bfis(L) for a fissioning nucleus
with the angular momentum L can also be approximated as follows

Bfis(L) = Bfis(0)− (EGS
R − ESP

R ), (19.18)

where EGS
R and ESP

R are nuclear rotational energies for the ground state
and at the saddle-point, respectively. The rotational energies is calculated
according to

ER =
L(L + 1)

2θ
, (19.19)

where θ is the moment of inertia of a nucleus. The moment of inertia for
the compound and residual nuclei are calculated according to the rigid-body
expression:

θ = 0.4mNr2
0A

5/3, (19.20)

where mN is nucleon mass and r0 = 1.2 fm. The moment of inertia of a
nucleus at saddle-point JSP is calculated in [6].
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19.3 Fission probability calculation.

The fission decay channel (only for nuclei with A > 65) is taken into
account as a competitor for fragment and photon evaporation channels.

19.3.1 Total fission probability.

The fission probability Wfis in the Bohr and Wheeler theory of fission
[7] is proportional to the level density ρfis(T ) (the approximation by Eq.
(19.11) is used) at the saddle point, i.e.

Wfis =
1

2πh̄ρc(Uc)

∫ Uf−Bfis

0
ρfis(Uf−Bfis−T )dT =

1 + (Cf − 1) exp (Cf )
4πafis exp (2

√
acUc)

,

(19.21)
where Uf = E∗ −∆f and pairing energy (in MeV)

∆f = κ
14√
A

. (19.22)

In Eq. (19.21) Bfis is the fission barrier height (see nuclear properties chap-
ter). The value

Cf = 2
√

afis(Uf −Bfis) (19.23)

and ac, afis are the level density parameters of the compound and of the
fission saddle point nuclei, respectively.

The value of the level density parameter is larger at the saddle point,
when excitation energy is given by the initial excitation energy minus the
fission barrier height, than in the ground state, i. e. afis > a. Thus, the
values of afis = 1.08a for Z < 85, afis = 1.04a for Z ≥ 89 and af =
a[1.04 + 0.01(89. − Z)] for 85 ≤ Z < 89 [1] can be used.

19.4 Simulation of the photon evaporation.

The photon evaporation channel is taken into account as a competitor for
fragment evaporation and fission channels. For this case we consider only
the giant dipole resonance photon evaporation.

19.4.1 Total probability of γ evaporation.

As the first approximation we assume that dipole E1-transitions is the
main source of γ-quanta from highly-excited nuclei [8]. The probability to
evaporate γ in the energy interval (εγ , εγ + dεγ) per unit of time is given by

Wγ(εγ , L) =
1

π2(h̄c)3
σγ(εγ)

ργ(E∗ − εγ , L)
ρc(Uc, L)

ε2
γ . (19.24)
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Here L is the nuclear angular momentum σγ(εγ) is the inverse (absorption
of γ) reaction cross section. ργ(U − εγ , L) and ρc(Uc, L) are level densities
of nucleus after and before γ evaporation, respectively. In Eq. (19.24) we
assumed that ρc(Uc, L + 1) = ρc(Uc, L − 1) = ρc(Uc, L) and ρc(Uc, L) =
ρ(Uc − Erot) and ργ(U − εγ , L) = ρ(U − εγ − Erot), where level density is
defined by Eq. (19.11) and Erot is defined by Eq. (19.19).

The photoabsorption reaction cross section is given by the expression

σγ(εγ) =
σ0ε

2
γΓ2

R

(ε2
γ − E2

GDP )2 + Γ2
Rε2

γ

, (19.25)

where σ0 = 2.5A mbarn, ΓR = 0.3EGDP and EGDP = 40.3A−1/5 MeV are
empirical parameters of the giant dipole resonance [8]. The total radiation
probability is

Wγ =
3

π2(h̄c)3

∫ E∗−Erot

0
σγ(εγ)

ρ(E∗ − Erot − εγ)
ρ(Uc − Erot)

ε2
γdεγ . (19.26)

The integration can be performed numerically.

19.4.2 Energy of the evaporated photon.

The energy of γ-quantum can be sampled according to the Eq. (19.24)
distribution.

19.4.3 Discrete photon evaporation.

The last step of the evaporation cascade consists of evaporation of photons
with discrete energies. The competition between photons and fragments can
be neglected at this step.

If we want to simulate the evaporation of photons with different multi-
polarities λ ( e.g. electric and magnetic dipole E1 and M1 as well as the
electric quadrupole E2 photons), we need more careful consideration of the
angular momenta and parities for compound and residual nuclei. For this
case we should rewrite the probability (see Eq. (19.7)) to evaporate particle
b in the energy interval (Tb, Tb + dTb) per unit of time. The new probability
is given by [1]

Wb(Lc, πc, Lb, πb, Tb) =
1
h̄

ρb(Ub −Qb − Tb, Lb, πb)
ρc(Uc, Lc, πc)

|Lb+s|∑
S=|Lb−s|

|Lc+S|∑
l=|Lc−S|

Tl(Tb)

(19.27)
where Lc, πc and Lb, πb are the angular momenta and parities of the com-
pound nucleus and residual nucleus, respectively and s is the fragment spin.
The parity conservation should be taken into account in the summation over
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l. The transmission coefficients of fragments Tl(Tb) can be derived from the
inverse absorption cross sections [1]

dσb(Tb)
dl

= λ2Tl(Tb)δ(n, l), (19.28)

where λ is the de Broglie wavelength. The delta function takes into account
the fact that the orbital momentum l is perpendicular to the direction n of
the fragment motion.

Similarly for the photon evaporation:

W λ
γ (Lc, Lγ , εγ) =

1
h̄

ρ(E∗ − εγ , Lγ , πγ)
ρ(Uc, Lc, πc)

fλ(εγ) (19.29)

where fλ(εγ) are the strength functions, λ is the multipolarity of the γ-
transition and εγ is the photon energy. The strength functions for the photon
evaporation can be derived from the photoabsorption cross sections. This
approach is similar to the considered before giant dipole resonance emission
and requires the knowledge of the resonance parameters for nuclei. Another
simplified approach to obtain the strength functions is based on the single
particle transition estimates:

fλ(εγ) = χλε2λ+1
γ , (19.30)

where χλ are constants can be found in [9] or in [10].
The widths of different decays are

Γb(Lc) = h̄

∫ U−Qb

Vb

∑
Lb

Wb(Lc, Lb, Tb)dTb (19.31)

Γλ
γ(Lc) = h̄

|Lc+λ|∑
Lγ=|Lc−λ|

∫ E∗

0
Γλ

γ(Lc, Lγ , εγ)dεγ . (19.32)

Using the so-called single-particle Weisskopf estimations of the strength
functions (see Eq. (19.30)) one can estimate gamma-decay widths (in elec-
tronvolts):

Γγ(E1) = 0.07ε3
γA2/3, (19.33)

Γγ(M1) = 0.0021ε3
γ , (19.34)

Γγ(E2) = 4.9 × 10−8ε5
γA4/3. (19.35)

From the above equations for the decay widths one can also estimate the
corresponding lifetimes. From these equations we can see that M1 and E2
transitions are strongly suppressed as compared with the E1 transition. As
we already discussed (see Eq. (19.17)) one can approximate level density by

ρ(U,L) =
√

a(2L + 1)h̄3

48
√

2θ3U2
exp(2

√
aU). (19.36)
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19.5 Anisotropic photon angular distribution.

The ability to observe an anisotropy in the angular distribution of the
radiated photons depends on the ability to obtain a nonuniform population
of the substates {L,Mi} for excited nuclei with a given spin L, where Mi is
its chosen projection.

19.5.1 Angular distributions of the dipole and quadrupole
radiations.

The angular distribution of photons does not depend on whether the
multipole (λ, µ) is electric or magnetic in nature (see, e.g. [11],[12]). Thus,
if we consider only dipole and quadrupole radiations we obtain the next
angular (θ) distributions:

1. For dipole

ω1,0(θ) =
3
8π

sin2 θ, (19.37)

ω1,±1(θ) =
3

16π
(1 + cos2 θ); (19.38)

2. For quadrupole

ω2,0(θ) =
15
8π

sin2 θ cos2 θ, (19.39)

ω2,±1(θ) =
5

16π
(1− 3 cos2 θ + 4cos4 θ), (19.40)

ω2,±2(θ) =
5

16π
(1− cos4 θ). (19.41)

19.6 MC procedure to simulate emission of frag-
ments and dipole photons.

The equilibrium evaporation model algorithm consists from the repeating
steps of binary break-ups of an excited nucleus:

1. Create an excited nucleus: assign atomic mass number A, electrical
charge Z, fragment four vector P0, fragment excitation energy E∗ and
fragment angular momentum ~L0;

2. Calculate the probabilities of break-up channels and sample a channel;

3. Sample evaporated fragment b kinetic energy at rest of the decaying
nucleus (total energy for the emitted dipole photon);

4. Assuming isotropical evaporation of a fragment, sample its fly off angle
at rest of decaying nucleus;
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5. Boost the evaporated (no boost for the evaporated dipole photon) and
residual fragment momenta into the observer frame.

6. Calculate residual fragment atomic mass number Af , electrical charge
Zf , fragment four vector Pf , fragment excitation energy E∗

f and frag-
ment angular momentum ~Lf ;

7. Repeat this procedure starting from the step (2) until no more frag-
ments (the probabilities of break-up channels equal zeros) can be evap-
orated.
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Chapter 20

Symmetric and asymmetric
fission model.

20.1 Reaction initial state.

The symmetric and asymmetric fission model is capable to predict final
excited fragments as result of an excited nucleus symmetric or asymmetric
fission. The fission process (only for nuclei with atomic number A ≥ 65) is
simulated according to the approach [1]. It is considered as a competitor
for evaporation process, when nucleus transits from an excited state to the
ground state. The competition with evaporation of neutrons, protons, deu-
trons, nuclei of thritium and helium as well as photon evaporation is taken
into account.

The initial information for calculation of fission decay consists from the
atomic mass number A, charge Z of residual (e. g. after kinetic stage of
the nuclear reaction) nucleus, its four momentum P0, angular momentum
~L0 and excitation energy E∗.

20.2 Nuclear fission cross section.

The probability P fis
n that fission occurs at any step of evaporation chain

with n evaporated fragments can be defined as follows

P fis
n = 1− Pn, (20.1)

where Pn is the probability of the transition from an excited state to the
ground state for the nucleus only by evaporation of n fragments. The prob-
ability Pn can be calculated using the equation:

Pn =
n∏

i=1

[1−Wfis(E∗
i , Ai, Zi)/Wtot(E∗

i , Ai, Zi)], (20.2)
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where Wfis fission probability (per unit time) in the Bohr and Wheeler
theory of fission [2]. It is assumed to be proportional to the level density
ρfis(T ) at the saddle point:

Wfis =
1

2πh̄ρc(Uc)

∫ Uf−Bfis

0
ρfis(Uf −Bfis − T )dT, (20.3)

where Uf = E∗ −∆f and pairing energy (in MeV)

∆f = κ
14√
A

. (20.4)

In Eq. (20.3) Bfis is the fission barrier height (see the nuclear properties
chapter). Wtot is the total decay probability (per unit time) of the excited
nucleus:

Wtot = Wfis +
6∑

b=1

Wb. (20.5)

Wb is the probability to evaporate fragment of type b. In the Weisskopf and
Ewing theory of particle evaporation [3]:

Wb(Tb) = σb(Tb)
(2sb + 1)mb

π2h̄3

ρb(Ub −Qb − Tb)
ρc(Uc)

Tb, (20.6)

where σb(Tb) is the inverse (absorption of particle b) reaction cross section, sb

and mb are particle spin and mass, ρc and ρb are level densities of compound
nucleus and nucleus after particle evaporation, respectively. The energies
Ub and Uc are defined as Ub = E∗ −∆b and Uc = E∗ −∆c, where ∆b,c are
pairing energies ∆Pair of the compound and residual nuclei, respectively.
The pairing energy ∆Pair (in MeV) is calculated according to

∆Pair = κ
12√
A

, (20.7)

where κ = 0, 1, and 2 for the odd-odd, the odd-even and the even-even
nuclei, respectively.

The Eq. (20.1) gives us a possibility to calculate numerically the so-
called fisility of nucleus Pfis = σfis/σin (see e.g. [1]), where σin is the
inelastic nuclear reaction cross section and σfis is the fission:

σfis = σinPfis = σin
1

Nch

Nch∑
n=1

P fis
n , (20.8)

where Nch is the number of fragment evaporation chains to be performed
for the averaging.

As one can see from Eq. (20.3) the fission barrier height Bfis and the
parameter of the level density of a nucleus afis at saddle point are the basic
ingredients of the model, which are necessary for the calculation of fission
cross section.
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20.3 Fission process simulation.

20.3.1 Atomic number distribution of fission products.

As known from the experimental data [4] the mass distribution of fission
products consists of the symmetric and the asymmetric components:

F (Af ) = Fsym(Af ) + ωFasym(Af ), (20.9)

where ω(U,A,Z) defines relative contribution of each component and it
depends from excitation energy U and A,Z of the fissioning nucleus. It
was found in [5] that experimental data can be approximated with a good
accuracy, if one takes

Fsym(Af ) = exp

[
−(Af −Asym)2

2σ2
sym

]
(20.10)

and

Fasym(Af ) = exp
[
− (Af−A2)2

2σ2
2

]
+ exp

[
−Af−(A−A2)2

2σ2
2

]
+

+Casym

{
exp

[
− (Af−A1)2

2σ2
1

]
+ exp

[
−Af−(A−A1)

2

2σ2
2

]}
,

(20.11)

where Asym = A/2, A1 and A2 are the mean values and σ2
sim, σ2

1 and σ2
2 are

dispersions of the Gaussians, respectively. From the analysis of experimental
data [5] the parameter Casym ≈ 0.5 and the next values for dispersions:

σ2
sym = exp (0.00553U + 2.1386), (20.12)

were determined ( U in MeV).

2σ1 = σ2 = 5.6 (20.13)

for A > 235 and
2σ1 = σ2 = 5.6 + 0.096(A − 235) (20.14)

for A ≤ 235 were found.
The weight ω(U,A,Z) was approximated as follows

ω =
ωa − Fasym(Asym)

1− ωaFsym[(A1 + A2)/2]
. (20.15)

The values of ωa for nuclei with 96 ≥ Z ≥ 90 were calculated from

ωa(U) = exp (0.538U − 9.9564) (20.16)

for U ≤ 16.25 MeV,

ωa(U) = exp (0.09197U − 2.7003) (20.17)
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for U > 16.25 MeV and

ωa(U) = exp (0.09197U − 1.08808) (20.18)

for z = 89. For nuclei with Z ≤ 88 the authors of [5] constructed following
approximation:

ωa(U) = exp [0.3(227 − a)] exp {0.09197[U − (Bfis − 7.5)] − 1.08808},
(20.19)

where the height of fission barrier Bfis is taken in MeV. The corresponding
factors occur in exponential functions are vanish at A > 227 and U <
Bfis − 7.5.

20.3.2 Charge distribution of fission products.

At given mass of fragment Af the experimental data [4] for the charge
Zf distribution of fragments are well approximated by the Gaussian with
dispersion σ2

z = 0.36 and the average < Zf >, which can be calculated from
the expression:

< Zf >=
Af

A
Z + ∆Z. (20.20)

The parameter ∆Z = −0.45 for Af ≥ 134, ∆Z = −0.45(Af − A/2)/(134 −
A/2) for A− 134 < Af < 134 and ∆Z = 0.45 for A ≤ A− 134.

After sampling of fragment atomic numbers and fragment charges, we
have to check that fragment ground state masses (see the nuclear properties
chapter) do not exceed initial energy and calculate the maximal fragment
kinetic energy according to

Tmax < U + M(A,Z)−M1(Af1, Zf1)−M2(Af2, Zf2), (20.21)

where U and M(A,Z) are the excitation energy and mass of initial nucleus,
M1(Af1, Zf1), and M2(Af2, Zf2) are masses of the first and second fragment,
respectively.

20.3.3 Kinetic energy distribution of fission products.

We can use the empirically defined [6] dependence of the average kinetic
energy < Tkin > (in MeV) of fission fragments from the mass and the charge
of a fissioning nucleus:

< Tkin >= 0.1178Z2/A1/3 + 5.8. (20.22)

This energy is distributed differently for the cases of symmetric and asym-
metric modes of fission. As it follows from the analysis of data [5] the average
kinetic energy of fragments is higher for the symmetric mode, than that in
the symmetric one by approximately 12.5 MeV. To approximate the average
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numbers of kinetic energies < T sym
kin and < T asym

kin > for the symmetric and
asymmetric modes of fission, respectively, the authors of [5] have suggested
empirical expressions:

< T sym
kin >=< Tkin > −12.5Wasim, (20.23)

< T asym
kin >=< Tkin > +12.5Wsim, (20.24)

where
Wsim = ω

∫
Fsim(A)dA/

∫
F (A)dA (20.25)

and
Wasim =

∫
Fasim(A)dA/

∫
F (A)dA. (20.26)

In the symmetric fission the experimental data for the ratio of the average
kinetic energy of fission fragments < Tkin(Af ) > to its maximum energy
< Tmax

kin > as a function of the mass of a larger fragment Amax can be
approximated by expressions:

< Tkin(Af ) > / < Tmax
kin >= 1− k[(Af −Amax)/A]2 (20.27)

for Asim ≤ Af ≤ Amax + 10 and

< Tkin(Af ) > / < Tmax
kin >= 1− k(10/A)2 − 2(10/A)k(Af −Amax − 10)/A

(20.28)
for Af > Amax + 10, where Amax = Asim and k = 5.32. In the case
of asymmetric fission fragments will have the maximal kinetic energy, if
the larger fragment have the atomic number, which is equal Amax = 134.
To approximate the experimental data for the asymmetric mode, we can
also use the above equation with k = 23.5. For both modes of fission the
distribution over kinetic energy of fragments Tkin is chosen Gaussian with
their own average values < Tkin(Af ) >=< T sym

kin (Af ) > or < Tkin(Af ) >=<
T asym

kin (Af ) > and dispersions σ2
kin equal 82 MeV or 102 MeV2 for symmetric

and asymmetric modes, respectively.

20.3.4 Calculation of the excitation energy of fission prod-
ucts.

The total excitation energy of fragments Ufrag can be determined accord-
ing to the equation:

Ufrag = U + M(A,Z)−M1(Af1, Zf1)−M2(Af2, Zf2)− Tkin, (20.29)

where U and M(A,Z) are the excitation energy and mass of initial nucleus,
Tkin is the fragments kinetic energy, M1(Af1, Zf1), and M2(Af2, Zf2) are
masses of first and second fragment, respectively.



CHAPTER 20. SYMMETRIC AND ASYMMETRIC FISSION MODEL.148

The value of excitation energy of fragment Uf determines the fragment
temperature T =

√
Uf/af , where af ∼ Af is the parameter of fragment

level density. We assume that after disintegration fragments have the same
temperature as the initial nucleus. Then the total excitation energy will be
distributed between fragments in proportion to their mass numbers:

Uf = Ufrag
Af

A
. (20.30)

20.3.5 Excited fragment momenta.

Assuming that fragment kinetic energy Tf = P 2
f /(2(M(Af , Zf + Uf ) we

are able to calculate the absolute value of the fragment c.m. momentum

Pf =
(M1(Af1, Zf1 + Uf1)(M2(Af2, Zf2 + Uf2)
M1(Af1, Zf1) + Uf1 + M2(Af2, Zf2) + Uf2

Tkin. (20.31)

and its components, if we consider the fragment isotropic distribution.

20.4 MC procedure.

The Monte Carlo procedure to calculate characteristics of fission frag-
ments can be outlined as follows:

• Select fission mode (symmetric or asymmetric). Sample atomic num-
ber Af of a fission fragment according to experimentally defined distri-
bution, which consists from the ”symmetric” and ”asymmetric” parts;

• For chosen Af randomly in accordance with Gaussian distribution and
the experimentally defined dispersion and average select the fragment
charge Zf ;

• For chosen Af , Zf sample the kinetic energy of fragments according to
the Gaussian distribution with experimentally defined average values
and dispersions;

• Applying energy conservation and using fragment ground state masses
calculate excitation energy of fragments and share it between frag-
ments assuming that fragments have equal temperatures;

• Calculate absolute value of the c.m. fragment momentum (non-relativistic
kinematics is used) and sample fragment fly off angles assuming isotropic
angular distribution of fragments;
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Chapter 21

Multifragmentation model
for light nuclei.

21.1 Multifragmentation of the light nuclei.

This model is based on the approach [1]. It can be used to predict final
states as result of an excited light nucleus (A ≤ 16) break-up (explosion).

For light nuclei the values of excitation energy per nucleon are often
comparable with nucleon binding energy. Thus a light excited nucleus breaks
into two or more fragments with the branching given by available phase
space. To describe a process of nuclear disassembling the so-called Fermi
break-up model is used [2], [3], [4].

The initial information for calculation of break-up stage consists from
the atomic mass number A, charge Z and number of neutrons N of residual
(e. g. after hadron kinetic stage or fission) nucleus and its excitation energy
U . The total energy of nucleus in the rest system is E = U+M(A,Z), where
M(A,Z) is the ground state mass of the nucleus (see the nuclear properties
chapter).

21.1.1 Allowed channel.

The channel will be allowed for decay, if the total kinetic energy Ekin of
all fragments of the given channel at the moment of break-up is positive.
This energy can be calculated according to the equation:

Ekin = U + M(A,Z) −ECoulomb −
n∑

b=1

(mb + εb), (21.1)

mb and εb are masses and excitation energies of fragments, respectively,
ECoulomb is the Coulomb barrier for the given channel. It is approximated
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by

ECoulomb =
3
5

e2

r0

(
1 +

V

V0

)−1/3
(

Z2

A1/3
−

n∑
b=1

Z2

A
1/3
b

)
, (21.2)

where V0 is the volume of the system corresponding to the normal nuclear
matter density, r0 = 1.3 fm and V = κV0 is the decaying system volume
(κ = 1 is usually used).

21.1.2 Multifragmentation probability.

The total probability per unit energy for nucleus to break-up into n com-
ponents (nucleons, deutrons, tritons, alphas etc) in the final state is given
by

W (E,n) = (V/Ω)n−1ρn(E), (21.3)

where ρn(E) is the density of a number of final states, V is the volume of
decaying system and Ω = (2πh̄)3 is the normalisation volume and h̄ = 0.197
fm GeV. The density ρn(E) can be defined as a product of three factors:

ρn(E) = Mn(E)SnGn. (21.4)

The first one is the phase space factor defined as

Mn =
∫ +∞

−∞
...

∫ +∞

−∞
δ

(
n∑

b=1

pb

)
δ

(
E −

n∑
b=1

√
p2 + m2

b

)
n∏

b=1

d3pb, (21.5)

where pb are fragment momenta. The second one is the spin factor:

Sn =
n∏

b=1

(2sb + 1), (21.6)

which gives the number of states with different spin orientations. The last
one is the permutation factor

Gn =
k∏

j=1

1
nj!

, (21.7)

which takes into account identity of components in the final state (nj is the
number of components of j- type particles and k is defined by n =

∑k
j=1 nj).

E.g. if in final state we have n = 6 particles and from them there are 2-
alphas, 3-nucleons and 1-deutrons, then G6 = 1/(2!3!1!) = 1/12.

For the non-relativistic case

Mn =
∫ +∞

−∞
...

∫ +∞

−∞
δ

(
n∑

b=1

pb

)
δ

(
n∑

b=1

p2
b

2mb
− Ekin

)
n∏

b=1

d3pb (21.8)
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the integration in Eq. (21.5) can be evaluated analytically (see e. g. [5]) and
the probability for a nucleus with energy E disassembling into n fragments
with masses mb (b = 1, 2, 3, ..., n) is

W (Ekin, n) = SnGn

(
V

Ω

)n−1
(

1∑n
b=1 mb

n∏
b=1

mb

)3/2
(2π)3(n−1)/2

Γ(3(n− 1)/2)
E

3n/2−5/2
kin ,

(21.9)
where Γ(x) is the gamma function.

21.1.3 Fermi break-up model parameter.

The Fermi break-up model has only one free parameter V is the volume
of decaying system, which can be calculated as follows:

V = 4πR3/3 = 4πr3
0A/3, (21.10)

where r0 = 1.3 fm is usually used.

21.1.4 Fragment characteristics.

So far we considered only the formation of fragments in their ground and
low-lying excited states, which are stable for nucleon emission. However,
several unstable fragments with large lifetimes: 5He, 5Li, 8Be, 9B etc can
also be considered [6]. Fragment characteristics Ab, Zb, sb and εb can be
found in[6].

21.1.5 MC procedure.

1. We randomly (according to probability Eq. (21.9) and condition Eq.
(21.1)) select decay channel.

2. Then for given channel we calculate kinematic quantities of each frag-
ment according to the relativistic n-body phase space distribution (see
Eq. (21.5)) using the Kopylov’s methods[7] (see the resonance decay
chapter).

We should note that outlined MC procedure, which is usually used[1], is
not strictly consistent. The non-relativistic phase space is used for the chan-
nel probability calculation, but product momenta are sampled according to
the relativistic phase space. However, it can be corrected since we are able
to calculate relativistic phase space factor (Eq. (21.5)) numerically (see the
Kopylov’s method in the resonance decay model chapter).

We can take into account that the neutral fragments are not affected by
the Coulomb field. When fragment move away to infinity its total kinetic
energy can be approximated by the sum of its translational motion energy
and the contribution from the Coulomb repulsion.
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Chapter 22

Multifragmentation model
for heavy nuclei.

22.1 Multifragmentation process simulation.

The multifragmentation model is able to predict final states (nuclear frag-
ments) as result of high excited nucleus break-up (explosion). The multi-
fragmentation process simulation is based on the approach [1].

At high excitation energies U/A > 5 − 7 MeV the multifragmentation
mechanism, when nuclear system can eventually breaks down into fragments,
becomes dominant. Later on the excited primary fragments propagate inde-
pendently in the mutual Coulomb field and undergo de-excitation. Detailed
description of multifragmentation mechanism can be found in review [1].

The initial information for calculation of multifragmentation stage con-
sists from the atomic mass number A, charge Z of residual (e. g. after
kinetic stage of reaction) nucleus and its excitation energy U .

22.1.1 Multifragmentation probability.

The probability of a breakup channel b is given by the expression (in the
so-called microcanonical approach [1], [2]):

Wb(U,A,Z) =
1∑

b exp[Sb(U,A,Z)]
exp[Sb(U,A,Z)], (22.1)

where Sb(U,A,Z) is the entropy of a multifragment state of the correspond-
ing breakup channel b. The channels {b} can be parametrised by set of
fragment multiplicities NAf ,Zf

for fragments with atomic numbers Af and
charges Zf . All partitions {b} should satisfy constraints are derived from
the total mass and charge: ∑

f

NAf ,Zf
Af = A (22.2)
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and ∑
f

NAf ,Zf
Zf = Z. (22.3)

It is assumed [2] that thermodynamic equilibrium is established in every
channel, which can be characterised by the channel temperature Tb.

The channel temperature Tb is determined by the equation constraining
the average energy Eb(Tb, V ) associated with partition b:

Eb(Tb, V ) = U + Eground = U + M(A,Z), (22.4)

where V is the system volume, Eground is the ground state (at Tb = 0) energy
of system and M(A,Z) is the mass of nucleus (see the nuclear properties
chapter).

According to the conventional thermodynamics formulae the average en-
ergy of a partition b is expressed through the system free energy Fb as

Eb(Tb, V ) = Fb(Tb, V ) + TbSb(Tb, V ). (22.5)

Thus, if the free energy Fb of a partition b is known, we can find the
channel temperature Tb from Eqs. (22.4) and (22.5), then the entropy
Sb = −dFb/dTb and hence, decay probability Wb defined by Eq. (22.1)
can be calculated.

Calculation of the free energy is based on the liquid-drop description of
individual fragments [2]. The free energy of a partition b can be split into
several terms:

Fb(Tb, V ) =
∑
f

Ff (Tb, V ) + EC(V ), (22.6)

where Ff (Tb, V ) is the average energy of an individual fragment including
the volume

F V
f = [−E0 − T 2

b /ε(Af )]Af , (22.7)

the surface

FSur
f = β0[(T 2

c − T 2
b )/(T 2

c + T 2
b )]5/4A

2/3
f = β(Tb)A

2/3
f , (22.8)

the symmetry
FSim

f = γ(Af − 2Zf )2/Af , (22.9)

the Coulomb

FC
f =

3
5

Z2
fe2

r0A
1/3
f

[1− (1 + κC)−1/3] (22.10)

and the translational

F t
f = −Tb

[
ln ZAf ,Zf

− ln (NAf ,Zf
!)/NAf ,Zf

]
(22.11)
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terms. Using the Boltzmann gas approximation (gf = 1 and translational
energy Et

b = 3/2Tb) the translation partition sum can be calculates as fol-
lows:

ZAf ,Zf
= gfVf

∫ d3pAf ,Zf

(2πh̄)4
exp

[
−

p2
Af ,Zf

2mAf ,Zf
T

]
= gfVf

(2mAf ,Zf

2πh̄2

)3/2

(22.12)
The expression for translational free energy can be approximated more, if we
assume that mAf ,Zf

= mNAf , where mN is a nucleon mass and NAf ,Zf
! ≈

(
NAf ,Zf

e )NAf ,Zf
.

We can also introduce the thermal wavelength λTb
= (2πh̄2/mNTb)1/2

and rewrite the Eq. (22.11):

F t
f = −Tb

ln
VfA

3/2
f

λ3
Tb

NAf ,Zf

+ 1

 . (22.13)

The last term

EC(V ) =
3
5

Z2e2

R
(22.14)

is the Coulomb energy of the uniformly charged sphere with charge Ze and
the radius R = (3V/4π)1/3 = r0A

1/3(1 + κC)1/3, where κC = 2 [2].
Parameters E0 = 16 MeV, β0 = 18 MeV, γ = 25 MeV are the coeffi-

cients of the Bethe-Weizsacker formula at Tb = 0 (see the nuclear properties
chapter). gf = (2Sf + 1)(2If + 1) is spin Sf and isospin If degeneracy
factor for a fragment. Fragments with Af > 1 are treated as the Boltzmann
particles. r0 = 1.17 fm and Tc = 18 MeV is the critical temperature, which
corresponds to the liquid-gas phase transition. ε(Af ) = ε0[1+3/(Af − 1)] is
the inverse level density of the mass Af fragment and ε0 = 16 MeV is con-
sidered as a variable model parameter, whose value depends on the fraction
of energy transferred to the internal degrees of freedom of fragments [2]. The
free volume Vf = κV = κ4

3πr4
0A available to the translational motion of a

fragment, where κ ≈ 1 and its dependence on the multiplicity of fragments
can be taken from [2]:

κ =
[
1 +

1.44
r0A1/3

(M1/3 − 1)
]3
− 1, (22.15)

where κ = 0, if M = 1.
The light fragments with Af < 4, which have no excited states, are

considered as elementary particles characterised by the empirical masses
Mf , radii Rf , binding energies Bf , spin degeneracy factors gf of ground
states, respectively. They contribute to the translation free energy and the
Coulomb energy.
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22.1.2 Direct simulation of the low multiplicity multifrag-
ment disintegration.

At comparatively low excitation energy (temperature) system will disin-
tegrate into a small number of fragments M ≤ 4 and number of channel is
not huge. For such situation a direct (microcanonical) sorting of all decay
channels can be performed. Then, using Eq. (22.1), the average multiplicity
value < M > can be found. To check that we really have the situation with
the low excitation energy, the obtained value of < M > is examined to obey
the inequality < M >≤ M0, where M0 = 3.3 and M0 = 2.6 for A ∼ 100 and
for A ∼ 200, respectively [2]. If the discussed inequality is fulfilled, then the
set of channels under consideration is believed to be suitable for a correct
description of the break up. Then using calculated according Eq. (22.1)
probabilities we can randomly select a specific channel with given values of
Af and Zf .

22.1.3 Fragment multiplicity distribution.

The individual fragment multiplicities NAf ,Zf
in the so-called macro-

canonical ensemble [1] are distributed according to the Poisson distribution:

P (NAf ,Zf
) = exp (−ωAf ,Zf

)
ω

NAf ,Zf

Af ,Zf

NAf ,Zf
!

(22.16)

with mean value < NAf ,Zf
>= ωAf ,Zf

defined as

< NAf ,Zf
>= gfA

3/2
f

Vf

λ3
Tb

exp
[

1
Tb

(Ff (Tb, V )− F t
f (Tb, V )− µAf − νZf )

]
,

(22.17)
where µ and ν are chemical potentials. The chemical potentials can be found
by substituting the Eq. (22.17) into the system of constraints:∑

f

< NAf ,Zf
> Af = A (22.18)

and ∑
f

< NAf ,Zf
> Zf = Z (22.19)

and solving them by iteration.

22.1.4 Fragment atomic number distribution.

Fragment atomic numbers Af > 1 are also distributed according to the
Poisson distribution [1] (see Eq. (22.16)) with mean value < NAf

> defined
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as

< NAf
>= A

3/2
f

Vf

λ3
Tb

exp
[

1
Tb

(Ff (Tb, V )− F t
f (Tf , V )− µAf − ν < Zf >)

]
,

(22.20)
where calculating the internal free energy Ff (Tb, V )− F t

f (Tb, V ) one has to
substitute Zf →< Zf >. The average charge < Zf > for fragment having
atomic number Af is given by

< Zf (Af ) >=
(4γ + ν)Af

8γ + 2[1 − (1 + κ)−1/3]A2/3
f

. (22.21)

22.1.5 Fragment charge distribution.

At given mass of fragment Af > 1 the charge Zf distribution of fragments
are described by the Gaussian distribution:

P (Zf (Af )) ∼ exp

[
−(Zf (Af )− < Zf (Af ) >)2

2(σZf
(Af ))2

]
(22.22)

with dispersion

σZf (Af ) =

√√√√ AfTb

8γ + 2[1− (1 + κ)−1/3]A2/3
f

≈
√

AfTb

8γ
. (22.23)

and the average charge < Zf (Af ) > defined by Eq. (22.21).

22.1.6 Fragment kinetic energy distribution.

It is assumed [2] that at the instant of nucleus break-up the kinetic energy
of the fragment T f

kin in the rest of nucleus obeys the Boltzmann distribution
with given temperature Tb:

dP (T f
kin)

dT f
kin

∼
√

T f
kin exp (−T f

kin/Tb). (22.24)

Under assumption of thermodynamic equilibrium the fragment have isotropic
velocities distribution in the rest frame of nucleus. The total kinetic energy
of fragments should be equal 3

2MTb, where M is the fragment multiplicity.
The total fragment momentum should be equal zero. These conditions are
fulfilled by the proper choice of the momenta of two last fragments.

The initial conditions for the divergence of the fragment system are de-
termined by random selection of fragment coordinates distributed with equal
probabilities over the break-up volume Vf = κV . It can be a sphere or pro-
longated ellipsoid. Then Newton’s equations of motion can be solved for
all fragments in the self-consistent time-dependent Coulomb field [2]. Thus
the asymptotic energies of fragments determined as result of this procedure
differ from the initial values by the Coulomb repulsion energy.
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22.1.7 Calculation of the excitation energies of multifrag-
mentation products.

The temperature Tb determines the average excitation energy of each frag-
ment:

Uf (Tb) = Ef (Tb)−Ef (0) =
T 2

b

ε0
Af +

[
β(Tb)− Tb

dβ(Tb)
dTb

− β0

]
A

2/3
f , (22.25)

where Ef (Tb) is the average fragment energy at given temperature Tb and
β(Tb) is defined by the Eq. (22.8). There is no excitation for fragment with
Af < 4, for 4He excitation energy can be taken as U4He = 4T 2

b /εo.

22.1.8 MC procedure.

The Monte Carlo calculation of fragment characteristics can be outlined
as follows:

1. Perform direct simulation of the low multiplicity disintegration using
Eq. (22.1) and find average multiplicity value < M >. Examine that
the found < M > is really small, i.e. < M >≤ M0. Using calculated
according to the Eq. (22.1) probabilities, randomly select a specific
channel with given values of Af and Zf . Then proceed to the step (5).
If the obtained value of < M >> M0, then proceed to the next step.

2. Sample atomic numbers of fragment Ai
f , where 1 ≤ Ai

f ≤ A according
to the Poisson distribution Eq. (22.16) with the mean value < NAf

>
defined by Eq. (22.20).

3. For chosen Ai
f randomly in accordance with the Gaussian distribution

Eq. (22.22) with the dispersion defined by Eq. (22.23) and the average
defined by Eq. (22.21) select fragment charge Zi

f , where 0 ≤ Zi
f ≤ Z.

4. Repeat the sampling of Ai
f (step (2)) and Zi

f (step (3)) i times until
for all fragments their atomic numbers and charges will be defined. If
the sum of nucleons and charge of all fragments exceed the values A
and Z, then the procedure should be repeated starting from i = 1 at
the step (2).

5. For chosen Af , Zf randomly according to the Boltzmann distribution
Eq. (22.24) determine fragment kinetic energies T f

kin at the instant
of the nucleus break-up in the rest of decaying nucleus system. Then
define fragment velocities and momenta under assumption of isotropic
velocities distribution in the rest frame of decaying nucleus. Use the
momenta of two last fragments to fulfil the energy-momentum con-
straints. By random selection of fragment coordinates distributed with
equal probabilities over the break-up volume Vf = κV determine the
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initial conditions for the divergence of the fragment system after break-
up instant. Solve the Newton’s equations of motion of all fragments in
the self-consistent time-dependent Coulomb field to define the asymp-
totic energies of fragments.

6. Calculate excitation energies of fragments using the Eq. (22.25).
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