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1. Introduction

The AdS/CFT correspondence relates string or M-theory onMn×XD−n, whereMn is
an space of negative curvature andXD−n an Einstein manifold, to field theories living
on the (conformal) boundary of these spaces [1, 2, 3] (see [4] for a comprehensive

review). It is particularly interesting to consider Mn being asymptotically AdS black

holes. The dual field theories are then at finite temperature, with the field theory

temperature given by the Hawking temperature of the black hole.

An example is the AdS black hole with planar horizon. It arises as the near

horizon limit of the near extremal D3-brane [5]. The dual field theory is N =

4 supersymmetric Yang-Mills theory. It turns out that the entropy, as calculated

from the supergravity approximation to string theory, differs by a factor of 3/4

from the one calculated in the gauge theory [6]. This difference comes from the

fact that the supergravity side corresponds to the gauge theory at infinite ’t Hooft

coupling, λ = g2YMN , whereas the gauge theory calculation applies for weak ’t Hooft

coupling.1,2 The coupling constant dependence of the entropy has been investigated

in the strong [9] and weak [10] coupling limits. Because of the underlying conformal

symmetry the temperature is the only scale in these problems. For this reason it is

guaranteed that the entropy of the AdS black hole scales with the temperature in the

same way as the conformal field theory. It seems therefore interesting to investigate

situations where there are dimensionless parameters.
1In [7] it was argued on general grounds that there should be a factor of order one between the

strong and weak coupling result in N = 4 Yang-Mills.
2It is interesting to note that a factor of 4/5 between the thermal pressure at strong and weak

coupling appears in the large N limit of an O(N) scalar field theory in three dimensions [8].
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This can be achieved by considering the conformal field theory living on a sphere.

The entropy can then be multiplied by an a priori arbitrary function of the product

of the temperature and the radius of the sphere. The supergravity duals are AdS

black holes with spherical horizons. The precise dependence on the dimensionless

parameter ε = 1/TR is easy to calculate in gravity. On the conformal field theory side

it is however far from trivial to extract this dependence in a closed form. Expressions

for the one loop energy of conformal fields on the three-sphere at finite temperature

have been obtained long ago in [11] in form of infinite sums. One can however reside

to a high temperature or large radius expansion

F = −V N2T 4
∞∑
n=0

bn(λ)ε
n . (1.1)

The leading term in such an expansion coincides with the flat space result. A

strong/weak-coupling comparison of the subleading terms has been performed in [12].

The coupling constant dependence on the supergravity limit has been investigated

in [13].

A way to include more dimensionless parameters is to consider Kerr-AdS black

holes [14, 15, 16, 17]. The angular velocities give rise to new dimensionless param-

eters. The thermodynamic potential of these black holes presents a characteristic

divergence when the angular velocity reaches the speed of light. The AdS corre-

spondence relates these black holes to conformal field theories on a rotating Einstein

universe. The thermodynamic potential of the conformal field theory shows the same

divergence as its supergravity dual. In [18] it was shown that the ratio of the poten-

tials in the extreme high temperature limit is independent of the angular velocities

and still 3/4. A numerical calculation of the ratio between the free energies of the

AdS black hole and the conformal field theories with varying rotation parameter

has been performed in [16]. They found that the ratio depends on the rotation

parameters although it always tends to 3/4 in the high temperature limit.

The aim of this paper is to calculate the subleading terms in the high temperature

expansion of the thermodynamic potential in field theory with rotation parameters

present. For the case of N = 4 SYM on S3 we have two independent angular
velocities corresponding to the Cartan subalgebra of the SU(2) × SU(2) isometries
of S3. We take the generic case with both angular velocities different from zero

and also different from each other. We find that the functional dependence of the

subleading term is the same at weak and at strong coupling. Their ratio is given by

b2(∞)/b2(0) = 3/2, which coincides with the result in the non-rotating case [12]. This
is remarkable since there does not seem to exist an obvious symmetry that constrains

the functional form of this coefficient. Our result is also consistent with [16] since

the ratio of the thermodynamic potentials at strong and weak coupling does depend

on the angular velocities.
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Four dimensional Kerr-AdS black holes are dual to the superconformal field the-

ory arising on the world volume of M2 branes on a rotating two-sphere. We do not

have an explicit formulation of this theory when more that one M2-brane coincide.

We know however the theory for a single M2-brane, it is the N = 8 supersingleton
theory. M-theory on AdS4×S7 has only one expansion parameter, the number of co-
incident M2-branes. It seems therefore the most natural analogue to the strong/weak

coupling comparisons in four dimensions to compare the theories in three dimensions

at N = ∞ and at N = 1. We find that the subleading term at N = 1 behaves log-
arithmically with the temperature. This is in strong contrast to the behaviour at

N =∞ where we find only polynomial behaviour in the high temperature expansion.
In order to derive subleading contributions to the thermodynamic potential of

the field theory living on spheres, we have to evaluate sums over modes. We present a

simple method to approximate sums to arbitrary accuracy when an small parameter

is present. In our case the small parameter is 1/TR. Our method might prove useful

in other examples.

2. Supergravity calculation

2.1 Summary of thermodynamics of five dimensional Kerr-AdS

black holes

The five dimensional Kerr-AdS metric has been derived and studied in [14]. We

quote briefly some of their results. The metric can be written as

ds2 = −∆
ρ2

(
dt− a1 sin

2 θ

Ξ1
dφ1− a2 cos

2 θ

Ξ2
dφ2

)2
+
∆θ sin

2 θ

ρ2

(
a1dt− (r

2+ a21)

Ξ1
dφ1

)2
+

+
∆θ cos

2 θ

ρ2

(
a2dt− (r

2 + a22)

Ξ2
dφ2

)2
+
ρ2

∆
dr2 +

ρ2

∆θ
dθ2 +

+
(1 + r2)

r2ρ2

(
a1a2dt− a2(r

2 + a21) sin
2 θ

Ξ1
dφ1 − a1(r

2 + a22) cos
2 θ

Ξ2
dφ2

)2
, (2.1)

where

∆ =
1

r2
(r2 + a21)(r

2 + a22)(1 + r
2)− 2m,

∆θ = 1− a21 cos2 θ − a22 sin2 θ ,
ρ2 = r2 + a21 cos

2 θ + a22 sin
2 θ ,

Ξi = 1− a2i . (2.2)

The parameter m is related to the black hole mass and ai to the angular velocities.

3



J
H
E
P
1
2
(
1
9
9
9
)
0
2
0

The particular case m = 0 corresponds to empty AdS. The asymptotic AdS nature

of the metric (2.1) can be exhibited by introducing new coordinates

t = t ,

Ξ1y
2 sin2Θ = (r2 + a21) sin

2 θ ,

Ξ2y
2 cos2Θ = (r2 + a22) cos

2 θ ,

Φi = φi + ait . (2.3)

The horizon radius r+ is defined as the largest root of ∆ = 0. In the coordi-

nates (2.1) both the horizon and the sphere at infinity rotate. The angular velocities

Ωi = Ω
H
i − Ω∞i =

ai(1 + r
2
+)

r2+ + a
2
i

, (2.4)

act as chemical potentials for the angular momenta of the fields in the dual field

theory.

We have set the scale of AdS to one such that the period of the euclidean time

coordinate is

β =
1

T
=
4π(r2+ + a

2
1)(r

2
+ + a

2
2)

r2+∆
′(r+) .

(2.5)

With these conventions β = 1/T and Ωi are taken to be dimensionless. The

euclidean action calculated with respect to AdS is

I = − logZ = −πβ(r
2
+ + a

2
1)(r

2
+ + a

2
2)(r

2
+ − 1)

8G5(1− a21)(1− a22)
. (2.6)

G5 is the Newton’s constant in five dimensions. The thermodynamic potential is

defined by F = TI. Similar as in the non-rotating case there is a phase transition [19]

at r+ = 1. The field theory interpretation is that there is a deconfining phase for

r+ > 1 [20]. This is also the regime where we want to compare with the field theory

at weak coupling. In order to do so we would like to express the thermodynamic

potential in terms of T and Ωi. In the large T and large r+ regime we can invert (2.4)

and (2.5) approximately

r+ = πT − 1− Ω
2
1 − Ω22
2πT

+O
( 1
T 2

)
,

ai = Ωi

(
1− 1− Ω

2
i

π2T 2

)
+O
( 1
T 3

)
. (2.7)

Using these expressions we find for the thermodynamic potential

F = − V N2T 4

(1− Ω21)(1− Ω22)
[
π2

8
− 3

8T 2

(
1− Ω

2
1 + Ω

2
2

3

)
+O

(
1

T 4

)]
, (2.8)

where V = 2π2 is the volume of the unit S3. We have used the AdS/CFT dictionary

G5 = G10/Vol(S
5) = π/2N2.
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2.2 Summary of thermodynamics of four dimensional Kerr-AdS

black holes

The four dimensional Kerr-AdS metric has first appeared in [21]. It was subsequently

studied in [14] and [15]. We take our conventions from [14]

ds2 = −∆
ρ2

(
dt− a

Ξ
dφ
)2
+
ρ2

∆
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin
2 θ

ρ2

(
adt− (r

2 + a2)

Ξ

)2
, (2.9)

with

∆ = (r2 + a2)(1 + r2)− 2mr ,
∆θ = 1− a2 cos2 θ ,
ρ2 = r2 + a2 cos2 θ ,

Ξ = 1− a2 . (2.10)

The case m = 0 corresponds to empty AdS. Coordinates that exhibit the asymptot-

ically AdS form are

t = t , y2 =
r2∆θ + a

2 sin2 θ

Ξ
,

y cosΘ = r cos θ , Φ = φ− at . (2.11)

The horizon radius r+ is the largest root of ∆ = 0. The angular velocity relevant to

the dual field theory thermodynamics is

Ω = ΩH − Ω∞ = a(1 + r
2
+)

r2+ + a
2
. (2.12)

The period of the euclidean time coordinate is given by

β =
1

T
=
4π(r2+ + a

2)

∆′(r+)
. (2.13)

The euclidean action calculated with respect to the AdS background is

I = −β(r
2
+ + a

2)(r2+ − 1)
4G4(1− a2)r+ , (2.14)

which implies the existence of a phase transition at r+ = 1. Again we are interested

in the high T and large r+ regime. The high temperature expansions of r+ and Ω

are given by

r+ =
4πT

3
− 1− 2Ω

2

4πT
+O

(
1

T 2

)
,

a = Ω

(
1− 9(1− Ω

2)

16π2T 2

)
+ O

(
1

T 2

)
. (2.15)
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Using this and the AdS/CFT dictionary for the M2-brane case, G4 =
3
2
√
2
N−3/2, we

find the following expression for the thermodynamic potential F = TI

F = −8
√
2V N3/2 π2 T 3

81 (1− Ω2)
[
1− 9 (2− Ω

2)

16π2T 2
+O

(
1

T 3

)]
. (2.16)

Here V = 4π is the volume of the unit two-sphere.

3. Field theory calculation

We want to calculate the thermodynamics of four-dimensional N = 4 Yang-Mills
on a rotating three-sphere in the weak coupling limit. At weak (zero) coupling we

will calculate the 1-loop approximation to the partition function, in which colored

degrees of freedom run in the loop. This is only consistent in the deconfined phase

of the theory. The interacting N = 4 theory on the sphere is in a deconfined phase
only at high temperature. This holds even at weak coupling [20, 22]. Therefore we

will concentrate in the high temperature regime.

The thermal part of the 1-loop contribution to the partition function of a field

theory on S3 where matter is forced to rotate with angular velocities Ω1 and Ω2, is

logZ = −
∑
i

εi

∞∑
l,m1,m2

log
(
1− εi e−β(ωil+m1Ω1+m2Ω2)

)
, (3.1)

with i labelling the particle species, εi = 1 for bosons and −1 for fermions, and ωil
is the energy of a mode of angular momentum l. We will assume that the scalars of

N = 4 are conformally coupled since supergravity determines the field theory metric
only up to conformal transformations. Then the thermodynamics will depend only

on the dimensionless quantities TR and ΩiR, where R is the radius of the sphere.

The high temperature limit is equivalent to the large radius limit of the sphere

keeping constant the speed of the boundary, ΩiR. Thus the leading term in the high

temperature expansion of (3.1) can be obtained by substituting the discrete sums

in (3.1) by integrals [14, 18]. We will be interested in obtaining subleading terms;

for that we will have to deal directly with the sums in (3.1).

3.1 Approximate evaluation of sums

As a first step we would like to evaluate sums of the generic form

l2∑
l=l1

fl , (3.2)

where fl depends of an small parameter ε and we can define a function f(x) such

that fl = εf(εl). In the limit of very small ε, we have formally ε∆l → dx (∆l = 1

6
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in (3.2)). Our only hypothesis will be that F (x) =
∫
f(x) dx is analytic in the interval

[x1, x2], with x1 = εl1 and x2 = ε(l2 + 1). We have then

∫ x2
x1

f(x) dx =

l2∑
l=l1

[F (ε(l + 1))− F (εl)] . (3.3)

We can expand the r.h.s. in a Taylor series, obtaining

l2∑
l=l1

εf(εl) =

∫ x2
x1

f(x) dx−
∞∑
k=1

εk+1

(k + 1)!

l2∑
l=l1

f (k)(εl) , (3.4)

where f (k) = dkf/dxk. Applying recursively this reasoning to f (k) we can evalu-

ate (3.2) to any order in the small parameter ε. Up to order ε4 it is straightforward

to obtain3

l2∑
l=l1

εf(εl) =

(
F (x2)− ε

2
f(x2) +

ε2

12
f ′(x2)− ε

4

720
f ′′′(x2)

)
−

−
(
F (x1)− ε

2
f(x1) +

ε2

12
f ′(x1)− ε

4

720
f ′′′(x1)

)
. (3.5)

This expression is not the final answer since we will consider situations in which both

the functions that appear in (3.5) and x1, x2 can have an explicit dependence on ε.

In that case we will have to further Taylor expand (3.5) to the desired order in ε.

As a test of this approach, we will first calculate the high temperature expansion

of the energy of N = 4 Yang-Mills on S3 without rotation at weak coupling. This
was obtained long ago in [11] and recently reobtained using the heat kernel method

in [12]. The 1-loop contribution to the thermal part of the energy of N = 4 Yang-
Mills on S3 is

E =
∑

s=0,1/2,1

ns

∞∑
l=s

dslω
s
l

eβω
s
l − (−)2s , (3.6)

where s denotes the spin of scalars, fermions and gauge bosons, dsl is degeneracy

of particles with spin s and energy ωsl and ns are the number of fields of each spin

present in the vector multiplet of N = 4, i.e. n0 = 6, n1/2 = 4 and n1 = 1. The data
for scalars and fermions are

s = 0 : dl = (l + 1)
2 , l ≥ 0 ,

s =
1

2
: dl = 2

(
l +
1

2

)(
l +
3

2

)
, l ≥ 1

2
. (3.7)

In both cases ωl = (l + 1)/R and l runs on the integers for bosons and half-integer

for fermions.

3For ε = 1 this is the Euler-MacLaurin formula. We thank R. Emparan for pointing this out to

us.
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We have to take care of a subtlety in the spectrum of gauge fields on the three-

sphere at finite temperature. The spectrum of a gauge theory on S3 in the Feynman

gauge ∇µAµ = 0 has been found some time ago in [23]. The vector field can be
classified according to the representation of the SO(4) ∼= SU(2)× SU(2) isometry of
the three-sphere. We label its representations by (j1, j2). The temporal component is

a scalar on the three-sphere and its modes fall into the (l/2, l/2), l ≥ 0 representation.
The vector modes on the sphere form the

((l−1)/2, (l+1)/2), ((l+1)/2, (l−1)/2) and (l/2, l/2), l ≥ 1 representations. We
denote the ((l−1)/2, (l+1)/2) and ((l+1)/2, (l−1)/2) fields by ~A± and the (l/2, l/2)
modes of the three-vector by ~A0. The energies are given by

A0 : ωl =

√
l(l + 2)

R
, l ≥ 0 ,

~A0 : ωl =

√
l(l + 2)

R
, l ≥ 1 ,

~A± : ωl =
l + 1

R
, l ≥ 1 . (3.8)

In addition we have the modes coming from the ghosts. They are (minimally coupled)

scalars and therefore fall into the ( l
2
, l
2
) representations.

c , c̄ : ωl =

√
l(l + 2)

R
, l ≥ 0 . (3.9)

The ghost fields have to be taken periodic around the S1 and thus are subject to

the Bose-Einstein distribution despite their fermionic nature. They contribute with

negative sign to (3.6). We see now that the ghosts compensate the A0 and the ~A0
contributions up to a left over zero energy mode. If we were on R × S3 we could
gauge away the zero mode of the temporal component of the gauge field and there

would be no reason to include the zero modes of the ghosts. On S1 × S3 however
the gauge field zero mode can not be removed by a proper (periodic on S1) gauge

transformation. Therefore these zero modes have to be included in the spectrum.

The contribution from the left over zero mode to (3.6) is

E = − lim
ω→0

ω

eβω − 1 = −
1

β
. (3.10)

We have to add this to the contributions from the transversal gauge field modes.

After these remarks we can apply (3.5) to (3.6). The small parameter is ε =

1/TR. The function fi(x) associated to each species can be obtained simply by

substituting l→ x/ε in (3.6). The upper limit of the continuous variable is x2 =∞.
All functions appearing in the r.h.s. of (3.5) tend to zero at infinity,4 therefore the sum

4The function F is only defined up to a constant. This constant can be taken such that F (x→
∞) = 0.
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is determined by the value of the functions at x1. We have x1 = 0, ε/2, ε for scalars,

fermions and (the transversal modes of the) gauge bosons respectively, obtaining

E = −T 4R3

 ∑
s=0,1/2,1

ns

(
Fs(εs)− ε

2
fs(εs) +

ε2

12
f ′s(εs)−

ε4

720
f ′′′s (εs)

)
+O(ε5)


 ,
(3.11)

where all functions are well defined in the limit ε → 0. We have now to Taylor
expand each function around ε = 0. The definition (3.1) involves logarithms which

make Taylor expansions around ε = 0 ill-defined. This is the reason why we chose to

calculate the energy instead of logZ. We can then use the relation E = − ∂
∂β
logZ

to derive the partition function up to a temperature independent term. From (3.11)

we obtain the contribution of each species to the energy of the gauge theory [11, 12]

s = 0 : 6V

(
π2T 4

30
− 1

480π2R4

)
,

s =
1

2
: 4V

(
7π2T 4

120
− T 2

48R2
− 17

1920π2R4

)
,

s = 1 : V

(
π2T 4

15
− T

2

6R2
+

T

2π2R3
− 11

240π2R4

)
, (3.12)

where V = 2π2R3 is the volume of S3. The term at order ∼ T/R3 for the gauge bo-
sons is precisely cancelled by the contribution of the left over ghost zero mode (3.10).

The terms independent of the temperature equal minus the Casimir energy of each

field on the sphere. The final result for the energy is

E = V

(
π2T 4

2
− T

2

4R2

)
− EC +O

(
1

TR2

)
, (3.13)

with EC denoting the Casimir energy of N = 4 Yang-Mills on a three-sphere.
3.2 N = 4 Yang-Mills on a rotating 3-sphere
After having tested our method on a simple example, we want to apply it to N = 4
Yang-Mills on a rotating three-sphere. The partition function can be used to obtain

the thermodynamic potential F = −T logZ in the grand-canonical ensemble, where
the thermodynamic variables are the temperature and the angular velocities. As

before, we will calculate ∂
∂β
logZ instead of logZ. We set in the following R =

1 for convenience. Therefore the small parameter will be just the inverse of the

temperature, β. We will analyse separately the contribution of scalars,5 fermions

and gauge bosons, which in terms of the spin of each species is given by [16]

−∂ logZ
∂β

=
∞∑
l=s

l+s
2∑

m=− l+s
2

l−s
2∑

n= l−s−2

l + 1 +mΩ+ + nΩ−
eβ(l+1+mΩ++nΩ−) − (−)2s + (Ω+ ↔ Ω−) . (3.14)

5Expression (3.14) gives twice the contribution of a real scalar. Notice that for s = 0 the

summation is already symmetric under the interchange of Ω+ and Ω−.
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Here Ω± are the angular velocities corresponding to the Cartan elements of the
SU(2) × SU(2) rotation group of the three-sphere. The angular velocities (2.4) are
related to them by Ω± = Ω1 ± Ω2 [16].
We will only be interested in the leading and first subleading term of the high

temperature expansion. For that it is enough to evaluate the sums to order β2. We

have to apply three times (3.5). The calculation simplifies by the fact that we can

define a single variable x such that when x = β(l+ 1)+ βmΩ+ + βnΩ− the function

f(x) =
x

ex − (−)2s , (3.15)

equals βflmn, where flmn denote the summand in (3.14). The function f(x) and its

integrals are analytic between [0,∞]. The result of the n summation is
∑
n

flmn = T
2
∑
i=1,2

(−)i
[
1

Ω+
F (xi)− β

2
f(xi) +

β2

12
Ω+f

′(xi)
]
, (3.16)

where x2 = (β(l+1)+βmΩ++β(
l−s
2
+1)Ω−), x1 = (β(l+1)+βmΩ++β(− l−s2 )Ω−),

F =
∫
fdx and f ′ = df/dx. Defining integrals and derivatives with respect to x

instead of the continuous variable associated to n is the reason for the extra factors

of Ω+. It is equally straightforward to perform the summation in m, obtaining

∑
m

∑
n

flmn = T
3
∑
i,j=1,2

(−)i+j
Ω+Ω−

[
h(xij)− β

2
(Ω+ + Ω−)F (xij) +

+
β2

12
(Ω2+ + 3Ω+Ω− + Ω

2
−)f(xij)

]
, (3.17)

where h =
∫
Fdx and the four values xij coming from the upper and lower bound of

the two summations are

xij = βαijl + βγij , i, j = 1, 2 ,

αij = 1 +
(−)iΩ+ + (−)jΩ−

2
,

γij = 1 +
1 + (−)i(1 + s)

2
Ω+ +

1 + (−)j(1− s)
2

Ω− . (3.18)

Now we can perform the last summation. The functions H =
∫
hdx, h and F are

defined only up to constants. We will choose these constant such that all of these

functions vanish as x → ∞. The initial function f (3.15) also vanishes at infinity.
Therefore the triple sum is

∑
l

∑
m

∑
n

flmn = T
4
∑
i,j=1,2

(−)i+j
Ω+Ω−

[
− 1
αij
H(βδij) +

β

2

(
1 +
Ω+ + Ω−
αij

)
h(βδij)−

− β
2

12

(
αij + 3(Ω+ + Ω−) +

Ω2+ + 3Ω+Ω− + Ω
2
−

αij

)
F (βδij)

]
,(3.19)
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with δij = αijs+γij . The last step consists in expanding each function around β = 0

and finally adding the same expression with Ω+ and Ω− interchanged. The coefficient
of the leading T 4 term is simply given by

−2H(0)
Ω+Ω−

∑
i,j=1,2

(−)i+j
αij

. (3.20)

The factor 2 appears because (3.20) is symmetric under the interchange of Ω+ and

Ω−. The next order contribution is

h(0)

2Ω+Ω−

∑
i,j=1,2

(−)i+j
[−2δij + Ω+ + Ω−

αij
+ (Ω+ ↔ Ω−)

]
. (3.21)

Using (3.18) one can see that (3.21) is equal to zero. At the order T 2 we obtain

the following expression

− F (0)

12Ω+Ω−

∑
i,j=1,2

(−)i+j
[
6 δ2ij
αij
− 6δij

(
1 +
Ω+ + Ω−
αij

)
+

+αij +
Ω2+ + 3Ω+Ω− + Ω

2
−

αij
+ (Ω+ ↔ Ω−)

]
. (3.22)

Integrating (3.14) we obtain the contribution to the thermodynamical potential

of real scalars, Weyl fermions and gauge bosons living on a rotating 3-sphere

Fs=0 =
V

(1− Ω21)(1− Ω22)
[
−π

2T 4

90
+
T 2

72
(Ω21 + Ω

2
2)

]
,

Fs=1/2 =
V

(1− Ω21)(1− Ω22)
[
−7π

2T 4

360
+
T 2

48

(
1− Ω

2
1 + Ω

2
1

3

)]
,

Fs=1 =
V

(1− Ω21)(1− Ω22)
[
−π

2T 4

45
+
T 2

6

(
1− 5(Ω

2
1 + Ω

2
2)

6

)]
. (3.23)

We have used Ω± = Ω1 ± Ω2. For the particular case of N = 4 Yang-Mills we have

FN=4 =
V N2

(1− Ω21)(1− Ω22)
[
−π

2T 4

6
+
T 2

4

(
1− Ω

2
1 + Ω

2
2

3

)]
. (3.24)

In [18] the leading contribution to the thermodynamics of N = 4 Yang-Mills
on a rotating S3 was analysed in the high temperature limit. The discrepancy by

a factor 3/4 between the strong and weak coupling limits of the thermodynamics

potentials which holds for the gauge theory in flat non-rotating space, was found

in [18] to hold exactly also for the case with one rotation parameter, i.e. Ω2 = 0.

This is a somehow surprising result since the rotations introduce new dimensionless

parameters such that strong and weak coupling limits could differ by an arbitrary

function of the Ω’s. Comparing (2.8) and (3.24) we observe that the simple factor
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3/4 between the T 4 term at strong and weak coupling persists in the generic case

with two rotations. Moreover, a stronger result holds. The strong and weak coupling

contribution to the thermodynamic potentials at the subleading order T 2 differ again

only by a numerical factor, 3/2. There is no obvious symmetry reason that could

explain this behaviour.

The relation between strong and weak coupling limits of the thermodynamic

potential for the system with two rotations as a function of the horizon radius r+
was investigated numerically in [16]. The ratio Fst/Fw decreases from 3/4 at T →∞
to zero at the Hawking-Page phase transition point r+ = 1. However it decreases

slower for systems with stronger rotation. We can reproduce that result for high

temperature from (3.24)

Fst
Fw
=
3

4

[
1− 3β

2

2π2

(
1− Ω

2
1 + Ω

2
2

3

)]
. (3.25)

The term in parenthesis varies between 1 in the non-rotating case and 1/3 when both

Ω1,Ω2 → 1.

3.3 The N =8 supersingleton on a rotating sphere
As already mentioned in the introduction, the four dimensional Kerr-AdS black hole

is thought to be dual to the superconformal field theory arising on coinciding M2-

branes. We only have a lagrangean formulation for the case of the field theory

on a single M2-brane. This is the N = 8 supersingleton theory consisting of eight
conformally coupled scalars and eight spinors. It seems most natural to compare the

large N limit of this theory represented by supergravity to the N = 1 field theory,

since there is no dimensionless coupling as in the four dimensional case. For the same

reason as before we will actually compute ∂
∂β
logZ

− ∂
∂β
logZ =

∞∑
l=s

l∑
m=−l

l + 1/2 +mΩ

eβ(l+1/2+mΩ) − (−)2s (3.26)

The calculation parallels the previous case. Therefore we do not present the

details. We obtain for the thermodynamic potential

F = − V T
3

1− Ω2
[
7ζ(3)

π
+
1− 2Ω2
6π

log(T )

T 2

]
. (3.27)

It has been noted in [24] that the leading term contains a ζ-function with odd

integer argument. For this reason there can not be an agreement up to some rational

number between the supergravity result and the field theory result. For the leading

term there is still a minimal agreement between the two results since their scaling

with the temperature is the same. This is however to be expected because the

leading term corresponds to the flat space limit and in this case conformal symmetry
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dictates the scaling with T . The scaling of the subleading term can however not be

predicted by conformal symmetry. As we see now it is indeed different. The field

theory calculation shows logarithmic behaviour, whereas the supergravity result gives

polynomial behaviour.6 In fact even the functional dependence on Ω is different for

the subleading terms. In the light of these results it seems even more remarkable

that the four dimensional calculations show such a high agreement.
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