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1. Introduction

The study of macroscopic string solutions [1, 2, 3, 4] has been of importance in the

last decade in several contexts, such as in black-hole physics [5], strong/weak duality

applications [6, 3, 7, 8] etc. In the context of duality, they have been crucial in estab-

lishing several such symmetries of string theories. Prominent among these are the

SL(2,Z) duality [8] symmetries of the type-IIB string theory in ten dimensions and

a string-string duality between the type IIA compactification on K3 and heterotic

string compactification on T 4 [6, 3, 7]. The support for the later conjecture involved

the construcation of certain BPS solutions carrying (1-form) gauge field charges.

Such solutions for K3 compactified type-IIA theory were obtained using Charged

Macrscopic String solutions of the heterotic strings with 1/2 supersymmetry [3] and

then by mapping them to the type-II strings. In the former case, howerver, only a

neutral string solution was needed, as type-IIB in ten dimensions does not have any

1-form gauge potential. A full duality multiplet of such neutral string solutions and

the corresponding duality covaraint string tensions were also obtained in [8]. More
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recently, SL(2,Z) as well as other U -duality multiplets of neutral string solutions have

been used in constructing their networks with 1/4 [9], 1/8 [10] and lower supersym-

metries in type-II theories. They are also expected to provide further confirmations

of the duality conjectures.

The network solutions [9]–[22] of type-II strings have also found their applica-

tions elsewhere, namely in providing nonperturbative symmetry enhancements in

orientifold models to show their matching with the F-theory predictions [19]. In ad-

dition, strings and networks which end on D3-branes have found a wide application

in 4-dimensional gauge [20, 23, 21] and other world-volume theories [24].

The focus of attention in this paper are the Charged Macroscopic String solu-

tions [2, 3] and their networks. As stated earlier, these solutions have been used

earlier for constructing the soliton multiplets in type II string compactification on

K3 in order to provide support for their duality conjecture with the heterotic theory

on T 4. In this paper, howerver, we will concentrate on such solutions in type-II theo-

ries, when they are compactified on tori. As a result, a verification of supersymmetry

requires an analysis of additional Killing equations than the ones which are present

in the heterotic strings, namely one has to examine the supersymmetry conditions

for the spinors arising from both the left and the right-moving sectors of the type-II

theories. In this paper we perform this analysis explicitly for a class of such Charged

Macroscopic String solutions which are analogous to the heterotic solutions presented

in [2]. We also write down explicit supersymmetry conditions for several other class

of examples in [3].

The Charged Macroscopic String solutions are generated from the neutral ones

by a solution generating transformation and are in general parameterized by a group

O(d− 1, 1; d− 1, 1), arising out of one time and d− 1 spatial translational isometries
of the solution. These parameters also appear in the Charged Macroscopic String

solutions. In particular, the solutions in [3] are characterized by two nontrivial

O(d−1, 1; d−1, 1) parameters α and β, which apply boost between the time direction
and an internal direction in the left and the right-moving sectors respectively. The

solutions of [2], which we use to explicitly show the 1/2 supersymmetric nature of

these solutions in section 2 correspond to β = 0, but α 6= 0. Our analysis then
suggests that general solutions (α 6= 0, β 6= 0) also preserve 1/2 supersymmetry.
Our results show that O(d − 1, 1; d − 1, 1) transformations parameterized by α

and β change the Killing equations in a nontrivial way. As a result, the supersym-

metry conditions and the form of the Killing spinors is also modified. However both

the supersymmetry conditions and the Killing spinors for the charged string can be

generated from those for the neutral ones by lorentzian tranformations. The pa-

rameters of these Lorentz transformations turn out to be local, having a coordinate

dependence on the transverse radius. The experience gained from this analysis (for

β = 0 ) can in fact be used to write down the supersymmetry condition for other

solutions characterized by parameters α and β. In view of our future application,
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in section 3 we confirm the 1/2 supersymmetry property of α = β and α = −β
solutions by examining the consistency of the dilatino supersymmetry variation for

the charged macroscopic string background. We also show that one of the above

solutions, namely α = −β, when decompactified to ten dimensions, is related to the
neutral string solutions by a constant coordinate transformation. This is not surpris-

ing, as O(d, d) group is known to contain a GL(d) subgroup of constant coordinate

transformations. The other possibility, namely α = β that we have analyzed is an

inequivalent solution even in ten-dimensional sense. This can be verified from the

expression for the dilaton, which is now different from the one for the neutral string.

However we like to point out that even α = −β solutions are in fact physically
different in the compactified theory and represent genuine charged strings in D ≤ 9.
We then use the SL(2,Z) duality symmetries of the type-IIB theories in ten

dimensions to generate general (p, q)-charged macroscopic string solutions from the

(1, 0) or elementary-string solution discussed above. In particular we show that the

supersymmetry conditions for both α = ±β 6= 0 soultions are of a form which
allow the constructon of string networks preserving 1/4 supersymmetry. This is not

surprising for the α = −β solution for the reason already stated in the last paragraph.
As a result, the 1/4 supersymmetry of these networks already follows from that of

the netutral planar string networks that exist in various dimensions. In this case, we

find that the internal tori do not play any significant role and the string networks

can be constructed by aligning the orinetation of the (p, q)-string, in a plane, with

respect to a phase associated with the transformation of spinors under the SL(2,Z)

duality symmetry transformation.

The charged string solutions with α = β turn out to be more interesting from the

supersymmetry point of view for the construction of networks. We find that in this

case a network construction, preserving certain supersymmetry, requires not only

an alignment between the two angles discussed above, but in addition, one has to

further align them with an angle coming from the soultion generating parameter. In

our examples, in section 4.3, these strings carry not only the 2-form charges parame-

terized by integers (p, q) and moduli τ , but also by gauge charges characterized by a

2-dimensional unit vector n̂. Physically, this alignment therefore implies a coupling

between the SL(2) charges with that of the gauge charges and also a relationship

between their conservation laws.

The outline of the paper is as following. In section 2 we write down the general

charged string solution in arbitrary dimensions. Then to work out the supersymme-

try, we restrict to a specific case, namely β = 0 and present the Killing spinors for

this example. Although our analysis is performed specifically in 9-dimensions, we

present the generalizations of the results to other lower dimensions as well. In sec-

tion 3 of the paper, we write down explicit supersymmetry conditions for α = β 6= 0
and α = −β 6= 0. Once again we show that our background fields satisfy a nontrivial
condition required for the consistency of these spinor equations. Again the deriva-
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tions are given explicitly in 9-dimensions and then generalized to the lower ones. In

section 4, following [8], we also write the SL(2,Z) multiplets of the charged macro-

scopic strings and show the existence of network solutions for the examples worked

out in section 3. This is done by demonstrating the existence of a unique spinor at

aymptotic infinity, satisfying the supersymmetry conditions for arbitrary number of

(p, q)-strings, provided the alignments we referred previously, also hold. Discussions

and conclusions are presented in section 5.

2. Killing spinors for a charged macroscopic string in D ≤ 9
2.1 Bosonic backgrounds

We start by writing down the bosonic backgrounds associated with the Charged

Macroscopic strings in space-time dimensions D. They have been obtained from

similar solutions for the heterotic strings [3], by turning off the sixteen gauge fields

associated with the right-moving, bosonic sector. This is possible since this sector

of the heterotic string is identical to the NS-NS sector of type-II theories in ten

dimensions. The solution is given by,

ds2 = rD−4∆−1
[
−(rD−4 + C)dt2 + C(coshα− cosh β)dtdxD−1 +
+ (rD−4 + C coshα cosh β)(dxD−1)2

]
+(dr2 + r2dΩ2D−3) , (2.1)

B(D−1)t =
C

2∆
(coshα + cosh β)

{
rD−4 +

1

2
C(1 + coshα cosh β)

}
, (2.2)

e−Φ =
∆1/2

rD−4
, (2.3)

A
(a)
t =




− n(a)

2
√
2∆

C sinhα

{
rD−4 cosh β +

1

2
C(coshα+ cosh β)

}
for 1 ≤ a ≤ (10−D),

−p
(a−10+D)

2
√
2∆

C sinh β

{
rD−4 coshα+

1

2
C(coshα + cosh β)

}
for (10−D) + 1 ≤ a ≤ (20− 2D) ,

(2.4)

A
(a)
D−1 =




− n(a)

2
√
2∆

C sinhα

{
rD−4 +

1

2
C cosh β(coshα+ cosh β)

}
for 1 ≤ a ≤ (10−D),

p(a−10+D)

2
√
2∆

C sinh β

{
rD−4 +

1

2
C coshα(coshα + cosh β)

}
for (10−D) + 1 ≤ a ≤ (20− 2D),

(2.5)

MD = I20−2D +
(
PnnT QnpT

QpnT PppT

)
, (2.6)
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where

∆ = r2(D−4) + CrD−4(1 + coshα cosh β) +
C2

4
(coshα + cosh β)2 , (2.7)

P =
C2

2∆
sinh2 α sinh2 β , (2.8)

Q = −C∆−1 sinhα sinh β
{
rD−4 +

1

2
C(1 + coshα cosh β)

}
. (2.9)

with n(a), p(a) being the components of (10 − D)-dimensional unit vectors. Aµ’s in
eqs. (2.4) and (2.5) are the gauge fields appearing due to the Kaluza-Klein (KK) re-

ductions of the ten dimensional metric and the 2-form antisymmetric tensor coming

from the NS-NS sector. The matrix MD parametrizes the moduli fields. The ex-

act form of this parametrization depends on the form of the O(10 − D, 10 − D)

metric used. The above solution has been written for a diagonal metric of the

form:

LD =

(−I10−D
I10−D

)
. (2.10)

Later on, while decompactifying these backgrounds, in order to check supersym-

metry, we will use the notations and conventions in [25] which uses a different form

of the metric, namely:

L =

(
I10−D

I10−D

)
. (2.11)

These two conventions are howerver related by:

LD = P̂LP̂
T , MD = P̂MP̂ T , (2.12)

where

P̂ =
1√
2

(−I10−D I10−D
I10−D I10−D

)
. (2.13)

The gauge fields in two conventions are related as:

(
A1µ
A2µ

)
= P̂

(
Â1µ
Â2µ

)
, (2.14)

with A1,2µ ’s in the above equation being (10−D)-dimensional columns consisting of
the gauge fields Aµ’s defined in (2.4-2.5), and coming from the left and the right-

moving sectors.
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In this section we now restrict ourselves to the β = 0 solutions. These solutions

are analogous to the ones written for the hetrotic strings in [2] and are given by,

ds2 =
1

cosh2 α
2
e−E − sinh2 α

2

(−dt2 + (dxD−1)2) +

+
sinh2 α

2
(e−E − 1)

(cosh2 α
2
e−E − sinh2 α

2
)2
(dt+ dxD−1)2 +

D−2∑
i=1

dxidxi ,

B(D−1)t =
cosh2 α

2
(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

,

A
(1)
D−1 = A

(1)
t = −

1

2
√
2

sinhα(e−E − 1)
cosh2 α

2
e−E − sinh2 α

2

,

Φ = − ln
(
cosh2

α

2
e−E − sinh2 α

2

)
, (2.15)

with e−E being the Green function in the D − 2 dimensional transverse space:

e−E =
(
1 +

C

rD−2

)
. (2.16)

and constant C determining the string tension.1

Now, in order to understand the type-II origin of various background fields and

to verify the supersymmetry of these solutions, we decompactify the above solution

back to ten dimensions. The decompactification exercise is done following a set of

notations given in [25]. When restricted to the NS-NS sector of type-II theories, they

can be written as:

Ĝab = G
(10)
[a+(D−1),b+(D−1)] ,

B̂ab = B
(10)
[a+(D−1),b+(D−1)] ,

Â
(a)
µ̄ =

1

2
ĜabG

(10)
[b+(D−1),µ̄] ,

Â
(a+(10−D))
µ̄ =

1

2
B
(10)
[a+(D−1),µ̄] − B̂abA(b)µ̄ ,

Gµ̄ν̄ = G
(10)
µ̄ν̄ −G(10)[(a+(D−1)),µ̄]G(10)[(b+(D−1)),ν̄]Ĝab , (2.17)

Bµ̄ν̄ = B
(10)
µ̄ν̄ − 4B̂abA(a)µ̄ A

(b)
ν̄ − 2(A(a)µ̄ A

(a+(10−D))
ν̄ −A(a)ν̄ A

(a+(10−D))
µ̄ ) ,

Φ = Φ(10) − 1
2
ln det Ĝ , 1 ≤ a, b ≤ 10−D , 0 ≤ µ̄, ν̄ ≤ (D − 1) .

We now start with a nine-dimensional (D = 9) solution in (2.15) and following

the Kaluza-Klein (KK) compactification mechanism summarized above, write down

1There is an extra factor of 1/2
√
2 appearing in (2.15) with respect to the one in [2]. This

howerver has been taken care in [2] in the definitions of charges.
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the solution directly in ten dimensions. We do this first for the D = 9 solution and

later in section 2.4 generalize the results to D < 9. Only nonzero background fields

are then given by

ds2 =
1

cosh2 α
2
e−E − sinh2 α

2

(−dt2 + (dx8)2) + sinh2 α
2
(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

(dt+ dx8)2 +

+
sinhα(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

dx9(dt+ dx8) +

7∑
i=1

dxidxi + (dx9)2 , (2.18)

B8t =
cosh2 α

2
(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

,

B9t = −sinhα
2

(e−E − 1)
cosh2 α

2
e−E − sinh2 α

2

= B98 . (2.19)

The dilaton in ten dimensions remains same as the one in (2.15):

φ(10) = − ln
(
cosh2

α

2
e−E − sinh2 α

2

)
. (2.20)

Although it is already expected, we have also reconfirmed that many of the field

equations in ten-dimensions are satisfied by the backgrounds in eqs. (2.18), (2.19)

and (2.20).

We now study spinor Killing equatoins for type-IIB strings in ten dimensions

and show that the solutions in (2.18)–(2.20) are consistent with 1/2 supersymmetry.

We once again emphasize that 1/2 supersymmetry from the type-IIB string point

of view is comparatively more nontrivial, than in the heterotic theory, due to the

presence of extra equations to be satisfied by the background configuration. Later

in section 2.3 we also find the corresponding Killing spinors.

2.2 Killing equations

The spinor Killing equations in ten dimensions, when restricted to NS-NS fields,

follow from supersymmetry variations, (in string metric) [4, 27, 28]:

δψM = ∂Mη +
1

4
ωM̂N̂M ΓM̂N̂η −

1

8
HM̂N̂M ΓM̂N̂η

∗ , (2.21)

δλ = (∂Mφ
(10))γMη∗ − 1

6
HMNPγ

MNPη , (2.22)

where ψM is the ten-dimensional gravitino, λ the dilatino and η ≡ (εL + iεR) are the
supersymmetry parameters. M = 0, . . . , 9 are the general coordinate indices in ten

dimensions and M̂, N̂ are the Lorentz indices.

To analyze these equations for our nine-dimensional solution, we now denote the

indices (9, 0, 8) by greek indices µ. The corresponding Lorentz indices are denoted

by µ̂ etc. The indices, transverse to the string are denoted by m = 1, . . . , 7 and the

7
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corresponding Lorentz ones by m̂’s etc. The ten-dimensional lorentzian metric for our

purpose is taken to be of the form: ηM̂N̂ ≡ diag(1,−1, 1, . . . , 1) (with the first entry
denoting the coordinate x9), which implies: ηµ̂ν̂ = (1,−1, 1) and also ηm̂n̂ = δm̂n̂.

Taking into account that the backgrounds depend only on transverse coordinates

denoted by m’s through radius r, the gravitino supersymmetry variation (2.21) can

be written as:

δψm = ∂mη +
1

4
ωµ̂ν̂m Γµ̂ν̂η −

1

8
H µ̂ν̂m Γµ̂ν̂η

∗, (2.23)

δψµ =
1

2
ων̂m̂µ Γν̂m̂η −

1

4
H ν̂m̂µ Γν̂m̂η

∗ . (2.24)

For the purpose of algebraic manipulations, we find it convenient to write these

equations by introducing parameters:

g =
1

cosh2 α
2
e−E − sinh2 α

2

,

a =
sinh2 α

2
(e−E − 1)(

cosh2 α
2
e−E − sinh2 α

2

)2 ,
b =
sinhα

2

(e−E − 1)
cosh2 α

2
e−E − sinh2 α

2

, (2.25)

and 3 × 3 matrices Gµν , Bµν and E µ̂µ , where the metric G and the antisymmetric
tensor B can be read from the backgrounds in eqs.(2.18)-(2.20). E is the vielbein
correponding to G. In our case these 3× 3 matrices can be written in terms of 2× 2
matrices G, B and Ê:

G =
(
1 b̂

b̂T G+ b̂T b̂

)
B =

(
0 −b̂
b̂T B

)
, (2.26)

with b̂ ≡ b(1, 1), a 2-dimensional row-vector. The vielbein E is given by:

E =
(
1 0

b̂T Ê

)
(2.27)

and satisfies EηET = G, whereas Êη̂ÊT = G, with η̂ being a diagnoal 2× 2 matrix:
diag(−1, 1).
The 2 × 2 matrices G, B and Ê apprearing in eqs. (2.26), (2.27) have explicit

forms:

G ≡
(−g + a a

a g + a

)
,

B ≡
(
0 g − 1
1− g 0

)
, (2.28)
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and

Ê ≡ 1√
g − a

(
g − a 0

−a g

)
. (2.29)

Note that G also represents the longitudinal part, or (0,8)-components, of the com-

pactified metric in D-dimensions, as seen directly from eq. (2.15). Similarly B is

the antisymmetric tensor in the compactified theory and Ê is the vielbein for the

metric G. Using these notations we now start by simplifying the gravitino variation

equation for the transverse coordinates, m, namely eq. (2.23).

The spin-connection matrix appearing in the r.h.s. of (2.23) in our case is given

by, ωµ̂ν̂m =
1
2
(ETG−1E,m − ET,mG−1E)µ̂ν̂ and has a form:

ωµ̂ν̂m =
1

2



0 b,m√

g−a
−b,m√
g−a

−b,m√
g−a 0 −g,m

g
+ E,m

b,m√
g−a

g,m
g
− E,m 0


 . (2.30)

Similarly H µ̂ν̂m ≡ (ETG−1B,mG−1E)µ̂ν̂ is given by another antisymmetric matrix:

H µ̂ν̂m =



0 b,m√

g−a
−b,m√
g−a

−b,m√
g−a 0 −g,m

g
b,m√
g−a

g,m
g

0


 . (2.31)

Equation (2.23) then implies for δψm = 0:

∂mεL +
E,m

4
Γ0̂8̂εL = 0 , (2.32)

∂mεR +
1

4

[(
−2g,m

g
+ E,m

)
Γ0̂8̂ +

2b,m√
g − a(Γ9̂0̂ − Γ9̂8̂)

]
εR = 0 . (2.33)

The variation of the gravitino components ψµ, eq. (2.24) can be rewritten as

δψµ ≡ 1
4
(G,m̂G−1E)ν̂µΓν̂m̂η −

1

4
(B,m̂G−1E)ν̂µΓν̂m̂η∗ . (2.34)

To simplify this further we write down the matrices appearing in the r.h.s. of this

equation:

G,mG−1E =



0 −b,m√

g−a
b,m√
g−a

b,m
g,m−a,m−bb,m√

g−a
√
g − ag,m

g
− g,m−a,m−bb,m√

g−a
b,m − a,m√

g−a − bb,m√
g−a

√
g − ag,m

g
+ a,m+bb,m√

g−a


 , (2.35)

and

B,mG−1E =



0 b,m√

g−a
−b,m√
g−a

b,m
bb,m√
g−a

√
g − ag,m

g
− bb,m√

g−a
b,m

g,m√
g−a +

bb,m√
g−a

√
g − ag,m

g
− g,m√

g−a − bb,m√
g−a


 . (2.36)
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These can be used to show that six equations, δψµ = 0, following from the real and

imaginary components of (2.34) reduce to only two independent ones with εL and εR
satisfying the following conditions:

(Γ0̂m̂ − Γ8̂m̂) εL = 0 , (2.37)

(
2b,m√
g − aΓ9̂m̂ + (2

g,m

g
− E,m)Γ0̂m̂ + E,mΓ8̂m̂

)
εR = 0 . (2.38)

Finally the Killing equations following from the variation of the dilatino can be

written down in the notations introduced above as:

δλ = ∂mφ
(10)γm(εL − iεR)− 1

2

(ETG−1B,m̂G−1E)β̂γ̂ Γm̂β̂γ̂(εL + iεR) = 0 , (2.39)

and using (2.31) gives:

(1 + Γ0̂8̂) εL = 0 , (2.40)(
−∂mφ(10) + g,m

g
Γ0̂8̂ −

b,m√
g − aΓ9̂0̂ +

b,m√
g − aΓ9̂8̂

)
εR = 0 . (2.41)

The last two expressions can also be written in an alternative form, using (2.25):

(εL − iεR) = −[Γ0̂8̂ + tanh
α

2
eE/2(Γ9̂0̂ − Γ9̂8̂)](εL + iεR) , (2.42)

which will be useful for discussions later on.

Eqs. (2.32), (2.37) and (2.40) therefore provide complete set of conditions that

the Killing spinors εL have to satisfy. Similarly eqs. (2.33), (2.38) and (2.41) are

the conditions to be satisfied by the Killing spinors εR. We also observe that the

equations satisfied by εL are identical to the one for neutral strings. That is not

surprising as the O(d−1, 1; d−1, 1) transformation, used to generate solution (2.15)
from neutral string solutions, act as identity in this sector.

The derivation of equations satisfied by the spinors also pass several consis-

tency checks. First of these, as mentioned above, was the reduction of six equations

in (2.24) into only two in (2.37) and (2.38). Moreover, the dilatino variation equa-

tions (2.40) and (2.41) are also equivalent to these. To show this, one simply has

to multiply (2.38) by (Γ0̂ − Γ8̂) from left. As a result, one gets a single indepen-
dent constraint for εL, and similarly for εR. The equation involving a derivative on

the spinors, (2.32) and (2.33) are also seen to be consistent with these constraint

equations. We demonstrate this in section 2.3 by obtaining a solution for εL and εR
satisying all the equations simultaneously. Moreover in section 2.3 we will also see

that the final constraints, (2.38) or (2.41), satisfy certain consistency conditions on

the eigen-values of operators appearing in these equations.
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2.3 Killing spinors

We now present the solution of the Killing equations for spinors εL and εR. As already

stated, εL satisfies the same condition as in the neutral case and corresponding

solution is also identical:

εL = e
E/4ε0L , (2.43)

where ε0L is a constant spinor satisfying,

(1 + Γ0̂8̂)ε
0
L = 0 . (2.44)

The form of εR is more nontrivial. This is also obvious from the Killing equa-

tions (2.33), (2.38) and (2.41) that they satisfy. We already noticed that the two

non-derivative equations (2.38) and (2.41) are in fact identical. As a result one finally

has only two equations to solve, namely (2.33) and (2.38). Howerver before starting

to solve these, we first show the self-consistency of (2.38) by writing it as:(
−1 +

(
2g,m
gE,m

− 1
)
Γ0̂8̂ +

2b,m
E,m
√
g − aΓ9̂8̂

)
εR = 0 , (2.45)

and after substituting for g and b from equation (2.25) as:(
cosh2 α

2
e−E + sinh2 α

2

cosh2 α
2
e−E − sinh2 α

2

Γ0̂8̂ −
2 sinh α

2
cosh α

2
e−E/2

cosh2 α
2
e−E − sinh2 α

2

Γ9̂8̂

)
εR = εR . (2.46)

A nontrivial check on our algebra in the previous sub-sections, as well as about 1/2

supersymmetry of our solution comes from the fact that the particular combination

of matrices appearing in the l.h.s. of the above equation is idempotent, with only

eigen-values ±1, as required for the validity of the above equation. This can be
checked by squaring the l.h.s. of (2.46).

The derivative equation (2.33) can also be simplified for our backgrounds us-

ing (2.25) and (2.41), and can be written as:

∂EεR =
1

2

cosh2 α
2
e−E

(cosh2 α
2
e−E − sinh2 α

2
)
εR − 1

4
Γ0̂8̂εR , (2.47)

where we have now changed variable from r → E(r).

Now, to present an explicit solution of the Killing equations: (2.46) and (2.47)

for εR we choose a basis for the ten dimensional Dirac (Γ) matrices as in [26]:

Γ0̂ = iσ2 ⊗ I16 , Γ8̂ = σ1 ⊗ I16 , Γ9̂ = σ3 ⊗ I16 . (2.48)

Also, we choose εR ≡ ε̂R ⊗ χ0, with χ0 an unconstrained sixteen-dimensional con-

stant spinor and ε̂R is now a representation of Pauli-matrix algebra. Then the final

equations to solve are:[
−I + σ3 + tanh α

2
eE/2(σ1 − iσ2)

]
ε̂R = 0 (2.49)
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and

∂E ε̂R =
1

2

cosh2 α
2
e−E

(cosh2 α
2
e−E − sinh2 α

2
)
ε̂R − 1

4
σ3ε̂R , (2.50)

where we have now used eq. (2.41) instead of (2.38) or (2.46). The final solution for

the Killing spinor is:

ε̂R =
1√

(cosh2 α
2
e−E − sinh2 α

2
)

(
cosh α

2
e−E/4

sinh α
2
eE/4

)
. (2.51)

This Killing spinor reduces to the one for the neutral sting for α = 0, for which we

have

ε̂R → ε̂NR = e
E/4

(
1

0

)
, (2.52)

and implies in our notations:

(1− Γ0̂8̂)εNR = 0 . (2.53)

We have therefore explicitly solved for the Killing spinor and shown that a charged

macroscopic string solution given in equation (2.15) is 1/2 supersymmetric. The 1/2

supersymmetry comes from the fact that half the components of ε̂R are related to

the remaining ones as given in an explicit form in equation (2.51)

We now show that the supersymmetry conditions (2.46) and the Killing spi-

nors (2.51) for the charged case are related to the neutral ones through a Lorentz

boost. For this we parameterize the coefficients of (Γ0̂8̂,Γ9̂8̂) in equation (2.46) as

(cosh θ,− sinh θ) respectively and note that for εR in (2.51) satisfying this equation,

εNR =

(
cosh

θ

2
− sinh θ

2
Γ9̂0̂

)
εR , (2.54)

with

cosh
θ

2
=

cosh α
2
e−E/2√

cosh2 α
2
e−E − sinh2 α

2

, sinh
θ

2
=

sinh α
2√

cosh2 α
2
e−E − sinh2 α

2

, (2.55)

reduces to the expression (2.52) and satisfies (2.53), which is also the condition sat-

isfied by the Killing spinor for the neutral strings (α = β = 0). Therefore the 1/2

supersymmetry condition for a charged macroscopic string, namely (2.46), is related

to the one for neutral string by the action of a Lorentz boost on the spinor εR.

This is expected, as the solution (2.15) for the charged macroscopic string is also

generted from the neutral ones by a Lorentz boost in the right-moving sector. How-

erver, we find it interesting to note that the action of this Lorentz transformation on

the spinors is governed by a coordinate dependent parameter. Only in the r → ∞
(E → 0) limit, this parameter reduces to the one for a global Lorentz transforma-
tion. This is similar to the phase transformation of spinors induced by an SL(2,Z)
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S-duality transformation [29]. The transformation of the spinors are coordinate de-

pendent under S-duality tranformations as well, although like O(d − 1, 1; d − 1, 1)
transformations, the SL(2)’s are themselves global.

2.4 D < 9 solutions

So far we have restricted ourselves to D = 9. Above analysis generalizes to the

charged Macroscopic String solutions inD < 9 in a straightforward manner with only

minor modifications. Using the KK procedure metioned in section 2.1, we can once

again decompactify these solutions to ten dimensions. The resulting ten-dimensional

metric now has a block-diagonal form:

Ĝ(10) =


 I9−D

G
ID−2


 , (2.56)

with I9−D representing an identity matrix for all the internal directions ranging from:
(xD+1, . . . , x9) and ID−2 represents the tranverse space dimensions of the string in
cartesian coordinates. Matrix G in eq. (2.56) is similar to the one in (2.26) and
is now defined in a three dimensional space with coordinates (xD, x0, xD−1), i.e. by
replacing in eq. (2.26) the coordinates (x9, x8) by (xD, xD−1). Also, the explicit form
of G is similar to the one in (2.26) except E is now a D − 2 dimensional Green’s
function (2.16). Similarly, the antisymmetric tensor is represented by a matrix:

B̂(10) =

 0 B

0


 . (2.57)

The dilaton remains same as in the D-dimensional theory and is given by the same

expression as in (2.20) with E modified as in (2.16).

Due to the block-diagonal form of the backgrounds that we have obtained, the

supersymmetry analysis is exactly same as previously in this section. We have there-

fore shown the 1/2 supersymmetry of the β = 0 solution in dimensions D ≤ 9.
In next section, we also work out the supersymmetry of certain α 6= 0, β 6= 0 solu-
tions, in order to find a 1/4 supersymmetric network solution of charged macroscopic

strings later in section 4.

3. Supersymmetry of α, β 6= 0 Solutions
In this section we write down the 1/2 supersymmetry conditions for cases: α = −β
and α = β in equations (2.1)–(2.9). Here we only write down the supersymmetry

conditions which are the analogs of (2.42) given earlier. These conditions will be

generalized to a maifestly SL(2,Z)-covariant form later on. Although the full solution

of the Killing equations can also be obtained as in the last section, we do not present

them here.
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3.1 α = −β 6= 0 solutions
Once again we first discuss the solution in D = 9 and then generalize them to the

lower dimensional cases. The solution in D = 9 is now characterized by a metric:

ds2 = − 1

1 + C cosh2 α/r5
dt2 +

1

1 + C/r5
(dx8)

2
+

7∑
i=1

dxidxi . (3.1)

The only non-zero component of the antisymmetric tensor is of the form

B08 = −C coshα
2

[
1

(r5 + C)
+

1

(r5 + C cosh2 α)

]
. (3.2)

We also have a nontrivial modulus parametrizing the O(1, 1) matrixMD in eq. (2.6):

Ĝ99 ≡ ĝ =
1 + C cosh2 α/r5

1 + C/r5
. (3.3)

The two gauge fields appearing in equations (2.17) and (2.14) for D = 9 are of the

form:

Â1t =
C sinhα coshα

2(r5 + C cosh2 α)
, Â18 = 0 ,

Â2t = 0 , Â28 =
−C sinhα
2(r5 + C)

. (3.4)

The supersymmetry property of the above solution is obtained in the same man-

ner as in section 2.1, after decompactifying the 9-dimensional backgrounds back to

ten dimensions. The background fields in ten dimensions for α = −β case are now
represented by 3× 3 matrices analogous to the ones in (2.26):

G =




1+C cosh
2 α

r5

1+ C
r5

C
r5
coshα sinhα
(1+ C

r5
)

0

C
r5
coshα sinhα
(1+ C

r5
)

− [1−
C sinh2 α
r5

]

(1+ C
r5
)

0

0 0 1
(1+ C

r5
)


 , (3.5)

B =

 0 0 −C sinhα

(r5+c)

0 0 −C coshα
(r5+c)

C sinhα
(r5+c)

C coshα
(r5+c)

0


 , (3.6)

and

φ(10) = − ln
(
1 +

c

r5

)
. (3.7)

The 1/2 supersymmetry conditions is now obtained from the dilatino varia-

tion (2.22), although other equations are expected to give the same answer as well.

We once again need to compute the matrix H µ̂ν̂m , the analog of the one in eq. (2.31).
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It now has a form:

H µ̂ν̂m =
∂m[1 +

C
r5
]

(1 + C
r5
)
2 ×



0 0 − sinhα√

ĝG88

0 0 1√
GttG88

coshα(1+ C
r5
)

(1+C cosh
2 α

r5
)

sinhα√
ĝG88

− 1√
GttG88

coshα(1+ C
r5
)

(1+C cosh
2 α

r5
)

0


 . (3.8)

Then after some algebra, the 1/2 supersymmetry condition is shown to be:

(εL − iεR) =

− coshα

√
1 + C

r5

1 + C cosh2 α
r5

Γ0̂8̂ +
sinhα√
1 + C cosh2 α

r5

Γ9̂8̂


 (εL + iεR) . (3.9)

Once again consistency of this equation is seen by observing that the matrix appear-

ing in the r.h.s. of (3.9) is idempotent.

In the present case the 1/2 supersymmetry of the charged string, as well as that

of the corresponding networks that will be discussed in section 4, can be argued in

another way as well. As pointed out earlier, the solution generating transformations

contain the group of constant coordinate transformations as a subgroup. One can

show that α = −β solutions belong to this category. For this we note that the metric
and antisymmetric tensors in the ten-dimensional theory, after decompactification,

are related to the neutral string solutions as:

G = ΛG0ΛT , B = ΛB0ΛT , (3.10)

where G0 and B0 are the ten-dimensional backgrounds for the netutral strings:

G0 =



1

− 1
(1+ C

r5
)

1
(1+ C

r5
)


 , (3.11)

B0 =

 0 0 0

0 0 − C
(r5+C)

0 C
(r5+C)


 , (3.12)

and

Λ =


 coshα sinhα 0

sinhα coshα 0

0 0 1


 . (3.13)

We however like to point out that althought the two solutions are related by the

above transformation, they are still physically different in the compactified theory.

The generation of charged solutions through decompactification and constant coor-

dinate transformations are known, including for many examples of black holes such

as Reissner-Nordstrom from Schwarzschild etc. The transformations (3.10) in our
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case only points out that many of the classical properties, including supersymmetry

are identical in two theories. In next subsection we will write down the 1/2 super-

symmetry of the charged macrocopic strings for α = β case. These are inequivalent

solutions with respect to the neutral ones even in ten dimensions.

The generalization of the supersymmetry condition (3.9) to D < 9 is once again

straightforward and follows a similar path as in section 2.4. As long as the unit

vectors n(a) and p(a) in eqs. (2.4), (2.5) are chosen to be along a single internal

direction, say xD, only modification in (3.9) comes in the power of r which is asso-

ciated with the Green function in the tranverse directions, in addition to replacing

(Γ9̂,Γ8̂) → (ΓD̂,Γ ˆD−1). A more interestring case is when we parameterize them by
angular variables as n(a) = p(a) ≡ (cosω, sinω cos φ, . . .), in (10 − D)-dimensional

internal space. Then Γ9̂ in eq. (3.9) is replaced by an orthogonal combination of Γ

matrices in (10−D) internal dimensions: Γ9̂ → Γn̂. We will exploit this property in
an eight-dimensional example in section 4.2 to show the existence of network type

solutions.

3.2 α = β solutions

In this case the background metric and antisymmetric tensors are identical to the

one in (3.1). The modulus field is now given by,

ĝ =
1 + C/r5

1 + C cosh2 α/r5
. (3.14)

Finally the components of the gauge fields are now:

Â1t = 0 , Â18 =
C sinhα

2(r5 + C)
,

Â2t =
−C sinhα coshα
2(r5 + C cosh2 α)

, Â28 = 0 . (3.15)

The ten-dimensional beackgrounds are now represented as:

G =

 ĝ 0 b̃

0 −Gtt 0

b̃ 0 G88 + b̃
2/ĝ


 , (3.16)

with Gtt and G88 as in (3.1), and b̃ = C sinhα/(r5 + C cosh2 α). Antisymmetric

tensor is represented as:

B = C

(r5 + C cosh2 α)


 0 − sinhα coshα 0

sinhα coshα 0 − coshα
0 coshα 0


 , (3.17)

and dilaton is given by the expression:

φ(10) = − ln
(
1 +

C cosh2 α

r5

)
. (3.18)
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The inequivalence of the charged solution with respect to the netutral ones can be

seen by observing that the form of the dilaton in eq. (3.18) is now different from that

in (3.7). A comparison of ĝ’s in (3.14) and (3.3) implies that α = β solutions are

T -dual with respect to α = −β ones. Property of supercharges under T -duality has
been studied in [30, 28]. We however obtain the 1/2 supersymmetry condition by

directly using the background solutions.

The final form of the supersymmetry condition is now:

(εL − iεR) = −

 1

coshα

√
1 + C cosh2 α

r5

1 + C
r5

Γ0̂8̂ + tanhα

√
1

1 + C
r5

Γ9̂0̂


 (εL + iεR), (3.19)

and its self-consistency can again be checked by observing that the matrix in the

r.h.s. of (3.19) is idempotent.

The extension of this result to D < 9 is again straight-forward. The final result

is a replacement of (Γ9̂, Γ8̂) by (ΓD̂, Γ ˆ(D−1)) respectively, for trivial unit vectors n
(a)

and p(a)’s pointing only along xD. At the same time, the power of r is modified in this

equation appropriately to rD−4. On the other hand, when n(a) = p(a) represent a gen-
eral rotated unit-vector in (10−D)-dimensional internal space, the supersymmetry
condition is also modified by replacing ΓD̂ by Γn̂.

We end this section by implementing these changes for the case of (α = β)

Charged Macroscopic Strings in D = 8, by defining unit vectors: n(2) = p(2) =

(cosω, sinω). Then 1/2 supersymmetry condition is:

(εL − iεR) = −

 1

coshα

√
1 + C cosh2 α

r4

1 + C
r4

Γ0̂7̂ + tanhα

√
1

1+ C
r4

[cosωΓ9̂0̂ + sinωΓ8̂0̂]


×

× (εL + iεR) . (3.20)

4. SL(2,Z)-Multiplets and network Solutions

4.1 (p, q) charged macroscopic string solutions

The SL(2,Z) multiplets of charged macroscopic strings and their supersymmetry

properties can be written following [8, 9, 29]. The bosonic backgrounds for a general

charged macroscopic string solution is generated in precisely the same manner as

in [8] and can be written down using the ten-dimensional solutions that we introduced

for our lower dimensional Charged Macroscopic Strings. First, the Einstein metric,

defined in ten-dimensions:

GEMN = e
−φ(10)/4GsMN , (4.1)

for our (D = 9) examples of sections-2 and 3 take a form:

GE = e−φ
(10)/4

(G
I7

)
, (4.2)

with G and φ(10)’s given for (i) β = 0 in eqs. (2.18), (2.26) and (2.20), (ii) α = −β
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in eqs. (3.5) and (3.7) and (iii) α = β in eqs. (3.16) and (3.18) respectively. The

Einstein metric defined by (4.2) is invariant under the SL(2,Z) transformation. Only

modification in these are in the source terms in the Green function (2.16) to make

it SL(2,Z) invariant [8]. Nonzero components of the antisymmetric tensor are given

by 3× 3 matrices:
(B)(i) = (M−1

0 )ijqj∆q
−1/2(B) , (4.3)

with ∆q = qi(M−1
0 )ijqj. Components (i = 1, 2) in the above equation correspond

to the NS-NS and R-R sector fields and (B) is a 3 × 3 matrix given in equa-
tions (2.26), (3.6) and (3.17) for cases (i), (ii) and (iii) listed above. The dilaton for

the ten-dimensional extension of our (p, q)-string ((p, q) ≡ (q1, q2) denoted above) so-
lution is given by the same expression as in eq. (20) of [8], with Aq replaced by e

−φ(10) ’s
coming from equations (2.20), (3.7) and (3.18) in our three examples. We therefore

have the SL(2,Z) covariant ten-dimesnional backgrounds for the ten-dimensional

extension of our D = 9 Charged Macroscopic String solution. These can be com-

pactified once again to D = 9. The compactification of type-II theories to lower

dimensions has has been discussed in many papers [31, 32, 33] and we do not persue

it here. The extension of the results to D < 9 solutions is straightforward as well. We

now go on to discuss the supersymmetry properties of these generalized solutions.

4.2 Supersymmetry

The supersymmetry of a (p, q)-charged macrscopic D ≤ 9 string solutions can be
examined from the ten-dimensional point of view, with type-IIB Killing equations

as obtained from the supersymmetry variations written in [27, 28]. It can be argued

that the supersymmetry conditions that we have written in previous sections will be

modified only by a phase factor for general (p, q)-strings. This becomes clear when

one writes down the most general variation for the dilatino [28], in presence of both

NS-NS and R-R backgrounds generated in section 4.1.

For our purpose, we however follow a path presented in [29] for the case of four-

dimensional theories with SL(2,Z)-duality symemtries. This argument has been

applied to the case of type-IIB SL(2,Z)-duality as well [9] and uses the fact that

Killing spinors transform under SL(2,Z) by a phase. Explicitly for,

τ → aτ + b

cτ + d
(4.4)

one has:

(εL − iεR)→ e
i
2
(cτ+d)(εL − iεR) . (4.5)

In fact, as pointed out in [29], the transformation property of the spinors given in (4.5)

holds for Killing spinors in general, including when they are explicitly dependent on

coordinates, such as r in our case. We can now use the above tranformation to

generate the supersymmetry condition for a general (p, q)-string starting from that

for (1, 0) ones.
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We write down these supersymmetry conditions, only at asymptotic infinity,

namely in the limit r →∞. This will be sufficient for our present purpose, following
a line of study of string networks concentrating on the asymptotic properties of

spinors [9, 10]. Although it is of importance to obtain the full supergravity solutions

for the networks and examine complete supersymmetry properties, but we do not

address the issue here.

We also note that the above procedure to generate the supersymmetry condition

of a (p, q)-string, from (1, 0) ones, applies in Einstein frame whereas our supersym-

metry conditions of sections 2 and 3 are written in the string frame. The translation

among these frames involve redefinitions of fields written explicitly in Appendix

of [28] and involve only dilaton-dependent scaling factors, when one restricts to the

analysis of dilatino supersymmetry variation. However since the asymptotic values

of the dilaton in all our examples in previous sections turn out to be independent of

the parameter α with φ→ 0 as r →∞, identical supersymmetry conditions hold in
Einstein frame as well. They have explicit forms for D = 9 examples as:

(i) α = −β : (εL − iεR) = e−iΦ(p,q,τ0) [− coshαΓ0̂8̂ + sinhαΓ9̂8̂] (εL + iεR) ,
(4.6)

(ii) α = β : (εL − iεR) = −e−iΦ(p,q,τ0)
(
1

coshα
Γ0̂8̂ + tanhαΓ9̂0̂

)
(εL + iεR) ,

(4.7)

(iii) β = 0, α 6= 0 : (εL − iεR) = −e−iΦ(p,q,τ0)
[
Γ0̂8̂ + tanh

α

2
(Γ9̂0̂ − Γ9̂8̂)

]
(εL + iεR) ,

(4.8)

with Φ denoting the phase associated with the complex parameter p + qτ0 and the

subscript of τ denotes its asymptotic value. The value of the phase is once again

given by the same expression, as for the neutral string, since the transformations that

generate them from the charged (1, 0)-string supersymmetry-condition is identical to

the one for the neutral ones in [9].

4.3 Network solutions

To obtain the network solutions, we now start with case (i) above and find out

if arbitrary number of (p, q)-strings can be arranged in a manner preserving some

supersymmetry. For this we now generalize (4.6) further to accommodate arbitrary

orientation of strings in spatial directions. In particular, for the string making an

angle θ from x8 axis in an x8−x7 plane, the supersymmetry condition (4.6) modifies
into:

(εL− iεR) = exp(−iΦ(p, q, τ0)) [(− coshαΓ0̂ + sinhαΓ9̂)(cos θΓ8̂+ sin θΓ7̂)] (εL+ iεR) .
(4.9)
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The network solution with 1/4 supersymmetry is then found from the above

equation by identifying the internal and space-time orientations of the strings, namely

Φ = θ. Moreover since the above condition is solved by spinors satisfying the follow-

ing conditions:

εL = −(coshαΓ0̂ − sinhαΓ9̂)Γ8̂εL ,
εR = (coshαΓ0̂ − sinhαΓ9̂)Γ8̂εR , (4.10)

and

εL = −(coshαΓ0̂ − sinhαΓ9̂)Γ7̂εR , (4.11)

which are independent of the the orientation θ, we have the possibility of network so-

lution by arranging arbitrarily large number of strings, provided charge conservations

hold on every 3-string junctions.

Equations (4.10) and (4.11) are analogous to the supersymmetry conditions for

the F and D-strings respectively in our case. We like to point out that for this ex-

ample, the existence of a network solution is already gauranteed from its existence

in the neutral case. This is because of our earlier observation that (α = −β) charged
solution is generated from neutral ones by a group of constant coordinate trans-

formation. This property continues to hold even for a (p, q)-charged macroscopic

string solution, as the group of constant coordinate transformations commutes with

SL(2,Z). Above results can be generalized to the lower dimensional cases by making

appropriate replacements already mentioned in section 3.1.

The network solution and its interpretations are more interesting in case (ii),

namely for α = β. First, as can be noticed from the supersymmetry condition,

eq. (4.7), a solution like case (i) in D = 9 does not exist. This is because, only the

first term in the bracket in the r.h.s. of eq. (4.7) can be modified, as in eq. (4.9), to

include an orientation-dependence of the string through angle θ. The second term in

the bracket, dependent on Γ9̂0̂, namely the ones representing the internal and time

coordinates, remains unchaged under any spatial rotation of string in x8 − x7 plane.
As a result, solutions like the ones in eqs. (4.10, 4.11) do not work.

To obtain a network solution in this case, with a unique spinor satisfying the

(p, q) string supersymmetry condition for their arbitrary orientations, one needs to

go down to D ≤ 8. This is done by introducing a parameter associated with rotation
in internal space, in addition to the angle θ that the string now makes with x7 axis in

x7 − x6 spatial plane. The eight-dimensional supersymmetry conditions, employing
internal rotations, was already given in eq. (3.20). A modification of this, for nonzero

θ is given as:

(εL − iεR) = −e−iΦ
[
1

coshα
(cos θΓ0̂7̂ + sin θΓ0̂6̂) +

+ tanhα(cosωΓ9̂0̂ + sinωΓ8̂0̂)

]
(εL + iεR). (4.12)
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To obtain θ-independent spinor-projections we now identify

θ = Φ = ω . (4.13)

This identification allows one to solve eq. (4.13) for ε’s which are θ-independent and

satisfy projection conditions:

−
(
1

coshα
Γ0̂7̂ + tanhαΓ9̂0̂

)
εL = εL , (4.14)

(
1

coshα
Γ0̂7̂ + tanhαΓ9̂0̂

)
εR = εR , (4.15)

and

−
(
1

coshα
Γ0̂6̂ + tanhαΓ8̂0̂

)
εL = εR . (4.16)

The conditions (4.15) and (4.16) are again the analogs of the F-string and D-string

supersymmetry conditions for the charged macroscopic (D = 8) strings considered

here. The identifications (4.13) imply a coupling between the U(1) phase coming

from S-dualtiy transformation to the one coming from the solution generating trans-

formations. Physically this can be interpreted as implying a relationship between the

gauge-charges with (p, q)-charges coming from 2-form fields. It will be interesting to

analyze the precise implications of this relationship on the physical properties of the

networks.

Finally we comment on the case (i) and other charged macroscopic string solu-

tions. It is now evident that the condition (4.8) is of a form which does not lead to

an obvious solution for an orientation independent projection condition. This can be

related technically to the fact that in this case one has all three combination of Γµ̂ν̂
matrices (in D = 9) appearing in eq. (4.8), unlike in conditions (i) and (ii) where

only two of the three combinations appeared, allowing above solutions. This is the

property of other α 6= 0, β 6= 0 solutions as well and may be related to the fact that a
general left-right asymmetric solution generating transformation acts differently on

εL and εR and is inconsistent with the conditions of having a network solution, as

they require relationships like (4.11) and (4.16) between them.

5. Conclusions

In this paper we have obtained supersymmetry properties of the charged macrscopic

strings. We have also shown the existence of a network solution of charged strings.

Some of these are completely inquivalent with respect to the network of neutral string

solutions.
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In the context of network construction, it should be pointed out that our exercise

only shows the presence of a unique Killing spinor at asymptotic infinity in the

presence of large number of (p, q) strings. We do not present the spinor at arbitrary

space-time point. This however requires the knowledge of string network solutions

for the full supergravity which is not completely understood even for neutral strings,

although progress in this direction has been reported [22]. More precisely, we notice

that the Killing spinor has a coordinate-dependence given by a covariant expression

for the Green functions, leading to different spatial dependence for every (p, q)-string.

It is hoped that the full Killing spinor of a supergravity solution for these networks

will be given by a smooth funtion which will properly match on to every string in a

network.

It will also be interesting to generalize these to non-planar networks and possibly

to find the applications of such networks to four-dimensional gauge theories [20, 21].

Moreover, one can possibly also analyze the possibility of network solutions when

strings are compactified on other manifolds like K3 etc. and be able to obtain a

realization of various BPS states in string theories in this manner.
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