arXiv:hep-ex/9911014 12 Nov 1999

$$
\text { 2. FD correlations in } \Lambda \Lambda \text { and } \bar{\Lambda} \bar{\Lambda} \text { pairs }
$$

 Section 2 describes a new result on FD
correlations in $\Lambda \Lambda$ and $\bar{\Lambda} \bar{\Lambda}$ pairs. Section 3 discusses BE or FD correlations reach their extreme values. measured as a function of the Lorentz invariant Q,
with $Q^{2}=-\left(p_{1}-p_{2}\right)^{2}$. For $Q^{2}=0$, the effects of
 $P\left(p_{1}, p_{2}\right)$ which can be attributed to the BE or FD
 to the data sample. The main experimental
difficulty is to define an appropriate reference

 where p_{1} and p_{2} are the four-momenta of the
particles, $P\left(p_{1}, p_{2}\right)$ is the measured differential
 tion $C\left(p_{1}, p_{2}\right)$ defined as
 each other in phase space. The strength of twoұиәшәәиечиә ue of peə[pue sə
 particle sources in space and time. These correof identical fermions produced in high energy colli-
sions provide measurements of the distributions of Studies of Bose-Einstein (BE) correlations of iden-
tical bosons and of Fermi-Dirac (FD) correlations 1. Introduction
Studies of Bose-Ei

[^0]
New results on interference effects and
the unmixed events most pairs are produced back to back, whereas the distribution for the mixed sample is completely symmetric. This leads to a shift in the Q distribution for the mixed pairs towards lower values of Q. To overcome this problem, the double ratio of the cross sections is commonly used and this gives reference B:
$$
C(Q)=\left(\frac{P(Q)_{\text {data }}}{P(Q)_{\text {data }, \text { mix }}}\right) /\left(\frac{P(Q)_{\mathrm{MC}}}{P(Q)_{\mathrm{MC}, \operatorname{mix}}}\right)
$$

Since the symmetrization of the $\cos \theta_{1,2}$ distribution is the main reason for the difference in the Q distributions of the mixed and original pairs, reference C is constructed from the mixed data sample, which is reweighted to reproduce the $\cos \theta_{1,2}$ distribution from the original pairs obtained from Monte Carlo.

Independent of the reference sample used, $C(Q)$ shows a decrease for $Q<2 \mathrm{GeV}$. If this is interpreted as a FD effect, the size of the source R estimated from $C(Q)$ with a Goldhaber parameterisation is:

$$
R(\Lambda \Lambda, \bar{\Lambda} \bar{\Lambda})=0.11 \pm 0.02_{\text {stat }} \pm 0.01_{\text {syst }} \mathrm{fm}
$$

This is consistent with the result of the less precise but less model dependent measurement of the spin composition which can have a total spin of 0 or 1 . The spin 1 fraction, $\epsilon(Q)$, is expected to be 0.75 for

Figure 2. The histogram shows the $\cos \theta_{1,2}$ distribution for a) the original ($\Lambda \Lambda, \bar{\Lambda} \bar{\Lambda})$ pairs from the Monte Carlo and b) for the mixed pairs of the same sample. Points in a) show the $\cos \theta_{1,2}$ distribution of the data. The deviation of the Monte Carlo from data at large $\cos \theta_{1,2}$ is due to the FD effect.
a statistical spin mixture ensemble. Since the total wave function for the fermion pair must be antisymmetric, the symmetric spin 1 wave function must be paired with the antisymmetric space wave function, and thus $\epsilon(Q)$ is expected to decrease to 0 as Q goes to 0 due to FD statistics. ALEPH finds that $\epsilon<0.75$ for $Q<2 \mathrm{GeV}$ and $\epsilon \simeq 0.75$ for $Q>2 \mathrm{GeV}$, as shown in Table 1 the source R estimated from $\epsilon(Q)$ is $R=0.14 \pm$ $0.09_{\text {stat }} \pm 0.03_{\text {syst }} \mathrm{fm}$. For the $\bar{\Lambda} \bar{\Lambda}$ system, which is free of FD correlations, the spin composition measurements are consistent with $\epsilon=0.75$ in the entire Q range studied. ALEPH also proves that this spin composition technique, previously shown to hold approximately for low values of Q, is in fact valid for any value of Q . The results for $\epsilon(Q)$ are in agreement with previous measurements from

A comparison of this result with the measured radii for identical charged pions [$[\underline{\bar{p}}]$

$$
\begin{aligned}
R\left(\pi^{ \pm}, \pi^{ \pm}\right) & =0.65 \pm 0.04_{\text {stat }} \pm 0.16_{\text {syst }} \mathrm{fm} \\
R\left(K^{ \pm}, K^{ \pm}\right) & =0.48 \pm 0.04_{\text {stat }} \pm 0.07_{\text {syst }} \mathrm{fm}
\end{aligned}
$$

indicates that the dimension of the source decreases with the increasing mass of the emitted particles.

3. Multi-dimensional BE correlations

A recent model of BE correlations predicts that the longitudinal correlation length is different from the transverse one since momentum components longitudinal and transverse with respect to the string direction are generated by different
 DELPHI dimensional BE correlations in hadronic Z^{0} decays in the so-called Longitudinally CoMoving System, which represents the local rest frame of the string.

OPAL use a sample of opposite sign particle pairs to define the reference for correlation function $C(Q)$ shown in figure ${ }^{2}(\mathrm{I})$. However, this reference

Table 1. The values of ϵ for the $(\Lambda \Lambda, \bar{\Lambda} \bar{\Lambda})$ and $\Lambda \bar{\Lambda}$ samples.

Q Range $[\mathrm{GeV}]$	$\epsilon(\Lambda \Lambda, \bar{\Lambda} \bar{\Lambda})$	$\epsilon(\Lambda \bar{\Lambda})$
$0.0-1.5$	$0.36 \pm 0.30 \pm 0.08$	$0.61 \pm 0.13 \pm 0.07$
$1.5-2.0$	$0.52 \pm 0.31 \pm 0.10$	$0.77 \pm 0.07 \pm 0.03$
$2.0-4.0$	$0.78 \pm 0.16 \pm 0.09$	$0.51 \pm 0.11 \pm 0.12$

also contains pairs coming from resonance decays and from weakly decaying particles. In addition, the correlation function has to be normalised and suffers, at large four-momentum differences, from long-range correlations due to energy and momentum conservation. Therefore OPAL use a large sample of Monte Carlo to define a second correlation function $C^{\prime}(Q)=C^{\text {data }} / C^{M C}$, shown in figure ${ }_{2}^{2}(\mathrm{~b})$. This correlation function is more reliant on the Monte Carlo but is almost normalised with a reduced contamination from correlated unlike charge pairs. DELPHI and L3 both use event mixing techniques to define their references.

OPAL and DELPHI parameterise the two-pion correlation function in two dimensions, while L3 use three dimensions. OPAL also study a onedimensional correlation function as a function of the angle between the two-pion momentum difference, in the rest frame of the $\pi \pi$ system, and the thrust direction. OPAL also check for any dependence on the two-jet nature of the events.

In all cases, a significant difference between the transverse, r_{t}, and longitudinal, r_{l}, dimensions is observed, indicating that the emitting source of pions has an elongated shape, with the longitudinal dimension about 1.3 times larger than the transverse dimension. For instance, the parameter values obtained by fitting an extended Goldhaber parameterisation to the correlation function $C^{\prime}(Q)$ of OPAL are:

$$
\begin{aligned}
r_{l} & =0.935 \pm 0.013_{\text {stat }} \pm 0.026_{\text {syst }} \mathrm{fm} \\
r_{t} & =0.720 \pm 0.009_{\text {stat }} \pm 0.044_{\text {syst }} \mathrm{fm} \\
r_{l} / r_{t} & =1.30 \pm 0.03_{\text {stat }} \pm 0.12_{\text {syst }}
\end{aligned}
$$

Figure 3. Two-dimensional BE correlation functions plotted versus the two components of the momentum difference, along the thrust axis, Q_{l}, and transverse to the same axis, Q_{t}.

4. Other results

OPAL measure BE correlations in $K^{ \pm} K^{ \pm}$ pairs [i1], which confirms an earlier DELPHI result $[12$ such correlations in $K_{s}^{0} K_{s}^{0}$ pairs, making it unlikely that previously observed threshold enhancements can be attributed entirely to $f_{0}(980)$ production. SLD study correlations in rapidity between identified charged hadrons and use the SLC electron beam polarisation to tag the quark hemisphere in each event, allowing the first study of rapidities signed such that the positive rapidity is along the quark direction, which provides new insights into the fragmentation process $\left[1 \overline{3} \overline{3_{1}}\right.$. OPAL perform a multidimensional study of local multiplicity fluctuations and genuine multi-particle correlations in terms of factorial moments and, for the first time in $e^{+} e^{-}$annihilation, factorial cumulants, up to fifth order [$\left[1 \overline{1}_{1}^{1}\right.$. The Monte Carlo models JETSET 7.4 and HERWIG 5.9 are found to reproduce the trends but underestimate the magnitudes.

5. Summary and conclusions

FD correlations have been clearly observed in $(\Lambda \Lambda, \bar{\Lambda} \bar{\Lambda})$ pairs by ALEPH using two different techniques. A comparison of the source size measured in systems of identical pions, kaons and Λ 's indicates that the source size decreases as the mass of the emitted particles increases. Several studies of multidimensional BE correlations by OPAL, DELPHI and L3 confirm a theoretical prediction that the emitting source of pions has an elongated shape, with a longitudinal dimension about 1.3 times larger than the transverse dimension. This indicates that models based on the assumption of a spherical source are too simple.

References

[1] ALEPH Coll. Contribution 1_389
[2] Alexander G and Lipkin H 1995 Phys. Lett. B 352162
[3] OPAL Coll. 1996 Phys. Lett. B 384377
4. DELPHI Coll. 1998 ICHEP98 proceedings

5 ALEPH Coll. 1992 Z. Phys. C 5475
6 DELPHI Coll. 1996 Phys. Lett. B 379330
[7] Andersson B and Ringner M 1998 Nucl. Phys. B 513 627; Andersson B and Ringner M 1998 Phys. Lett. B 421283
[8] OPAL Coll. Contribution 3_64
[9] DELPHI Coll. Contribution 1_221
[10] L3 Coll. Contribution 3_280
11 OPAL Coll. Contribution 3_65
12. DELPHI Coll. 1996 Phys. Lett. B 379330

13 SLD Coll. Contribution 1_187
[14] OPAL Coll. Contribution 3_64

[^0]: New results on interference effects and correlations are reviewed, including Fermi
 Dirac and Bose-Einstein correlations in hadronic Z^{0} decays at LEP1.

